

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MORELOS INSTITUTO DE INVESTIGACIÓN EN CIENCIAS BÁSICAS Y APLICADAS

> CENTRO DE INVESTIGACIÓN EN DINÁMICA CELULAR CENTRO DE INVESTIGACIONES QUÍMICAS

Diseño *in sílico*, búsqueda y evaluación biológica de nuevos antibióticos contra la bacteria multirresistente Acinetobacter baumannii

TESIS PROFESIONAL PARA OBTENER EL GRADO DE:

Doctor en Ciencias

P R E S E N T A M. en C. Francisco José Palacios Can

DIRECTOR: Dr. Rodrigo Said Razo Hernández CODIRECTOR: Dr. José Raymundo Hugo Tlahuext Romero

CUERNAVACA, MORELOS

Mayo 2024

Esta tesis fue desarrollada bajo la dirección del Dr. Rodrigo Said Razo Hernández en el Laboratorio de Quimioinformática y Diseño de Fármacos del Centro de Investigación en Dinámica Celular (CIDC), así como el diseño experimental fue realizado bajo la codirección del Dr. Hugo Tlahuext Romero en el Laboratorio 209 del Centro de Investigaciones Químicas (CIQ), ambos pertenecientes al Instituto de Investigación en Ciencias Básicas y Aplicadas, IICBA, de la Universidad Autónoma del Estado de Morelos (UAEM).

Esta tesis contó con financiamiento por parte de CONAHCYT, con los proyectos no. 256927 y 320243. Se contó con el apoyo de los equipos analíticos del Laboratorio Nacional de Estructura de Macromoléculas, LANEM del Centro de Investigaciones Químicas y la beca de Posgrado de CONAHCYT. No. CVU 816576 en el periodo febrero 2020 – enero 2024.

Los resultados de esta tesis fueron presentados en congresos de índole nacional e internacional en la modalidad de póster y presentación oral, así como la publicación de doctorado:

- Congreso de Química en Twitter, LatinXChem 2020. Presentación de póster con el trabajo: "QSPR model for the prediction of new antibacterial molecules against Acinetobacter baumannii". Septiembre 7, 2020, #LatinXChemBio #Bio132. Autores: Francisco José Palacios-Can, Rodrigo Said Razo-Hernández.
- Congreso de Química en Twitter, LatinXChem 2021. Presentación de póster con el trabajo: "QSPR models for the prediction of the antibacterial activity of molecules towards Acinetobacter baumannii acting in cytoplasm or periplasm". Septiembre 20, 2021, #LatinXChemBio #Bio014. Autores: Francisco José Palacios-Can, Rodrigo Said Razo-Hernández.
- Congreso online vía Twitter, #LatinXChem 2022. Presentación de póster con el trabajo: "In search of new antibacterials towards Acinetobacter baumannii with the use of a QSPR model". Septiembre 20, 2021, #LatinXChemBio #Bio014. Autores: Francisco José Palacios-Can, Rodrigo Said Razo-Hernández.
- XXI Reunión Mexicana de Fisicoquímica Teórica. Presentación de póster con el trabajo: "QSAR model and molecular docking for a series of aztreonam-derivatives against A. baumannii". 9 al 11 de noviembre, 2023, Pachuca, Hidalgo, México. Autores: Francisco José Palacios-Can, Rodrigo Said Razo-Hernández.
- 5. 5to. Congreso Internacional de Ingenierías, por la presentación virtual 60 minutos titulada: *"Diseño de modelo QSPR para la predicción de la actividad bactericida de compuestos contra la bacteria multirresistente Acinetobacter baumannii*". El Tecnológico Nacional de México a través del Instituto Tecnológico de Milpa Alta, celebrado del 13 al 15 de octubre de 2020
- 6. Semana de la Salud 2021, por la presentación virtual 50 minutos titulada: "*Modelos QSAR: en la búsqueda de nuevos fármacos contra Acinetobacter baumannii*". Organizada por la Academia de Ciencias Experimentales, turno matutino, en el Colegio de Bachilleres del Estado de Morelos Plantel 02 Jiutepec, celebrado el 06 de octubre de 2021
- 7. Francisco José Palacios-Can, Jesús Silva-Sánchez, Ismael León-Rivera, Hugo Tlahuext, Nina Pastor, Rodrigo Said Razo-Hernández: Identification of a Family of Glycoside Derivatives Biologically Active against Acinetobacter baumannii and Other MDR Bacteria Using a QSPR Model. *Pharmaceuticals*, 2023, 16(2), 250; doi: 10.3390/ph16020250

3

Trabajos y talleres en los que se ha participado durante los estudios de doctorado:

- Abimelek Cortes-Pacheco, María Adelina Jiménez-Arellanes, Francisco José Palacios-Can, José Antonio Valcarcel-Gamiño, Rodrigo Said Razo-Hernández, María del Carmen Juárez-Vázquez, Adolfo López-Torres, Oscar Abelardo Ramírez Marroquín. "Synthesis, antiinflammatory activity and molecular docking studies of bisphosphonic esters as potential MMP-8 and MMP-9 inhibitors". *Beilstein J. Org. Chem.* 2020, 16, 1277–1287; doi:10.3762/bjoc.16.108
- Jaime Cardoso-Ortiz, Socorro Leyva-Ramos, Kim M. Baines, Cesar Fernando Azael Gómez-Durán, Hiram Hernández-López, Francisco José Palacios-Can, José Antonio Valcarcel-Gamiño, Mario Alberto Leyva-Peralta, Rodrigo Said RazoHernández: "Novel ciprofloxacin and norfloxacin-tetrazole hybrids as potential antibacterial and antiviral agents: Targeting S. aureus topoisomerase and SARSCoV-2-MPro". *J. Mol. Struct.*, 2023, 1274, 134507; doi: 10.1016/j.molstruc.2022.134507
- Isis A.Y. Ventura-Salazar, Francisco J. Palacios-Can, Leticia González-Maya, Jessica Nayelli Sánchez-Carranza, Mayra Antunez-Mojica, Rodrigo Said Razo-Hernández, Laura Alvarez: "Finding a Novel Chalcone–Cinnamic Acid Chimeric Compound with Antiproliferative Activity against MCF-7 Cell Line Using a Free-Wilson Type Approach", *Molecules* 2023, 28(14), 5486; doi: 10.3390/molecules28145486
- Instructor en el 12° Taller en Dinámica Molecular: Aplicaciones a Bioquímica y Farmacia, con el taller "Introducción a los modelos QSPR/QSAR", celebrado del 7 al 11 de agosto de 2023.

AGRADECIMIENTOS

Agradezco al Dr. Rodrigo Razo por su amabilidad en aceptarme dentro de su grupo de trabajo, por su apoyo en mi formación académica previo y durante mi doctorado, por permitirme seguir explotando mi creatividad en lo teórico y experimental, y por los años trabajando en proyectos. Su guía y consejos han sido una influencia positiva en mi formación.

Al Dr. Hugo Tlahuext, por permitirme realizar mi trabajo experimental dentro de sus instalaciones, por su amable apoyo y tutoría a lo largo de mi maestría y ahora doctorado, y por facilitarme los recursos para completar diversos proyectos.

A los miembros de mi comité tutorial Dra. Nina Pastor, Dra. Margarita Bernal Uruchurtu y Dr. José Luis Viveros por sus valiosas aportaciones y comentarios cada semestre durante el desarrollo de este proyecto de doctorado. Así como al resto de H. Sínodo revisor de este trabajo conformado por el Dr. José Medina Franco, Dr. Luis Bahena, Dr. Jaime Escalante, Dr. Gabriel Navarrete y al Dr. César Pacheco.

A mis padres Francisco Palacios de la Luz y Laura Esther Can Moo, quienes han sido, son y serán pilar de apoyo incondicional, y por lo mismo es que esta tesis se las dedico con mucho cariño y esfuerzo. A mi hermano Hugo, quien en tiempos de crisis hizo más ameno el doctorado y le agradezco infinitamente. Así también a mis abuelos Gloria, José†, Josefina† y Teófilo†, así como a Eli y Mita-Mita, quienes forman parte integral de mi vida, hoy y siempre. Tampoco olvido a mi querido Oso, astuto perro que, aunque ya no se encuentra en este plano, sigue siendo todo.

A mis amigos y compañeros de trabajo: Luis, Nathanael, Fátima, Diana, Lupita, Erick, Julio, de quienes me llevo gratos momentos que hicieron ameno el trabajo. Así también a mis amigos del CIQ, Sindy, Alma, Fany, Arbeli, Nadia, Pepe, Marina, David, Adrián, con quienes algunos desde la carrera y ahora el doctorado, he podido tener amistad y también momentos sin igual.

A mis amigos, Lucinda, Erika, Laura, Alexis, Luis Reyes, Jacobo, Selene, de quienes conozco de años y que seguimos teniendo una buena amistad a pesar de la distancia y complejidad.

Con especial agradecimiento al Dr. Rodrigo Morales Cueto por su amable apoyo durante estos últimos años. También al Dr. Robin Perutz de la Universidad de York por facilitarme el análisis de muestras dentro de sus instalaciones.

Y con un especial cariño a Vicky Corona por su sincera amistad, por apoyarme en los buenos y malos momentos, tanto en el trabajo y fuera de ello. También a la Milanesa Napolitana quien se ha ganado un lugar muy bonito en mi hogar.

5

Sin su apoyo no se hubiera completado esta tesis. Por tanto, a todos... ¡GRACIAS!

Contenido

Resume	n
Abstract	t 1
•••••	
CAPITU	LO 1 <i>GENERALIDADES</i> 1
1.1	Estrategias en el diseño de fármacos asistido por computadora1
a.	Acoplamiento molecular 1
b.	Cribado virtual 1
С.	Modelos QSPR/QSAR 1
1.2	Acinetobacter baumannii1
d.	<i>Características de la bacteria</i> 1
е.	<i>Mecanismos de resistencia bacteriana</i> 1
f.	Incidencia de infección por A. baumannii2
1.3	Justificación2
1.4	Hipótesis2
1.5	Objetivo2
1.6	Referencias2
•••••	
CAPITU	LO 2 <i>CONSTRUCCIÓN DEL MODELO QSPR DE ANTIBACTERIALES</i>
2.1	Modelos QSPR/QSAR en el desarrollo de antibióticos contra A. baumannii
2.2	Modelo QSPR de moléculas con actividad hacia <i>A. baumannii</i>
a.	<i>Selección de moléculas y curación de estructuras</i> 3
b.	<i>Cálculo de descriptores</i> 3
С.	<i>Generación de modelo QSPR</i> 3
d.	<i>Validación estadística interna y externa</i> 3
е.	<i>Resultados: modelo QSPR de 15 variables</i> 4
f.	<i>Validación del poder predictivo</i> 4
2.3	Interpretación del modelo QSPR4
g.	Descriptores topológicos 4
h.	<i>Descriptores de grupos funcionales</i> 5
i.	<i>Descriptores de fragmentos centrados en el átomo</i> 5
j.	<i>Descriptor de correlación 2D</i> 5
k.	<i>Análisis de moléculas mediante diagramas de Venn</i> 5

2.4	Conclusiones y perspectivas	60
2.5	Referencias	61
•••••		66
CAPITU	LO 3 CRIBADO VIRTUAL Y OPTIMIZACIÓN DE UN COMPUESTO LÍDER	66
3.1	Bases de datos de productos naturales: BIOFACQUIM	67
a.	Selección, curado de estructuras y cálculo de descriptores	68
b.	Análisis de moléculas mediante modelo QSPR	68
3.2	Compuestos de extractos de <i>Ipomoea sp</i>	74
С.	Actividad antibacterial de glucósidos y análisis SAR	
d.	Postulación de mecanismo de acción de glicósidos	
3.3	Molécula "60" como compuesto líder	81
е.	Análisis de similitud molecular con compuestos biológicamente activos	82
f.	Optimización de compuesto líder de acuerdo con el QSPR	84
g.	Análisis de parámetros fisicoquímicos de nuevos derivados	85
3.4	Conclusiones y perspectivas	86
3.5	Referencias	88
•••••		92
CAPITU	LO 4 DERIVADOS DE 8HQ COMO AGENTES ANTIBACTERIALES	92
4.1	La 8-hidroxiquinolina (8HQ) como parte de los agentes antibacteriales	93
a.	Propiedades fisicoquímicas de la 8HQ	
b.	Nitroxolina y clioquinol como agentes antibacteriales	
4.2	Análisis de derivados de 8HQ mediante modelo QSPR de antibacteriales	96
4.3	Síntesis, espectroscopia y evaluación biológica de derivados de la 8HQ	98
С.	Síntesis de 7-bromo-5-cloro-8-hidroxiquinolina, molécula 76	
d.	Síntesis de 5-cloro-8-hidroxi-7-nitroquinolina	
е.	Síntesis de derivados de 8-hidroxi-5-nitroquinolina	114
f.	Pruebas biológicas de derivados de 8HQ	118
4.4	Compuestos de coordinación de zinc con actividad biológica	120
g.	Síntesis de derivados de zinc con derivados de 8HQ	121
h.	Caracterización en disolución de complejos de zinc(II)	121
i.	Pruebas biológicas de derivados de Zn	124
4.5	Conclusiones y perspectivas	125
4.6	Referencias	127

_____ (7)_____

•••••		130
CAPITUI	LO 5 MODELO QSAR DE DERIVADOS DE AZTREONAM	130
5.1	Betalactámicos	131
5.2	Derivados de aztreonam: las monobactamas	134
a.	Propiedades fisicoquímicas de las monobactamas	134
b.	Actividad antibacterial del aztreonam y derivados	135
С.	Introducción a los sideróforos	135
d.	Aproximación por caballo de Troya: complejo sideróforo-monobactama .	136
5.2	Modelo QSAR de moléculas con actividad hacia A. baumannii	137
е.	Selección de moléculas y curación de estructuras	137
f.	Cálculo de descriptores	138
g.	Generación de modelo QSAR	139
h.	Resultados: modelo QSAR de 7 variables	140
5.3	Interpretación de descriptores del modelo QSAR	141
Í.	Descriptores experimentales: RMN de ¹ H y ¹³ C{ ¹ H}	141
j.	Descriptor de fragmento centrado en el átomo (ACF)	143
k.	Descriptor de índice topológico de carga	144
5.4	Propuesta de un complejo sideróforo-monobactama	144
<i>l.</i>	Análisis retrosintético de compuesto sideróforo-monobactama	145
т.	Análisis de actividad usando los modelos QSPR y QSAR	146
5.5	Conclusiones y perspectivas	147
5.6	Referencias	148
		151
ANEXOS		151
A.1	Condiciones generales	152
A.2	Síntesis del compuesto 7-bromo-5-cloro-8-hidroxiquinolina	152
A.3	Síntesis del compuesto 5-cloro-8-hidroxi-7-nitroquinolina	152
A.4	Síntesis del compuesto 7-cloro-8-hidroxi-5-nitroquinolina	153
A.5	Síntesis del compuesto -7-bromo-8-hidroxi-5-nitroquinolina	153
A.6	Síntesis del compuesto 8-hidroxi-5-nitro-7-yodoquinolina	153
Anexos -	Figuras	154
Anexos -	Tablas	169

Resumen

En la presente tesis de doctorado se obtuvieron nuevos compuestos químicos con actividad antibacterial contra *Acinetobacter baumannii*, empleando herramientas del diseño de fármacos asistido por computadora. Este procedimiento involucró la búsqueda y análisis de sustancias con actividad antibacteriana reportada contra la bacteria multirresistente *A. baumannii*. A través del uso de la técnica del QSPR/QSAR, del cribado virtual en una base de datos de productos naturales, y de la optimización de una estructura líder, se obtuvieron nuevos compuestos químicos que inhiben el crecimiento bacteriano de *A. baumannii* y de otras cepas multirresistentes pertenecientes al grupo ESKAPE.

En el primer capítulo se discuten los conceptos básicos en el uso de las técnicas del Diseño de Fármacos Asistido por Computadora (DIFAC) para el desarrollo de nuevos compuestos bioactivos, así como la problemática de resistencia microbiana a los antibióticos y su panorama actual con énfasis en la multirresistencia generada por la bacteria A. baumannii. En el segundo capítulo, se hizo la búsqueda y curado de datos de moléculas bioactivas reportadas hacia A. baumannii. A partir de la información obtenida, se generó un modelo QSPR del cual se realizó su validación interna y externa, así como la evaluación del poder predictivo usando moléculas que no formaron parte de conjunto usado. En el tercer capítulo, se utilizó el modelo QSPR para el cribado virtual de moléculas en una base de datos de productos naturales (BIOFACQUIM). Se encontraron moléculas aisladas de plantas del género *Ipomoea*, con valores de *p*MIC altos predichos por el modelo. Se realizó análisis de susceptibilidad de las moléculas aisladas de Ipomoea frente a cepas bacterianas resistentes a carbapenemas, los cuáles mostraron efectividad frente a la mayoría de estas. De entre las moléculas analizadas, destacó el compuesto 60, un ácido decanoico glicosilado de estructura simple el cual mostró actividad antibacterial de amplio espectro. En el cuarto capítulo, el análisis de moléculas de la base de datos permitió identificar otras estructuras simples, en particular, los derivados de quinolinas. La nitroxolina, una 8-hidroxiquinolina, junto con sus derivados halogenados como propuesta de nuevos compuestos bioactivos, mostraron valores predichos de actividad moderada a alta obtenidos del modelo QSPR. A partir de este análisis, se realizó la síntesis química de los compuestos propuestos, su caracterización por técnicas espectroscópicas, así como las pruebas de susceptibilidad frente a cepas bacterianas multirresistentes. Con el fin de potenciar la actividad mostrada por estas quinolinas, se realizó la síntesis de complejos metálicos a base de Zn(II), los cuales se evaluaron frente a las cepas bacterianas, obteniendo valores de MIC inferiores a 16 µg/mL, demostrando la alta potencia de los nuevos compuestos. Finalmente, en el quinto capítulo se realizó el análisis de derivados de aztreonam obtenidos de la base de datos. Utilizando valores de desplazamiento químico de protón y carbono (¹H y ¹³C{¹H}), así como descriptores asociados a la variación estructural de fragmentos y grupos funcionales, se generó un modelo QSAR descriptivo y predictivo. Este nuevo modelo permite la optimización del aztreonam incorporando fragmentos que mejoren aspectos fisicoquímicos de la molécula como su solubilidad.

9

Abstract

In present thesis, new chemical compounds with antibacterial activity against *Acinetobacter baumannii* were obtained using computer-aided drug design tools. This procedure involved the search and analysis of molecules with antibacterial activity reported against the multidrug-resistant bacteria *A. baumannii*. Using the QSPR/QSAR technique, virtual screening on a natural products database, and the optimization of a leader structure, new chemical compounds were obtained that inhibit the bacterial growth of *A. baumannii* and other multiresistant bacterial strains belonging to the ESKAPE group.

In chapter 1, basic concepts in the use of Computer-Aided Drug Design (CADD) techniques for the development of new bioactive compounds are discussed; microbial resistance to antibiotics and its current panorama with emphasis on the resistance generated by the bacteria A. baumannii is also presented. In chapter 2, the search and data curation of bioactive molecules reported towards A. baumannii was carried out. From the information obtained, a QSPR model was generated, for which its internal and external validation was performed. The evaluation of the predictive power of the model was done using molecules not included within the original database. In chapter 3, the QSPR model was used for virtual screening of molecules in a natural products database (BIOFACQUIM). Molecules isolated from plants of the Ipomoea sp. were found with high *p*MIC values predicted by the model. Biological assays of molecules isolated from Ipomoea were carried out against bacterial strains resistant to carbapenems, which showed effectiveness against most of these. Among the molecules analyzed, compound 60, a glycosylated decanoic acid with a simple structure, showed broad-spectrum antibacterial activity. In chapter 4, the analysis of molecules in the database allowed the identification of other simple structures, in particular, quinoline derivatives. Nitroxoline, an 8-hydroxyquinoline, together with its halogenated derivatives as proposed new bioactive compounds, showed predicted values of moderate to high activity obtained from the QSPR model. From this analysis, the chemical synthesis of the proposed compounds was carried out, their characterization by spectroscopic techniques, as well as susceptibility tests against multiresistant bacterial strains. In order to enhance the activity shown by these quinolines, the synthesis of metal complexes based on Zn(II) was achieved, which were evaluated against bacterial strains, obtaining MIC values lower than 16 μ g/mL, demonstrating the high potency of the new compounds. Finally, in the fifth chapter, the analysis of aztreonam derivatives obtained from the database was carried out. Using proton and carbon chemical shift values (¹H y ¹³C{¹H}) from NMR results, as well chemical as descriptors associated with the structural variation of fragments and functional groups, a descriptive and predictive QSAR model was generated. This new model allows the optimization of aztreonam by incorporating fragments that improve physicochemical aspects of the molecule such as its solubility.

CAPITULO 1 *GENERALIDADES*

En este capítulo, se discuten los diferentes aspectos del diseño de fármacos asistido por computadora, las técnicas y aproximaciones utilizadas para el análisis de moléculas con actividad biológica, así como las ventajas y desventajas asociadas a su uso. También se detalla aspectos importantes de la bacteria *Acinetobacter baumannii*, entre ellas: características generales, mecanismos de resistencia a antibióticos y la incidencia de infección de *A. baumannii* en México. Finalmente, se muestra la justificación, la hipótesis y los objetivos del presente proyecto.

1.1 Estrategias en el diseño de fármacos asistido por computadora

A lo largo de la historia, una gran mayoría de fármacos importantes han sido descubiertos más que desarrollados; por lo mismo, muchos de éstos provienen de productos naturales o derivados de ellos¹, por ejemplo, los betalactámicos a partir del descubrimiento de la Penicilina G.² Sin embargo, con el desarrollo de metodologías de síntesis orgánica³ y de herramientas de cribado de alto rendimiento⁴, es que se han descubierto estructuras químicas con alto potencial hasta convertirse en fármacos. No obstante, el proceso por el cual parten resulta en un desarrollo muy lento y de alto costo.

Hasta antes de 1960, el obtener nuevos candidatos para su posterior optimización resultaba en pruebas de ensavo y error. Desde la identificación de la enfermedad a la cual se desea tratar pasando a la búsqueda, identificación, análisis de la diana terapéutica⁵, así como del estudio de las moléculas con actividad demostrada hacia ellas, es un proceso que conlleva tiempo y esfuerzo. Posterior a este primer paso, la optimización de las estructuras químicas⁶ para que generen una mejora en su potencia, selectividad y afinidad establecen los parámetros para un estudio de relación estructura - actividad. Finalmente, los siguientes pasos tienen como propósito la mejora en sus aspectos farmacocinéticos y propiedades farmacéuticas que sirvan como punto importante para la obtención de un nuevo medicamento listo para su venta al mercado. Sin embargo, la mayoría de los fármacos que atraviesan este proceso "tradicional" de desarrollo fallan durante las pruebas clínicas de fase I y II, principalmente por los efectos adversos (toxicidad en algunos casos) o bien por problemas relacionados con su farmacocinética, especialmente con los procesos de absorción y distribución en el organismo. Como se puede observar en la Figura 1, el proceso de generación de un nuevo medicamento puede oscilar entre 10 a 15 años tomando en cuenta un promedio ideal, así como un estimado de entre mil a dos mil millones de dólares por cada fármaco lanzado al mercado.⁷

Según la definición establecida por Zhou y Zhong, se describe al diseño de fármacos como un proceso novedoso de desarrollo de nuevos compuestos bioactivos basado en el conocimiento de un blanco biológico⁸, del cual hace uso extensivo de diferentes metodologías y técnicas tanto computacionales como experimentales, así como de acceso a grandes bases de datos que poseen colecciones de moléculas pequeñas con actividad farmacológica. En el panorama actual del descubrimiento de fármacos, la identificación de moléculas (denominados como *hits*) y su optimización química que mejoren aspectos tanto farmacocinéticos como farmacodinámicos son sólo puntos iniciales importantes para considerar.

Sin embargo, la identificación de compuestos bioactivos de interés es un desafío, donde a menudo se requiere tiempo adicional para el aislamiento, caracterización completa y, de ser posible, la síntesis completa por ejemplo de compuestos derivados de productos naturales. Varias técnicas analíticas han demostrado ser relevantes para esta tarea, como, por ejemplo, el uso de recursos computacionales^{9, 10}, que han reducido la cantidad de tiempo y la optimización de los fármacos candidatos, como lo es el caso del zanamivir¹¹ y del captopril¹². En el marco de las estrategias para el desarrollo de nuevos fármacos, se tiene: i) la optimización estructural de fármacos conocidos; ii) búsqueda de nuevas dianas terapéuticas; y iii) búsqueda de nuevos compuestos bioactivos, principalmente de bases de datos. Asimismo, una serie de metodologías se han empleado para el descubrimiento de fármacos.

Figura 1. Desarrollo de un fármaco, desde su la identificación de un compuesto hasta pruebas biológicas y venta al mercado. Imagen adaptada de referencia [7]

Por un lado, se encuentran los métodos de diseño basados en la estructura (Structurebased drug design, SBDD por sus siglas en inglés)^{13, 14} el cual usa la información tridimensional recopilada de blancos biológicos de interés para un entendimiento clave de la actividad. El acoplamiento molecular (*molecular docking*, MD), el cribado virtual basado en la estructura (Structure-based Virtual Screening, SBVS) y la dinámica molecular de proteínas, se encuentran entre las metodologías más utilizadas debido a la amplia gama de aplicaciones en el análisis de reconocimiento molecular, interacciones intermoleculares entre la diana biológica y su ligando, así como de los cambios conformacionales inducidos por la presencia del ligando. Por otro lado, un enfoque diferente se usa en el diseño de fármacos basados en el ligando (Ligand-Based Drug Design, LBDD, por sus siglas en inglés),¹⁵⁻¹⁷ donde el uso de bibliotecas de moléculas pequeñas bioactivas es de importancia por la diversidad química única disponible en estas bases de datos^{18,19} El cribado virtual basado en ligandos (*Ligand*based Virtual Screening, LBVS), la búsqueda de similitud molecular, el modelado QSPR/QSAR y la generación de farmacóforos son algunos de los métodos LBDD más usados. Ambas estrategias, SBDD y LBDD, se han aplicado exitosamente como herramientas de descubrimiento de fármacos tanto a nivel de academia como en la industria debido a su versatilidad y carácter sinérgico los cuales, a continuación, se describen en casos particulares.

a. Acoplamiento molecular

El acoplamiento molecular (*molecular docking*, MD) es una técnica de diseño basado en la estructura, donde su objetivo principal es la de la predicción y estudio del reconocimiento molecular, tanto en lo estructural (modos de unión entre el ligando y el receptor), así como en lo energético (predicción de la afinidad de unión).²⁰ Su estudio se ha realizado principalmente hacia la unión entre una molécula pequeña y una macromolécula, como una proteína. No obstante, en los últimos años, los avances en estas técnicas han permitido su uso para la unión entre otros componentes tales como el acoplamiento proteína-proteína, ligando-ADN/ARN o ácido nucleico-proteínaligando. El acoplamiento molecular ha tenido casos de éxito que refuerzan el grado de confianza en las técnicas *in silico* para la obtención de nuevos fármacos para el tratamiento de diferentes padecimientos o bien, para el entendimiento de la resistencia a fármacos.

Entre ejemplos destacados se encuentran los siguientes: a) análisis de análogos de raltegravir con potencial acción contra la integrasa del VIH (*Virus de Inmunodeficiencia Humana*) la cual es una enzima vital para la replicación del virus, donde la detección de residuos de aminoácidos responsables de la resistencia al fármaco, fueron analizados mediante esta técnica.^{21, 22} b) El diseño de inhibidores de la proteasa del VIH, saquinavir y nelfinavir, siendo este último analizado por acoplamiento molecular donde su estructura se observa tiene una mejor interacción con un bolsillo hidrofóbico ubicado en el sitio activo de la enzima.²³⁻²⁵ c) El reposicionamiento de la clorpromazina, un psicotrópico, como un agente quimioterapéutico del cual se conoce que inhibe la citocromo c oxidasa (CcO) donde una sobreexpresión de la isoforma 1 de la subunidad 4 de la CcO existe en pacientes con glioblastoma. El acoplamiento molecular permitió el entendimiento del mecanismo de acción de la clorpromazina indicando la interacción del fármaco con varios residuos de aminoácidos clave en dichas estructuras.²⁶

b. Cribado virtual

Como se mencionó anteriormente, la obtención de compuestos bioactivos fue en un principio a través de métodos empíricos, a base de prueba y error. Sin embargo, por el alto costo que representa el obtener candidatos para una innumerable cantidad de dianas biológicas de interés, es que el cribado virtual se muestra como una técnica adecuada. Su uso está mayormente implicado en las primeras fases del descubrimiento de fármacos, donde el uso de enormes librerías de compuestos son empleados. Se puede comparar al cribado virtual (VS) con su contraparte experimental, el cribado de alto rendimiento, donde mediante un algoritmo de búsqueda, se puede obtener la unión de moléculas con múltiples receptores de interés. Su uso ha permitido la generación de nuevos compuestos bioactivos a partir del conocimiento tanto de los blancos biológicos (ej. captopril, nolatrexed),^{27,28} así como a partir de la estructura de los ligandos endógenos y de compuestos con actividad conocida (ej. aliskiren).²⁹

c. Modelos QSPR/QSAR

Para la química farmacéutica, la identificación y cuantificación de las propiedades fisicoquímicas de un compuesto y determinar si alguna de éstas tiene un efecto sobre su actividad biológica permiten que, de existir dicha relación, se pueda establecer una ecuación que cuantifique y afirme, con un cierto grado de confianza, que la propiedad tiene un papel importante en la farmacocinética o en el mecanismo de acción de un fármaco. Los modelos de relación cuantitativa estructura - propiedad/actividad (Quantitative Structure Property/Activity Relationships, QSPR/QSAR por sus siglas en inglés) son en la actualidad una de las principales herramientas usadas por diferentes áreas de la ciencia.³⁰ Los QSPR/QSAR son modelos de regresión o de clasificación que pueden tener dos usos principales: el de llevar a cabo la predicción de la actividad de una propiedad en particular, o bien, la de la descripción de las propiedades estructurales y fisicoquímicas de un conjunto de moléculas. Su uso se ha hecho extensivo en el área de la química medicinal y principalmente en el descubrimiento de fármacos en la identificación de potenciales *hits*. Asimismo, se han generado modelos QSPR/QSAR para la optimización de estructuras químicas con actividad conocida a través del entendimiento de sus parámetros moleculares. Dentro de las estrategias LBDD y SBDD discutidas anteriormente, los casos de estudio por métodos OSAR se encuentran entre las técnicas usadas para el diseño de fármacos. Tal como se muestra en la Figura 2, el impacto en porcentaje del método QSPR/QSAR en el número de publicaciones entre 2003 – 2013 y 2014 – 2024 se encuentra solo por detrás de los métodos basados en docking molecular.³¹

Figura 2. Diagrama circular donde se muestra el porcentaje de las publicaciones con diferentes métodos sobre cribado virtual de 2003 a 2024. Datos obtenidos de referencia [31]

En un modelo QSPR, se proporciona una ecuación matemática que describe la relación entre las propiedades (como la toxicidad, permeabilidad, fluorescencia, magnetismo, etc.) de un conjunto de moléculas con sus características estructurales mediante información denominado como descriptores, como se observa en la **Figura 3**. Si el modelo genera una relación cuantitativa entre el efecto biológico y las propiedades de un conjunto de moléculas, generalmente con un andamio estructural en común, se le conoce como QSAR. Entre los propósitos de un modelo QSPR/QSAR relacionados al descubrimiento y diseño de fármacos se encuentran algunos como:

15

- Predecir la actividad biológica y propiedades fisicoquímicas de compuestos sintetizados o la identificación de nuevos compuestos líderes
- Optimizar la actividad farmacológica de moléculas mediante la identificación de propiedades moleculares importantes
- Analizar el mecanismo de acción de una serie de moléculas
- Reducir el costo en la producción de sustancias químicas de interés
- Disminución (o eliminación) del número y costo de pruebas biológicas en modelos de animales utilizados.

Figura 3. Esquema general los componentes de un modelo QSPR/QSAR.

También se han utilizado modelos cuya incorporación de la toxicidad (*Quantitative Structure – Toxicity Relationship*, QSTR)^{32, 33} o bien de modelos de extrapolación cuantitativa "*read-across*" (qRA-SAR)³⁴ han permitido explorar conjuntos de moléculas con propiedades únicas, así como la predicción de la toxicidad entre otros.

Los modelos QSPR/QSAR se han utilizado con éxito no sólo en la predicción de moléculas nuevas, de origen sintético o natural, sino también en la optimización de compuestos con actividad conocida, así como en el desarrollo descriptivo de las propiedades fisicoquímicas de series de compuestos frente a una respuesta en común. El primer ejemplo es el caso de la lomerizina, la cual fue obtenida mediante el análisis de una serie de compuestos del tipo difenilpiperazinas, donde la introducción de dos átomos de flúor sobre el anillo de benceno, asignado por los resultados obtenidos del QSAR, permitió un aumento en la actividad del compuesto con respecto del compuesto de partida. Por otro lado, en la búsqueda de análogos de azoles con actividad antifúngica, un modelo QSAR que examinó la contribución estérica de los compuestos analizados, permitió la obtención de nuevos compuestos, metconazol e ipconazol, que mostraron eficacia en cepas resistentes a fluconazol y otros fármacos.³⁵ También, los métodos QSPR/QSAR han sido aplicados a diferentes ámbitos de la ciencia, mostrando la amplia aplicabilidad de estos métodos en trabajos asociados y que han sido discutidos en diversas publicaciones.³⁶

Se han establecido una serie de requerimientos para que un modelo QSAR (o cualquier otro modelo de relación estructura) sea considerado como adecuado, basado en lineamientos dados por la Organización para la Cooperación y el Desarrollo Económicos (*Organisation for Economic Co-operation and Development*, OECD por sus siglas en inglés). Según estos principios,³⁷ un buen modelo QSAR debe tener:

- (a) Un punto final definido (*endpoint*)
- (b) Un algoritmo inequívoco (de fácil uso y entendimiento)
- (c) Un dominio de aplicabilidad definido
- (d) Mediciones apropiadas para la bondad de ajuste, robustez y predictibilidad
- (e) Una interpretación del mecanismo, de ser posible.

Estos principios permiten en lo general, que el usuario tenga la información necesaria para el entendimiento del modelo QSAR, así como el sesgo que tiene la información, el punto final asociado a la predicción, el algoritmo de trabajo usado y que sea reproducible, los alcances y limitaciones del modelo a usar. Finalmente, la comprensión de los descriptores (variables) utilizadas en el modelo deben ser de fácil interpretación y uso.

Las técnicas derivadas de aprendizaje de máquinas (Machine Learning, ML), inteligencia artificial (Artificial Intelligence, AI), redes neuronales (Neural Networks, NN), entre otras técnicas, han sido en la actualidad de gran uso para el desarrollo de nuevos fármacos usando modelos altamente eficaces en la predicción de la actividad de moléculas, como lo desarrollado por Smith y colaboradores³⁸, donde además de generar modelos mediante algoritmos genéticos, utilizaron una aproximación por ML que permite la predicción en la dosificación de fármacos como lo es el meropenem en combinación con la polimixina B, así como modelos basados en el mecanismo de acción para describir la actividad intrínseca de compuestos y su eficacia, sea en combinación o en tratamientos separados. Literatura referente al uso de la inteligencia artificial en el descubrimiento de fármacos ha sido reportada por David *et al.*³⁹

1.2 Acinetobacter baumannii

La aparición de infecciones bacterianas causadas por cepas multi- o panresistentes a fármacos (resistencia a más de dos o completa resistencia a todos los antibióticos, incluidos las polimixinas) tanto en entornos nosocomiales como aquellos adquiridos en la comunidad en general, representa en la actualidad un problema de salud pública que crece a ritmo alarmante.⁴⁰ Los esfuerzos y medidas que se han implementado desde nivel mundial por parte de la Organización Mundial de la Salud (OMS) con su "Plan de Acción Mundial para la Lucha contra la Resistencia a los Antimicrobianos (2015)", hasta nivel nacional como la publicación de la normatividad NOM-045-SSA2-2005, que lleva a cabo la vigilancia epidemiológica, la prevención y control de las infecciones nosocomiales, sigue existiendo un déficit de atención respecto de la autoadministración de antibióticos por parte de la comunidad, que ha exacerbado el aumento de las resistencias bacterianas. Aunado a esta problemática progresiva, se ha observado que los tratamientos de primera línea para tratar las septicemias cada vez tienen menos eficacia. En México, el número de defunciones causadas por septicemias ha ido en aumento gradual, relacionado principalmente por la resistencia microbiana a los

fármacos más utilizados, por lo que lo ubica dentro de las 15 principales causas de muerte registradas en México según datos de INEGI. De entre los patógenos bacterianos causantes de infección en humanos, tanto grampositivos como gramnegativos, se encuentran aquellos englobados en la denominación **ESKAPE** que comprende a *Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa* y los miembros del género *Enterobacter,* Figura 4. Cepas panresistentes a antibióticos se han reportado con mayor frecuencia para patógenos gramnegativos emergentes como lo son *P. aeruginosa, A. baumannii* y *K. pneumoniae*, principalmente en ambientes hospitalarios. La OMS emitió en 2017 una lista de patógenos los cuales han adquirido resistencia a antibióticos de última generación y de los cuales es de vital importancia encontrar nuevos compuestos bioactivos capaces de sobrellevar esta contingencia. Dentro de la lista de los denominados **ESKAPE**, *A. baumannii* es considerada como de prioridad crítica número uno por la OMS.

A. baumannii

Figura 4. Patógenos de la denominación ESKAPE, involucrados en procesos infecciosos comunes. Imagen adaptada de [42b]

d. Características de la bacteria

El género *Acinetobacter* comprende a una serie de cocobacilos gramnegativos en la que se encuentran 25 especies reconocidas. Son de amplia distribución y en general, forman parte del hábitat natural del suelo, cuerpos de agua y de la microbiota normal de la piel, tracto respiratorio y gastrointestinal, con amplio rango de temperatura de crecimiento de entre los 32 a 44°C. Dentro del denominado bloque Acinetobacter baumanniicalcoaceticus (ABC), Acinetobacter baumannii es la especie de mayor relevancia clínica por su frecuente aislamiento en infecciones nosocomiales. A. baumannii es un cocobacilo Gramnegativo, aerobio estricto, pleomorfo y no móvil, el cual se considera patógeno oportunista con alta incidencia en pacientes inmunocomprometidos, principalmente aquellos que han permanecido por periodos largos en estadía hospitalaria. Coloniza tejidos húmedos como membranas mucosa o áreas de la piel expuestas mediante heridas. Asimismo, ha sido aislada en números altos de secreciones orofaríngeas y del sistema respiratorio. La exposición prolongada por parte de A. baumannii en heridas cutáneas generalmente conducen a bacteriemia, si estas no son tratadas a tiempo. Si el proceso avanza sin tratamiento pueden conducir a septicemia y finalmente la muerte del individuo. También, se ha demostrado que la participación de otros patógenos como K. pneumonia, C. albicans y E. faecalis, -que promueven, entre

otros factores, fascitis necrotizante- permiten la fácil entrada de *A. baumannii* al torrente sanguíneo. La tasa de infección en México por parte de *A. baumannii* se ha catalogado entre un 8% a 10% en hospitales del IMSS, ISSSTE y SSA.

e. Mecanismos de resistencia bacteriana

La resistencia a antibióticos se define como la habilidad que poseen los microorganismos a generar mecanismos de defensa contra agentes antimicrobiales, que conlleva a la pérdida de eficiencia para inhibir su crecimiento.⁴¹⁻⁴³ Aunque se conoce que el desarrollo de mecanismos de resistencia a fármacos es un proceso natural dado por estos patógenos, el uso indiscriminado de antibióticos en algunos sectores de la población ha exacerbado este proceso. Por lo mismo, este fenómeno se ha convertido en un problema de salud mundial: tan sólo en los Estados Unidos, se tiene el reporte de que más de 2.8 millones infecciones han sido ocasionadas por bacterias multirresistentes a fármacos, con un estimado de más de 35 mil muertes anuales como resultado.^{44, 45} Un alarmante estimado de 10 millones de muertes se estima para 2050 si el panorama de resistencia microbiana no cambia en los próximos años, siendo los países con mayor índice de pobreza los que se prevé haya un crecimiento exponencial de casos, tal como se observa en la **Figura 5**.^{46, 47}

En la **Figura 6**,⁴⁸ se muestran los principales mecanismos por los que las bacterias adquieren resistencia a antibióticos. Estos mecanismos se categorizan en tres vías principales, los cuáles pueden ser: a) alteración del sitio diana del antibiótico; b) modificación o destrucción del antibiótico mediante mecanismos enzimáticos; y c) impedimento de la unión del antibiótico con el sitio de acción mediante un método de eliminación. Entre las formas de defensa más importantes se encuentran la modificación de la permeabilidad de la pared celular de las bacterias, que disminuye la absorción del fármaco. Así también, la generación de un número mayor de bombas de eflujo que mantiene una concentración mayoritaria del fármaco fuera citoplasma (o periplasma), evitando que el fármaco ejerza su actividad.

Finalmente, mediante la alteración del fármaco usando enzimas desactivantes como las betalactamasas, o por modificaciones al sitio de acción. A pesar de la investigación extensa sobre la virulencia por parte de *A. baumannii*, aun no se conoce por completo los mecanismos por los cuales se propaga fácilmente esta bacteria ni su potencial patogénico. Reportes indican que uno de los principales mecanismos de su virulencia se debe a la extensa presencia de proteínas de membrana externa A (*Outer Membrane Protein A*, OmpA). Se conoce que estas proteínas de *A. baumannii* (AbOmpA) se unen a las células epiteliales y por consiguiente a la mitocondria, en la cual AbOmpA induce disfunción mitocondrial lo que genera que ésta se inflame y libere citocromo C (una hemoproteína) implicada en formación de apoptosoma que finalmente conlleva a la muerte celular.

Figura 5. Proyección de muertes causadas por infecciones bacterianas resistentes a antibióticos en diferentes regiones del mundo. Imagen adaptada de referencia [46]

Figura 6. Mecanismos de resistencia a antibióticos en bacterias. Imagen adaptada de referencia [48]

Asimismo, se ha observado que *A. baumannii* tiene la habilidad de formar *biofilms* (biopelículas) que le permiten crecer en condiciones y ambientes desfavorables, como lo son superficies abióticas como vidrio, metal y en el caso de ambientes nosocomiales, a equipo médico de uso en Unidades de Cuidado Intensivo (UCI), pero también en superficies bióticas como la piel. Esto ha generado que la desinfección de material médico sea difícil y, por tanto, el riesgo de infección bacteriana adquirida aumenta. La captación de iones metálicos como el hierro tienen un papel importante en el control del crecimiento de biopelículas, acrecentando la capacidad de *A. baumannii* de adherirse a superficies antes mencionadas. En organismos procariotas y eucariotas, el hierro posee roles fisiológicos de vital importancia, encontrándose como cofactor en enzimas necesarias para la síntesis de ADN y su reparación; por ende, la restricción de hierro biodisponible inhibe el crecimiento celular.

De entre los mecanismos no enzimáticos observados para *A. baumannii* se encuentran los siguientes:

- I. La expresión disminuida de proteínas de membrana externa (porinas como CarO) en algunos aislados clínicos resistentes a imipenem, así como alteraciones en la estructura de estas, lo que genera una disminución de la permeabilidad de la pared celular.⁴⁹
- II. La ausencia o alteración de proteínas usadas en la síntesis de peptidoglicano, como lo es la expresión reducida de PBP2a.⁵⁰
- III. Mayor expresión de bombas de eflujo.
- IV. Modificación del sitio blanco de quinolonas, como lo son GyrA y ParC.⁵¹⁻⁵³

21

El principal mecanismo enzimático observado para la resistencia a fármacos, se encuentra la generación de las denominadas betalactamasas, que son enzimas sintetizadas por las bacterias, gramnegativas o grampositivas, que actúan como un mecanismo de defensa contra los antibióticos betalactámicos. Estas enzimas llevan a cabo la ruptura del anillo betalactámico, inhabilitando la capacidad de este último de afectar a la pared bacteriana, y permitiendo a la bacteria continuar con su crecimiento. Antibióticos como las cefalosporinas y carbapenemas son generalmente usados como uno de los últimos recursos en tratamientos por infecciones agresivas, incluida la bacteria A. *baumannii*. No obstante, la generación de betalactamasas que reconocen a estos fármacos, en la mayoría de las bacterias multirresistentes, ha provocado que dichos fármacos sean ineficaces. En la **Figura 7** se puede observar la tasa de resistencia a diferentes tratamientos con antibióticos de venta en el mercado. La elevada tasa de ineficacia de diversos fármacos contra *A. baumannii* ha generado que la búsqueda de nuevos compuestos contra esta bacteria sea de gran relevancia.⁵⁴

Figura 7. Porcentaje de resistencia bacteriana a diferentes fármacos por parte de diferentes especies de bacterias. Imagen adaptada de referencia [40]

f. Incidencia de infección por A. baumannii

A. baumannii se encuentra dentro de los organismos bacterianos que mayor resistencia han adquirido a antibióticos. La rapidez alarmante con la que adquiere resistencia antimicrobiana en cepas aisladas, principalmente en hospitales, resalta la habilidad de la bacteria para adaptarse a ambientes agresivos. La incidencia de *A. baumannii* se ha relacionado principalmente a la neumonía asociada al uso de ventiladores, septicemia por contaminación de vías centrales y periféricas e infección en el sitio de la lesión. Hasta 2011, se calculaba que, en México, 21% de los pacientes hospitalizados presentaban infecciones asociadas a los cuidados de la salud, siendo la neumonía la

forma más frecuente de aparición (33.2%); mientras que, las infecciones urinarias y de infección en sitio de herida quirúrgica oscilaban entre 24.6 y 15.5%, siendo la bacteriemia asociada a catéter en un 5.8%.⁵⁵ A pesar de que la investigación sobre la resistencia bacteriana a antibióticos reportadas en México se centró originalmente en infecciones gastrointestinales (principalmente por Salmonella typhi), los reportes mostrados por la Secretaría de Salud señalan que las infecciones por otras bacterias como S. aureus, P. aeruginosa y A. baumannii han incrementado sobre todo en neumonías.^{56, 57} De las primeras publicaciones en México sobre esta última bacteria, se reportó que, de un total de 550 aislamientos de cepas de A. baumannii en Monterrey presentaron multirresistencia en un 74%, teniendo una resistencia a meropenem en 59% de ese total, cifra alarmante recolectada durante tres años.⁵⁸ Misma situación se encontró en un monitoreo en un hospital universitario de tercer nivel de Guadalajara en donde se analizaron alrededor de 3680 aislamientos y se encontró una alta incidencia de A. baumannii en pacientes adultos en Unidad de Cuidados Intensivos (UCI), teniendo de 1999 a 2012 una disminución a la sensibilidad de meropenem, de 92 a sólo 12%. Entre las cepas aisladas, se observó una mayor producción de metalobetalactamasas, específicamente de las variantes VIM-4, IMP-1 y OXA-24.59 Cifras recabadas en México por parte del programa MYSTIC (Meropenem Yearly Susceptibility *Test Information Collection*, por sus siglas en inglés) sobre pruebas de susceptibilidad sobre A. baumannii, han reportado que hay una prevalencia de resistencia a meropenem del 22% y al imipenem del 20% a lo largo de los años.^{58,60}

Por otro lado, de los primeros reportes sobre el comportamiento de sepsis, previo a 2009, los estudios de Carrillo⁵⁵ y colaboradores muestran que, de 49957 ingresos anuales a UCI, 11183 corresponden a sepsis, con una prevalencia de afecciones abdominales (47%), pulmonares (33%), tejidos blandos (8%), vías urinarias (7%). De entre el porcentaje de patógenos aislados de estas sepsis, más del 50% de las causales fueron por bacterias tipo gramnegativa; mientras que, un 38% fueron grampositivas, lo que resalta la elevada incidencia y mortalidad por parte de estos agentes infecciosos. Esto trae consecuencias sociales, reflejadas en altos costos para los sistemas de salud pública, y revela un posible descuido por campañas de prevención y tratamiento en sepsis causadas por bacteriemia. Precisamente, datos recabados de la página del INEGI (Instituto Nacional de Estadística y Geografía) sobre causalidades de mortalidad en la población mexicana, mostró que, de una población total de 747784 individuos, 5653 corresponden a muertes relacionados con procesos de septicemia, lo cual lo ubica dentro de las 15 principales causas de muerte registradas en México.⁶¹ Aunado a esto, el presentar comorbilidades tales como *Diabetes mellitus*, hipertensión, ente otras, genera que el desarrollo de septicemias por patógenos oportunistas (como A. baumannii, P. aeruginosa, S. aureus, etc.) generen complicaciones incluso antes del ingreso a hospital.

1.3 Justificación

El uso de herramientas computacionales ha generado un rápido desarrollo en la innovación de fármacos contra enfermedades de interés público. Esto mismo ha propiciado que el descubrimiento de nuevos candidatos a fármacos sea un proceso menos costoso y con altas expectativas. Por el aumento en el aislamiento de cepas clínicas de hospitales con altos índices de resistencia a antibióticos, se requieren nuevos tratamientos eficaces contra estas bacterias. En México, la tasa de mortalidad asociada a septicemias causadas por infecciones bacterianas se encuentra entre las 15 principales causas de muerte, siendo la incidencia de infección bacteriana grave causada por *A. baumannii* del 19.1%. En este sentido, el análisis de bases de datos mediante herramientas computacionales con el uso de modelos predictivos tipo QSPR/QSAR están justificados como medios eficaces para la identificación de potenciales antibióticos de amplio espectro y que también pueden ser usados para la optimización de moléculas ya conocidas.

1.4 Hipótesis

Al generar una base de datos de moléculas activas hacia Acinetobacter baumannii, y con el uso de herramientas del diseño de fármacos, se podrá identificar al menos un compuesto líder nuevo, biológicamente activo contra *Acinetobacter baumannii*.

1.5 Objetivo

Búsqueda y optimización de un compuesto líder nuevo hacia *Acinetobacter baumannii* empleando herramientas del diseño de fármacos asistido por computadora (DIFAC) con base en el ligando.

Objetivos particulares:

- 1. Búsqueda de compuestos con actividad antibacterial reportada contra *A. baumannii* en bases de datos.
- 2. Curado de datos, cálculo de descriptores moleculares 0D, 1D y 2D, y análisis estructural de moléculas bioactivas.
- 3. Construcción de un modelo QSPR para la predicción de nuevos compuestos antibacteriales.
- 4. Validación estadística interna y externa del modelo generado, así como la validación de su poder predictivo.
- 5. Realizar un cribado molecular en una biblioteca virtual de productos naturales empleando el modelo QSPR
- 6. Evaluar biológicamente al menos uno de los potenciales compuestos antibacteriales en contra de *A. baumannii*.
- 7. Realizar el diseño y la optimización de un compuesto líder empelando el modelo QSPR.
- 8. Sintetizar y probar biológicamente los candidatos diseñados en contra de *A. baumannii*.

24

1.6 Referencias

- 1. Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; International Natural Product Sciences, T.; Supuran, C. T., Natural products in drug discovery: advances and opportunities. *Nat Rev Drug Discov* **2021**, *20* (3), 200-216.
- Donoso, A.; Neumann, M.; Arriagada, D., Fortuna y Serendipia: historia de algunos fármacos empleados en Cuidados Intensivos Pediátricos. *Andes pediatrica* 2022, 93 (4), 591-598.
- 3. St. Denis, J. D.; Hall, R. J.; Murray, C. W.; Heightman, T. D.; Rees, D. C., Fragmentbased drug discovery: opportunities for organic synthesis. *RSC Medicinal Chemistry* **2021**, *12* (3), 321-329.
- 4. Lin, X.; Li, X.; Lin, X., A Review on Applications of Computational Methods in Drug Screening and Design. *Molecules* **2020**, *25* (6), 1375.
- 5. Knowles, J.; Gromo, G., Target selection in drug discovery. *Nature Reviews Drug Discovery* **2003**, *2*(1), 63-69.
- 6. de Souza Neto, L. R.; Moreira-Filho, J. T.; Neves, B. J.; Maidana, R. L. B. R.; Guimarães, A. C. R.; Furnham, N.; Andrade, C. H.; Silva, F. P., In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. *Frontiers in Chemistry* **2020**, *8*.
- 7. Sun, D.; Gao, W.; Hu, H.; Zhou, S., Why 90% of clinical drug development fails and how to improve it? *Acta Pharm Sin B* **2022**, *12*(7), 3049-3062.
- 8. Zhou, S. F.; Zhong, W. Z., Drug Design and Discovery: Principles and Applications. *Molecules* **2017**, *22* (2), 279.
- 9. Sadybekov, A. V.; Katritch, V., Computational approaches streamlining drug discovery. *Nature* **2023**, *616* (7958), 673-685.
- Prada-Gracia, D.; Huerta-Yépez, S.; Moreno-Vargas, L. M., Application of computational methods for anticancer drug discovery, design, and optimization. *Boletín Médico Del Hospital Infantil de México (English Edition)* 2016, *73* (6), 411-423.
- 11. Elliott, M., Zanamivir: from drug design to the clinic. *Philosophical Transactions of the Royal Society of London. Series B* **2001**, *356* (1416), 1885.
- 12. Ondetti, M. A.; Rubin, B.; Cushman, D. W., Design of Specific Inhibitors of Angiotensin-Converting Enzyme: New Class of Orally Active Antihypertensive Agents. *Science* **1977**, *196* (4288), 441-444.
- 13. Batool, M.; Ahmad, B.; Choi, S., A Structure-Based Drug Discovery Paradigm. *Int J Mol Sci* **2019**, *20* (11), 2783.
- 14. van Montfort, R. L. M.; Workman, P., Structure-based drug design: aiming for a perfect fit. *Essays Biochem* **2017**, *61* (5), 431-437.
- 15. Ajjarapu, S. M.; Tiwari, A.; Ramteke, P. W.; Singh, D. B.; Kumar, S., Ligand-based drug designing. In *Bioinformatics*, Singh, D. B.; Pathak, R. K., Eds. Academic Press: 2022; pp 233-252.
- 16. Kaushik, A. C.; Kumar, A.; Bharadwaj, S.; Chaudhary, R.; Sahi, S., Ligand-Based Approach for In-silico Drug Designing. In *Bioinformatics Techniques for Drug Discovery*, Springer International Publishing: Cham, 2018; pp 11-19.
- 17. Yadav, V.; Reang, J.; Vinita; Tonk, R. K., Ligand-based drug design (LBDD). In

Computer Aided Drug Design (CADD): From Ligand-Based Methods to Structure-Based Approaches, Rudrapal, M.; Egbuna, C., Eds. Elsevier: 2022; pp 57-99.

- 18. Warr, W. A.; Nicklaus, M. C.; Nicolaou, C. A.; Rarey, M., Exploration of Ultralarge Compound Collections for Drug Discovery. *Journal of Chemical Information and Modeling* **2022**, *62*(9), 2021-2034.
- 19. Kuan, J.; Radaeva, M.; Avenido, A.; Cherkasov, A.; Gentile, F., Keeping pace with the explosive growth of chemical libraries with structure-based virtual screening. *WIREs Computational Molecular Science* **2023**, *13* (6), e1678.
- 20. Fan, J.; Fu, A.; Zhang, L., Progress in molecular docking. *Quantitative Biology* **2019**, *7*(2), 83-89.
- 21. Dayam, R.; Neamati, N., Active site binding modes of the beta-diketoacids: a multiactive site approach in HIV-1 integrase inhibitor design. *Bioorg Med Chem* **2004**, *12* (24), 6371-81.
- 22. Serrao, E.; Odde, S.; Ramkumar, K.; Neamati, N., Raltegravir, elvitegravir, and metoogravir: the birth of "me-too" HIV-1 integrase inhibitors. *Retrovirology* **2009**, 6(1), 25.
- 23. Kalish, V.; Kaldor, S.; Shetty, B.; Tatlock, J.; Davies, J.; Hammond, M.; Dressman, B.; Fritz, J.; Appelt, K.; Reich, S.; Musick, L.; Wu, B.-w.; Su, K., Iterative Protein Structure-Based Drug Design and Synthesis of Hiv Protease Inhibitors. *European Journal of Medicinal Chemistry* **1995**, *30*, 201s-214s.
- 24. Vacca, J. P.; Condra, J. H., Clinically effective HIV-1 protease inhibitors. *Drug Discovery Today* **1997**, *2*(7), 261-272.
- 25. Vacca, J. P.; Guare, J. P.; deSolms, S. J.; Sanders, W. M.; Giuliani, E. A.; Young, S. D.; Darke, P. L.; Zugay, J.; Sigal, I. S.; Schleif, W. A.; et al., L-687,908, a potent hydroxyethylene-containing HIV protease inhibitor. *J Med Chem* **1991**, *34* (3), 1225-8.
- Oliva, C. R.; Zhang, W.; Langford, C.; Suto, M. J.; Griguer, C. E., Repositioning chlorpromazine for treating chemoresistant glioma through the inhibition of cytochrome c oxidase bearing the COX4-1 regulatory subunit. *Oncotarget* 2017, *8* (23), 37568.
- 27. Acharya, K. R.; Sturrock, E. D.; Riordan, J. F.; Ehlers, M. R., Ace revisited: a new target for structure-based drug design. *Nat Rev Drug Discov* **2003**, *2* (11), 891-902.
- Webber, S. E.; Bleckman, T. M.; Attard, J.; Deal, J. G.; Kathardekar, V.; Welsh, K. M.; Webber, S.; Janson, C. A.; Matthews, D. A.; Smith, W. W.; et al., Design of thymidylate synthase inhibitors using protein crystal structures: the synthesis and biological evaluation of a novel class of 5-substituted quinazolinones. *J Med Chem* 1993, *36* (6), 733-46.
- Wood, J. M.; Maibaum, J.; Rahuel, J.; Grutter, M. G.; Cohen, N. C.; Rasetti, V.; Ruger, H.; Goschke, R.; Stutz, S.; Fuhrer, W.; Schilling, W.; Rigollier, P.; Yamaguchi, Y.; Cumin, F.; Baum, H. P.; Schnell, C. R.; Herold, P.; Mah, R.; Jensen, C.; O'Brien, E.; Stanton, A.; Bedigian, M. P., Structure-based design of aliskiren, a novel orally effective renin inhibitor. *Biochem Biophys Res Commun* **2003**, *308* (4), 698-705.
- Cherkasov, A.; Muratov, E. N.; Fourches, D.; Varnek, A.; Baskin, II; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y. C.; Todeschini, R.; Consonni, V.; Kuz'min, V. E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.;

Richard, A.; Tropsha, A., QSAR modeling: where have you been? Where are you going to? *J Med Chem* **2014**, *57*(12), 4977-5010.

- 31. Danishuddin, M.; Khan, A. U., Structure based virtual screening to discover putative drug candidates: necessary considerations and successful case studies. *Methods* **2015**, *71*, 135-45.
- 32. Rai, M.; Paudel, N.; Sakhrie, M.; Gemmati, D.; Khan, I. A.; Tisato, V.; Kanase, A.; Schulz, A.; Singh, A. V., Perspective on Quantitative Structure–Toxicity Relationship (QSTR) Models to Predict Hepatic Biotransformation of Xenobiotics. *Livers* **2023**, *3*(3), 448-462.
- Voutchkova, A. M.; Osimitz, T. G.; Anastas, P. T., Toward a comprehensive molecular design framework for reduced hazard. *Chem Rev*2010, *110*(10), 5845-82.
- 34. Banerjee, A.; Roy, K., First report of q-RASAR modeling toward an approach of easy interpretability and efficient transferability. *Mol Divers* **2022**, *26* (5), 2847-2862.
- 35. Fujita, T., Recent success stories leading to commercializable bioactive compounds with the aid of traditional QSAR procedures. *Quantitative Structure-Activity Relationships* **1997,** *16* (2), 107-112.
- Muratov, E. N.; Bajorath, J.; Sheridan, R. P.; Tetko, I. V.; Filimonov, D.; Poroikov, V.; Oprea, T. I.; Baskin, II; Varnek, A.; Roitberg, A.; Isayev, O.; Curtarolo, S.; Fourches, D.; Cohen, Y.; Aspuru-Guzik, A.; Winkler, D. A.; Agrafiotis, D.; Cherkasov, A.; Tropsha, A., QSAR without borders. *Chem Soc Rev* 2020, *49* (11), 3525-3564.
- 37. The OECD QSAR Toolbox. <u>https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm</u>, <u>https://one.oecd.org/document/ENV/CBC/MONO(2023)32/en/pdf#:~:text=The%200ECD%20Principles%20for%20(Q,defined%20domain%20of%20applicability%204</u>.
- Smith, N. M.; Lenhard, J. R.; Boissonneault, K. R.; Landersdorfer, C. B.; Bulitta, J. B.; Holden, P. N.; Forrest, A.; Nation, R. L.; Li, J.; Tsuji, B. T., Using machine learning to optimize antibiotic combinations: dosing strategies for meropenem and polymyxin B against carbapenem-resistant Acinetobacter baumannii. *Clinical Microbiology and Infection* 2020, *26* (9), 1207-1213.
- 39. David, L.; Brata, A. M.; Mogosan, C.; Pop, C.; Czako, Z.; Muresan, L.; Ismaiel, A.; Dumitrascu, D. I.; Leucuta, D. C.; Stanculete, M. F.; Iaru, I.; Popa, S. L., Artificial Intelligence and Antibiotic Discovery. *Antibiotics* **2021**, *10* (11), 1376.
- 40. Algammal, A.; Hetta, H. F.; Mabrok, M.; Behzadi, P., Editorial: Emerging multidrugresistant bacterial pathogens "superbugs": A rising public health threat. *Frontiers in Microbiology* **2023**, *14*.
- 41. Beceiro, A.; Tomas, M.; Bou, G., Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? *Clin Microbiol Rev* **2013**, *26* (2), 185-230.
- (a) Nadeem, S. F.; Gohar, U. F.; Tahir, S. F.; Mukhtar, H.; Pornpukdeewattana, S.; Nukthamna, P.; Moula Ali, A. M.; Bavisetty, S. C. B.; Massa, S., Antimicrobial resistance: more than 70 years of war between humans and bacteria. *Crit Rev Microbiol* 2020, *46* (5), 578-599; (b) Walsh, C., & Wencewicz, T. (2020).

Antibiotics: challenges, mechanisms, opportunities. John Wiley & Sons.

- 43. Pulingam, T.; Parumasivam, T.; Gazzali, A. M.; Sulaiman, A. M.; Chee, J. Y.; Lakshmanan, M.; Chin, C. F.; Sudesh, K., Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. *Eur J Pharm Sci* **2022**, *170*, 106103.
- 44. Kadri, S. S., Key Takeaways From the U.S. CDC's 2019 Antibiotic Resistance Threats Report for Frontline Providers. *Crit Care Med* **2020**, *48*(7), 939-945.
- 45. 2019 AR Threats Report. <u>https://www.cdc.gov/drugresistance/Biggest-Threats.html</u>, <u>https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf</u>.
- 46. de Kraker, M. E.; Stewardson, A. J.; Harbarth, S., Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? *PLoS Med* **2016**, *13* (11), e1002184.
- 47. Ma, Y. X.; Wang, C. Y.; Li, Y. Y.; Li, J.; Wan, Q. Q.; Chen, J. H.; Tay, F. R.; Niu, L. N., Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections. *Adv Sci (Weinh)* **2020**, *7*(1), 1901872.
- 48. Resistance mechanisms. https://www.reactgroup.org/toolbox/understand/antibioticresistance/resistance-mechanisms-in-bacteria/.
- 49. Siroy, A.; Molle, V.; Lemaitre-Guillier, C.; Vallenet, D.; Pestel-Caron, M.; Cozzone, A. J.; Jouenne, T.; De, E., Channel formation by CarO, the carbapenem resistance-associated outer membrane protein of Acinetobacter baumannii. *Antimicrob Agents Chemother* **2005**, *49* (12), 4876-83.
- 50. Gehrlein, M.; Leying, H.; Cullmann, W.; Wendt, S.; Opferkuch, W., Imipenem resistance in Acinetobacter baumanii is due to altered penicillin-binding proteins. *Chemotherapy* **1991**, *37*(6), 405-12.
- 51. Sun, C.; Hao, J.; Dou, M.; Gong, Y., Mutant prevention concentrations of levofloxacin, pazufloxacin and ciprofloxacin for A. baumannii and mutations in gyrA and parC genes. *J Antibiot (Tokyo)* **2015,** *68*(5), 313-7.
- 52. Taha, M. S.; Shoeib, S. M.; Abdelwahab, M. A., Mutations in gyrA and parC genes in fluoroquinolone-resistant Acinetobacter baumannii that causes hospital acquired infection. *Microbes and Infectious Diseases* **2023**, *4* (2), 590-600.
- 53. Zaki, M. E. S.; Abou ElKheir, N.; Mofreh, M., Molecular Study of Quinolone Resistance Determining Regions of gyrA Gene and parC Genes in Clinical Isolates of Acintobacter baumannii Resistant to Fluoroquinolone. *Open Microbiol J* **2018**, *12* (1), 116-122.
- 54. Marturano, J. E.; Lowery, T. J., ESKAPE Pathogens in Bloodstream Infections Are Associated With Higher Cost and Mortality but Can Be Predicted Using Diagnoses Upon Admission. *Open Forum Infect Dis* **2019**, *6* (12), ofz503.
- 55. Carrillo-Esper, R.; Carrillo-Córdova, J. R.; Carrillo-Córdova, L. D., Estudio epidemiológico de la sepsis en unidades de terapia intensiva mexicanas. *Cirugía y Cirujanos* **2009**, *77*(4), 301-308.
- Arista-Olvera, N. X.; Lozano-Nuevo, J. J.; García-López, V. H.; Narváez-Rivera, J. L.; Garro-Almendaro, A. K.; Zamora-Cervantes, L. E.; Sánchez-González, C.; Ramírez-Villa, M. L.; Hernández-Islas, D., Infección nosocomial por Acinetobacter y su efecto en un hospital de segundo nivel. *Medicina interna de México* 2019, *35* (4), 477-484.

28

57. Secretaría de Salud Pública, M. Medición de la prevalencia de infecciones nosocomiales en hospitales generales de las principales instituciones Públicas de salud.

http://www.dged.salud.gob.mx/contenidos/dess/descargas/estudios_especiale s/NOSOCOMIAL_IF.pdf.

- Garza-González, E.; Llaca-Díaz, J. M.; Bosques-Padilla, F. J.; González, G. M., Prevalence of Multidrug-Resistant Bacteria at a Tertiary-Care Teaching Hospital in Mexico: Special Focus on Acinetobacter baumannii. *Chemotherapy* 2010, *56* (4), 275-279.
- Morfín-Otero, R.; Alcántar-Curiel, M. D.; Rocha, M. J.; Alpuche-Aranda, C. M.; Santos-Preciado, J. I.; Gayosso-Vázquez, C.; Araiza-Navarro, J. R.; Flores-Vaca, M.; Esparza-Ahumada, S.; González-Díaz, E.; Pérez-Gómez, H. R.; Rodríguez-Noriega, E., Acinetobacter baumannii Infections in a Tertiary Care Hospital in Mexico over the Past 13 Years. *Chemotherapy* **2013**, *59* (1), 57-65.
- 60. Ramírez-Sandoval, M. d. L. P.; Aranza-Aguilar, J. L.; Varela-Ramirez, M. A.; García-González, A.; Vélez-Castro, G.; Salcedo-Romero, R.; Fajardo-Luz, M. M.; Cruz-Sánchez, M.; Moreno-Pérez, F. J., Brote de infección nosocomial de vías respiratorias bajas por Acinetobacter baumannii en un servicio de Medicina Interna de un hospital general de la Ciudad de México. *Medicina interna de México* 2013, *29* (3), 250-256.
- 61. INEGI Estadísticas de Mortalidad [Consultada el 10 de julio de 2021]. https://www.inegi.org.mx/sistemas/olap/registros/vitales/mortalidad/tabulad os/pc.asp?t=14&c=11817.

CAPITULO 2 *construcción del modelo qspr de antibacteriales*

En este capítulo se muestra la construcción de una base de datos a partir de la búsqueda de moléculas que tienen actividad antibacterial reportada contra *A. baumannii*. Esta búsqueda se realizó utilizando la herramienta virtual SciFinder la cual permite obtener información detallada de las moléculas. Posteriormente, la base de datos se utilizó para la generación de un modelo QSPR a partir del cálculo de descriptores asociados a la estructura 2D de las moléculas. Se realizó la validación estadística interna mediante la generación de conjuntos de prueba y entrenamiento, así como la evaluación del poder predictivo usando moléculas que no formaron parte del conjunto inicial de sustancias bioactivas. Finalmente, se analizaron los descriptores obtenidos del modelo categorizados en topológicos, de fragmentos centrados en átomos, de autocorrelación en 2D y de grupos funcionales.

2.1 Modelos QSPR/QSAR en el desarrollo de antibióticos contra A. baumannii

Debido a la alta resistencia a diferentes tratamientos antibióticos provocado por A. baumannii, muchos grupos de investigación a nivel mundial han realizado importantes esfuerzos en la búsqueda de compuestos activos contra este patógeno. La mayoría de estos grupos han realizado estudios tipo SAR para determinar propiedades biológicas en función de la estructura molecular.²⁷⁻³² Adicionalmente, algunos autores han propuesto modelos QSAR de conjuntos de moléculas que complementan lo observado experimentalmente para el entendimiento del mecanismo de acción. Un problema con estos modelos QSAR es el uso de pequeños conjuntos de compuestos, principalmente los sintetizados y probados en el mismo trabajo con cambios químicos menores en la estructura central que solo contribuyen a entender moléculas similares.¹ Adicionalmente, los conjuntos de datos pequeños que consideran moléculas que actúan contra múltiples patógenos tienen la desventaja de que es necesario buscar, utilizar o generar tantos modelos como sean necesarios a fin de determinar y predecir la actividad antibacteriana de estos conjuntos hacia cada bacteria. Por ejemplo, Prado-Prado et al. desarrollaron un análisis QSAR mediante la introducción de descriptores moleculares entrópicos en sus modelos para predecir la actividad antibacteriana de varios fármacos contra diferentes cepas de bacterias.¹ Semenyuta y colaboradores establecieron varios modelos QSAR para la actividad de líquidos iónicos de imidazolio con el uso de redes neuronales y regresiones de bosque aleatorio (random-forest *regression*), lo que les permitió utilizar múltiples descriptores moleculares para correlacionar la estructura con la bioactividad de estos nuevos compuestos hacia A. *baumannii*.² No obstante, un inconveniente importante de estos modelos QSAR, es el uso de descriptores moleculares complejos que a menudo son difíciles de interpretar y manejar, lo que limita su aplicabilidad y simplicidad.

2.2 Modelo QSPR de moléculas con actividad hacia A. baumannii

En la construcción de un modelo de relación cuantitativa estructurapropiedad/actividad (QSPR/QSAR), **Esquema 1**, uno de los primeros pasos en el desarrollo metodológico es la búsqueda de información sobre los diferentes compuestos asociados a la actividad biológica deseada, y la calidad de los datos. Existen diversas razones por las que los datos obtenidos puedan ser poco confiables o de mala calidad. Debido a que el conjunto de datos puede ser una recopilación de información publicados de varias fuentes, cada uno usando una metodología distinta para la medición, o incluso siendo la medición hecha por un mismo grupo de trabajo, los resultados pueden presentar diversos problemas asociados a error humano.³ Asimismo, éstos deben contener valores cuantitativos, excepto que el modelo a generar considere variables cualitativas para la predicción de una propiedad en particular. Con los años, se han hecho múltiples esfuerzos para generar metodologías que permitan correlacionar las propiedades X con su valor experimental biológico Y, utilizando variables llamadas descriptores. Entre ellas, propiedades fisicoquímicas, descriptores matemáticos, o el uso de teoría de grafos para la representación y obtención de valores numéricos son sólo algunos ejemplos que se han utilizado. Sin embargo, el uso de descriptores cada vez más específicos y de mayor complejidad ha generado que, a pesar de tener modelos altamente predictivos, estos carezcan de facilidad de interpretación y uso generalizado por parte de la comunidad científica.

Esquema 1. Pasos generales en la construcción de un modelo QSPR/QSAR

a. Selección de moléculas y curación de estructuras

Se realizó la búsqueda de moléculas con actividad antibacterial experimental con valores de MIC (*Concentración Mínima Inhibitoria*) reportados contra la bacteria *A. baumannii*, utilizando la base de datos de SciFinder.⁴ A partir de esta exploración, se identificaron un total de 944 moléculas iniciales entre compuestos derivados de síntesis, semisíntesis y de aislados de productos naturales que cumplían los

requerimientos propuestos. Sin embargo, para llevar a cabo un estudio más adecuado de las propiedades de las moléculas, se realizó el curado de la información obtenida bajo los siguientes criterios iniciales:

1. Estandarización de grupos funcionales, tales como grupos carboxilato, nitro y sulfonilo. Así como también la aromatización de moléculas que incluyan sistemas como anillos de benceno o policiclos, sistemas conjugados entre otros.

Debido a que una de las fuentes primarias de información son las publicaciones científicas, muchas de las ocasiones las estructuras provistas están en formato de imagen. Por lo mismo, es necesario redibujarlas y adicionarlas a la base de datos a usar, lo que en muchas ocasiones implica errores humanos o bien limitaciones en el uso del software. La estandarización de grupos funcionales permite que el error sea mínimo y haya una mejor confianza de los valores obtenidos.

2. La exclusión de mezcla de compuestos, así como de sustancias inorgánicas, de coordinación u organometálicos; esto debido a que la presencia de átomos metálicos genera un cambio muy importante en las propiedades fisicoquímicas, estructurales de las moléculas y de las cuáles deben ser consideradas aparte.

A pesar de que se tiene conocimiento de que el espacio químico de compuestos con actividad conocida puede abarcar prácticamente toda la tabla periódica, el hecho de introducir un átomo metálico genera que las propiedades fisicoquímicas varíen de grupo en grupo o de periodo en periodo.

También, dado que los átomos metálicos y los no metálicos como B, P, Si, S, entre otros, pueden presentar geometrías más allá del tetraedro, común del átomo de carbono, los descriptores asociados a aspectos tridimensionales son altamente recomendados, lo que en este trabajo no se utilizan. Por lo mismo, es necesario el sesgo de compuestos a utilizar.

3. La eliminación de duplicados, así como de estereoisómeros también es parte importante en la clasificación de moléculas. Asimismo, la generación de moléculas con más de una forma tautomérica se deben tener en consideración, por tanto, se utiliza la forma predominante en solución.

Esto debido a que, al no considerar la conformación activa de la molécula como se mencionó en párrafos anteriores, imposibilita el uso de descriptores de tipo 3D, que también están asociados a la estereoisomería de compuestos. Por otro lado, el hecho de tener especies que se interconviertan en formas tautoméricas dependiendo del ambiente químico que se encuentran. El curado de datos es un paso importante en la generación de cualquier modelo de tipo predictivo QSPR/QSAR.^{5,6} En muchas ocasiones, las estructuras químicas presentan errores asociados a su construcción y que pueden ocasionar que se obtengan valores incorrectos asociados a alguna propiedad en particular. Esto provoca que se generen modelos no-predictivos/engañosos, o bien que se construya una falsa hipótesis sobre un mecanismo de acción.^{5, 7} La posibilidad de introducir un error en el modelo por parte de estructuras químicas no adecuadas crece

conforme la generación de bases de datos más y más grandes de moléculas se van teniendo y esto se ha revisado en diferentes publicaciones.^{5, 8, 9}

Tras el primer filtro aplicado se eliminaron moléculas con más de un estereoisómero, sales de compuestos químicos y de mezclas racémicas obteniendo un primer conjunto de 671 moléculas, de las cuales se realizó un segundo criterio para la evaluación de información de moléculas a utilizar. En este aspecto se tomaron en cuenta lo siguiente:

4. Compuestos con valores no definidos de MIC y aquellos con valores por encima de 256 μg/mL son removidos del conjunto de moléculas a utilizar.

Aunque no existe un intervalo adecuado para el MIC¹⁰, debido a que existen moléculas con valores que pueden llegar a ser por encima de los 512 μ g/mL, éstos representan valores de bioactividad poco potentes, lo cual genera que la predicción de moléculas con alta potencia disminuya. El definir un valor de MIC como corte permite sesgar la obtención de moléculas con alta potencia, sin embargo, puede también dejar fuera otras con mecanismos novedosos o de estructura únicas. Tras esta serie de pasos, se obtiene un conjunto final de 592 moléculas.

b. Cálculo de descriptores

Las estructuras de las moléculas del conjunto final fueron dibujadas utilizando el programa Avogadro¹¹ y la paquetería de MarvinSketch y convertidas a formato (.mol2). Para el cálculo de los descriptores, se utilizó el paquete computacional Dragon, del cual se calcularon descriptores de dimensionalidad 0D, 1D y 2D. Como se describió anteriormente, debido a que para la mayoría de las moléculas no se conoce su conformación activa ni la diana biológica a la cual se asocia su mecanismo de acción, los descriptores de tipo 3D son excluidos del análisis. El número de descriptores utilizados para la generación del modelo matemático es descrito a continuación y se muestra en la **Tabla 1**: 45 descriptores constitucionales, 33 descriptores de índices de conectividad, 92 descriptores de autocorrelación en 2D; 21 índices topológicos de carga, 93 descriptores de grupos funcionales, 88 descriptores de fragmentos centrados en átomos, y 10 descriptores de projudades moleculares.

Tabla 1. Descriptores usados para la generación del modelo QSPR. Una lista completa y detallada de los descriptores usados se encuentra en:

https://www.talete.mi.it/products/dragon_molecular_descriptor_list.pdf

Dimensionalidad	Familia	Descriptor
0D	Constitucionales	MW, AMW, Sv, Se, Sp, Ss, Mv, Me, Mp, Ms, nAT, nSK, nBT, nBO,
		nBM, SCBO, ARR, nCIC, nCIR, RBN, RBF, nDB, nTB, nAB, nH,
		nC, nN, nO. nS, nF, nCL, nBR, nI, nX, nR03, nR04, nR05, nR06,
		nR07, nR08, nR09, nR10, nR11, nR12, nBnz

	Conteo de grupos funcionales	nCp, nCs, nCt, nCq, nCrs, nCrt, nCrq, nCar, nCbH, nCb-, nCconj, nR=Cp, nR=Cs, nR=Ct, nR#CH/X, nR#C-, nRCOOH, nArCOOH, nRCOOR, nArCOOR, nRCONH2, nRCONHR, nArCONHR, nRCONR2, nArCONR2, nROCON, nArOCON, nArCOSR, nRCO, nArCO, nCONN, nN=C-N<, nC(=N)N2, nRC=N, nArC=N, nArCNO, nRNH2, nArNH2, nRNHR, nArNHR, nRNR2, nArNR2, nN-N, nRCN, nArCN nN+, nNq, nRNHO, nArNHO, nArNO2, nN(CO)2, nC=N-N<, nROH, nArOH, nOHp, nOHs, nOHt, nROR, nArOR, nRSR, nSO, nS(=O)2, nSO2OH, nSO3OH, nSO2N, nCH2RX, nR=CRX, nCHRX2, nCRX3, nArX, nCXr, nCXr=, nCconjX, nOxiranes, nAzetidines, nBeta-Lactams, nPyrrolidines, nOxolanes, nPyrroles, nPyrazoles, nImidazoles, nFuranes, nThiophenes, nIsoxazoles, nThiazoles, nPyrazines, nHDon, nHAcc, nHBonds
	Fragmentos centrados en el átomo	C-001, C-002, C-003, C-004, C-005, C-006, C-007, C-008, C- 009, C-010, C-011, C-012, C-013, C-014, C-015, C-016, C-017, C-018, C-019, C-020, C-021, C-022, C-024, C-025, C-026, C- 027, C-028, C-029, C-030, C-031, C-032, C-033, C-034, C-035, C-036, C-037, C-038, C-039, C-040, C-041, C-042, C-043, C- 044, H-046, H-047, H-048, H-049, H-050, H-051, H-052, H- 053, H-054, O-056, O-057, O-058, O-059, O-060, O-061, N- 066, N-067, N-068, N-069, N-070, N-071, N-072, N-073, N- 074, N-075, N-076, N-077, N-078, N-079, F-081, F-082, F- 083, F-084, F-085, Cl-086, Cl-089, Cl-090, Br-091, Br-092, Br- 094, S-106, S-107, S-108, S-109, S-110
	Topológicos	ZM1, ZM1V, ZM2, ZM2V, Qindex, SNar, HNar, GNar, Xt, Dz, Ram, Pol, LPRS, VDA, MSD, SMTI, SMTIV, GMTI, GMTIV, Xu, SPI, W WA, Har, Har2, QW, TI1, TI2, STN, HyDp, RHyDp, w, ww, Rww, D/D, Wap, WhetZ, Whetm, Whetv, Whete, Whetp, J, JhetZ, Jhetm, Jhetv, Jhete, Jhetp, MAXDN, MAXDP, DELS, TIE, S0K, S1K, S2K, S3K, PHI, BLI, PW2, PW3, PW4, PW5, PJI2, CSI, ECC, AECC, DECC, MDDD, UNIP, CENT, VAR, BAC, Lop, ICR, D/Dr03, D/Dr04, D/Dr05, D/Dr06, D/Dr07, D/Dr08, D/Dr09, D/Dr10, D/Dr11, D/Dr12, T(NN), T(NO), T(NS), T(NF), T(NCl), T(NBr), T(NI), T(OO), T(OS), T(OF), T(OCl), T(OBr), T(SS), T(SF), T(SCl), T(SBr),T(FF), T(FCl), T(FBr), T(ClCl), T(ClBr), T(BrBr)
	Índices de conectividad	X0, X1, X2, X3, X4, X5, X0A, X1A, X2A, X3A, X4A, X5A, X0v, X1v, X2v, X3v, X4v, X5v, X0Av, X1Av, X2Av, X3Av, X4Av, X5Av, X0sol, X1sol, X2sol, X3sol, X4sol, X5sol, XMOD, RDCHI, RDSQ
	Autocorrelaciones en 2D	ATS1m, ATS2m, ATS3m, ATS4m, ATS5m, ATS6m, ATS7m, ATS8m, ATS1v, ATS2v, ATS3v, ATS4v, ATS5v, ATS6v, ATS7v, ATS8v, ATS1e, ATS2e, ATS3e, ATS4e, ATS5e, ATS6e, ATS7e, ATS8e, ATS1p, ATS2p, ATS3p, ATS4p, ATS5p, ATS6p, ATS7p, ATS8p, MATS1m, MATS2m, MATS3m, MATS4m, MATS5m, MATS6m, MATS7m, MATS8m, MATS1v, MATS2v, MATS3v, MATS4v, MATS5v, MATS6v, MATS7v, MATS8v, MATS1e,

2D

1D

		MATS2e, MATS3e, MATS4e, MATS5e, MATS6e, MATS7e, MATS8e, MATS1p, MATS2p, MATS3p, MATS4p, MATS5p, MATS6p, MATS7p, MATS8p, GATS1m, GATS2m, GATS3m, GATS4m, GATS5m, GATS6m, GATS7m, GATS8m, GATS1v, GATS2v, GATS3v, GATS4v, GATS5v, GATS6v, GATS7v, GATS8v, GATS1e, GATS2e, GATS3e, GATS6v, GATS7e, GATS6e, GATS7e, GATS8e, GATS1p, GATS2p, GATS3p, GATS4p, GATS5p, GATS6p, GATS7p, GATS8p
	Índices topológicos de carga	GGI1, GGI2, GGI3, GGI4, GGI5, GGI6, GGI7, GGI8, GGI9, GGI10, JGI1, JGI2, JGI3, JGI4, JGI5, JGI6, JGI7, JGI8, JGI9, JGI10, JGT
Otros	Propiedades moleculares	Ui, Hy, Hy2, AMR, TPSA(NO), TPSA(Tot), MLOGP, MLOGP2, ALOGP, ALOGP2

c. Generación de modelo QSPR

Los modelos de regresión lineal fueron construidos utilizando el programa Mobydigs¹², mediante la técnica de algoritmos genéticos. La técnica de algoritmos genéticos (*Genetic algortithms*, GA) es un método estadístico que se puede emplear para el análisis de sistemas complejos que puedan correlacionar múltiples variables. En una manera análoga a la evolución genética, esta aproximación permite la selección de los modelos más adecuados para un set de moléculas grandes.¹³ Se asignó como variable dependiente (*Y*) la concentración mínima inhibitoria (MIC) dado en valores de µg/mL. Se probaron diferentes transformaciones matemáticas para el análisis de algoritmos genéticos, con el fin de encontrar la que asegura una mayor correlación. En este sentido, la transformación encontrada fue *p*MIC, convirtiendo los valores de µg/mL a valores concentración molar (M = mol/L) y donde la normalización de los datos está dada por la siguiente ecuación:

$$p\text{MIC} = -\log_{10}[\text{MIC}] \tag{1}$$

El valor del MIC (en su forma de *p*MIC) de cada molécula utilizada se muestra en la sección de Anexos, **Tabla S1**. La selección del mejor modelo se basó en valores de parámetros como el coeficiente de determinación (R^2); además, se emplearon la desviación estándar (*s*) y la prueba de Fischer (*F*). Se utilizó la prueba de datos aleatorios para la variable Y (*Y*-scrambling) para garantizar que el modelo QSPR se construyó adecuadamente en términos de correlación obtenida por casualidad. Esto se realizó primero permutando aleatoriamente los valores de *p*MIC del conjunto de datos y luego usando la nueva columna de valores con las mismas variables para generar nuevos modelos. El procedimiento se repitió 300 veces y los parámetros de calidad de estos nuevos modelos se compararon con los valores originales del modelo QSPR: si el modelo original no tiene correlación aleatoria, los nuevos valores R^2 y Q^2 calculados para los modelos QSPR con *p*MIC permutados tendrán una diferencia significativa con respecto a los valores originales; de lo contrario, el modelo se rechaza. La no
colinealidad entre descriptores se determina mediante la regla QUIK. En consecuencia, la regla QUIK se basa en el índice de correlación multivariante *K* que mide la correlación total de un conjunto de variables de la siguiente manera:

$$K = \frac{\sum_{j} \left| \frac{\lambda_{j}}{\sum_{j} \lambda_{j}} - \frac{1}{p} \right|}{\frac{2(p-1)}{p}}$$
(2)

donde $j = 1, ..., p \ge 0 \le K \le 1$, y para donde los λ son los valores propios obtenidos de la matriz de correlación del conjunto de datos X(n, p), n representa el número de compuestos y p el número de variables (descriptores). La correlación total en el conjunto dado por los descriptores del modelo X más la respuesta $Y(K_{XY})$ siempre debe ser mayor que la medida únicamente en el conjunto de descriptores (K_X). En otras palabras, si $K_{XY} - K_X < \delta K$, entonces se rechaza el modelo. Los valores de umbral típicos de δK para los modelos están entre 0.01 y 0.05. Modelos que tengan valores negativos no se permiten.

Para detectar modelos con un exceso de descriptores "buenos" o "malos", se aplicaron las reglas de redundancia (R^P) y sobreajuste (R^N) . R^P se define como:

$$R^{P} = \prod_{j=1}^{p^{+}} \left(1 - M_{j} \left(\frac{p}{p-1} \right) \right)$$
(3)

donde $M_i > 0$ y $0 \le R^P \le 1$

Mientras que, se define R^N como:

$$R^N = \sum_{j=1}^{p^-} M_j \tag{4}$$

donde $M_j < 0$ y $-1 < R^N \le 0$

Dado un modelo de regresión con p variables, R_{jy} es el valor absoluto del coeficiente de regresión entre los *j*-ésimos descriptores y la respuesta Y. En este sentido, M_j se puede calcular de la siguiente manera:

$$M_j = \frac{R_{jy}}{R} - \frac{1}{p} \text{ and } -\frac{1}{p} \le M_j \le \frac{p-1}{p}$$
 (5)

La regla de redundancia establece que si $R^P < t^P$, entonces el modelo es rechazado, donde dependiendo de los datos, t^P , que es un intervalo definido por el usuario, puede oscilar entre 0.01 y 0.1, con un valor sugerido de 0.05. La regla de sobreajuste especifica que si $R^N < t^N(\varepsilon)$, entonces el modelo se rechaza. Calcular $t^N(\varepsilon)$ se puede realizar usando la siguiente ecuación:

$$t^{N}(\varepsilon) = \frac{p\epsilon - R}{pR} \tag{6}$$

donde los valores de *ɛ* pueden oscilar entre 0.01 y 0.1, y p es el número de variables. *d. Validación estadística interna y externa*

El modelo obtenido fue validado internamente mediante el método de validación cruzada "*leave many-out*" (Q^2_{LMO}) para el cual, el conjunto de datos se dividió aleatoriamente en un conjunto de entrenamiento (415 moléculas) y un conjunto de prueba (117 moléculas) que representan el 70 % y 30% del conjunto total de moléculas, respectivamente. La solidez del modelo se evaluó adicionalmente mediante "*Bootstrap*" (Q^2_{BOOT}) y el valor de Q^2_{EXT} . La validación de la capacidad predictiva del modelo se realizó aplicando la regla de la Q^2 —Asintótica (δQ). Se asume que un buen modelo debe tener una pequeña diferencia entre ajuste y capacidad predictiva, en la que variaciones significativas entre los valores de R^2 y Q^2 pueden deberse a un sobreajuste o a algunas muestras no predecibles.^{14, 15} La regla de la Q^2 —Asintótica evalúa los valores asintóticos de Q^2 contra los valores de Q^2 del modelo mediante la siguiente relación:

$$Q^{2}_{LMO} - Q^{2}_{ASYM} < \delta Q \tag{7}$$

Si la diferencia es menor que el intervalo, típicamente de $\delta Q = -0.005$, entonces se rechaza el modelo. Debido a que Q^2_{LMO} está relacionado asintóticamente con el valor de R^2 , es posible calcular Q^2_{ASYM} utilizando la siguiente expresión:

$$Q_{ASYM}^2 = 1 - (1 - R^2) \left(\frac{n}{n - p'}\right)^2$$
 (8)

donde *n* es el número de objetos y p' el número de parámetros del modelo.

Para evaluar más a fondo la aplicabilidad predictiva del modelo, algunos parámetros estadísticos desarrollados por Roy *et al.* se utilizaron.¹⁶⁻¹⁸ De acuerdo con los parámetros estadísticos, para cada evaluación deben estar presentes los siguientes criterios como se muestra: (i) $Q^2 > 0.5$; (ii) $r^2 > 0.6$; (iii) $(r^2 - r_0^2)/r^2 < 0.1$ (o bien usando el criterio $(r^2 - {r'_0}^2)/r^2 < 0.1$); (iv) $0.85 \le k \le 1.15$ (o bien usando el criterio $0.85 \le k' \le 1.15$; y finalmente (v) $|r_0^2 - {r'_0}^2| < 0.3$. Además, también se utilizaron dos parámetros derivados de lo anterior, $\overline{r_m}^2$ y Δr_m^2 para evaluar el poder predictivo del modelo.¹⁹ Tomando que $\overline{r_m}^2$ sigue que:

$$\overline{r_m^2} = \frac{\left(r_m^2 + r'_m^2\right)}{2} \tag{9}$$

donde r_m^2 se calcula como:

$$r_m^2 = r^2 \left(1 - \sqrt{r^2 - r_0^2} \right) \tag{10}$$

y donde:

$$r'_{m}{}^{2} = r^{2} \left(1 - \sqrt{r^{2} - r'_{0}{}^{2}} \right)$$
(11)

Asimismo, Δr_m^2 se obtiene de la siguiente ecuación:

$$\Delta r_m^2 = \left| r_m^2 - r'_m^2 \right| \tag{12}$$

Finalmente, el cálculo de los siguientes valores de r^2 , r_0^2 , r'_0^2 , k y de k' se muestran a continuación:

$$r^{2} = \frac{\left[\sum(Y_{obs} - \overline{Y_{obs}})(Y_{pred} - \overline{Y_{pred}})\right]^{2}}{\sum(Y_{pred} - \overline{Y_{pred}})^{2} * \sum(Y_{obs} - \overline{Y_{obs}})^{2}}$$
(13)

$$r_0^2 = 1 - \frac{\left[\sum(Y_{obs} - (k * Y_{pred}))\right]^2}{\sum(Y_{obs} - \overline{Y_{obs}})^2}$$
(14)

$$r'_{0}^{2} = 1 - \frac{\left[\sum(Y_{pred} - (k' * Y_{obs}))\right]^{2}}{\sum(Y_{pred} - \overline{Y_{pred}})^{2}}$$
(15)

$$k = \frac{\sum(Y_{obs} * Y_{pred})}{\sum(Y_{pred})^2}$$
(16)

$$k' = \frac{\sum (Y_{obs} * Y_{pred})}{\sum (Y_{obs})^2}$$
(17)

donde los parámetros de Y_{obs} y de Y_{pred} son los valores de actividad experimentales y los predichos por el modelo respectivamente.

e. Resultados: modelo QSPR de 15 variables

Como una primera aproximación, se construyeron modelos de regresión utilizando algoritmos genéticos para seleccionar los descriptores más adecuados. Después de la selección de los descriptores más adecuados, se realizó un análisis de regresión lineal múltiple para generar modelos que pudieran permitirnos categorizar la actividad biológica del conjunto de datos. El mejor modelo QSPR para la actividad antibacteriana contra *A. baumannii* consta de quince descriptores tal como se muestra en la siguiente ecuación:

 $p\text{MIC} = (0.001 \pm 0.000) \text{D/Dr06} + (-0.438 \pm 0.004) \text{GATS6m} + (0.529 \pm 0.004) \text{nArCOOH} + (1.249 \pm 0.005) \text{nRCONH2} + (0.334 \pm 0.001) \text{nROR} + (-0.429 \pm 0.006) \text{nImidazoles} + (0.115 \pm 0.000) \text{nHDon} + (-0.204 \pm 0.001) \text{nHBonds} + (1.257 \pm 0.005) \text{CO18} + (18) \\ (0.476 \pm 0.001) \text{CO29} + (1.149 \pm 0.004) \text{CO32} + (-0.105 \pm 0.000) \text{HO51} + (-0.186 \pm 0.001) \text{NO75} + (-0.555 \pm 0.001) \text{NO79} + (0.025 \pm 0.000) \text{TI2} + 4.292(\pm 0.005)$

$$\begin{split} n &= 592; R^2 = 70.278 \ (\pm 0.907); R^2{}_{AD} = 69.162 \ (\pm 0.973); a(R^2) = 0.014 \ (\pm 0.000); \\ s &= 0.462 \ (\pm 0.000); F = 62.978 \ (\pm 8.418); Q^2{}_{LM0} = 67.886 \ (\pm 1.043); \\ Q^2{}_{BOOT} &= 66.882 \ (\pm 1.104); Q^2{}_{EXT} = 67.747 \ (\pm 5.414); a(Q^2) = -0.068 \ (\pm 0.000); \\ \delta K &= 0.021 \ (0.000); \delta Q = 0.000 \ (-0.005); R^P = 0.015 \ (0.100); R^N = -0.008 \ (-0.054) \end{split}$$

Todos los parámetros estadísticos se obtuvieron como sus valores promedio (**Tabla S2**). Los valores de (R^2) de 70.278 (±0.907), y la R^2_{ADJ} de 69.162 (±0.973), son valores que se encuentran dentro de los rangos normales observados en otros modelos de conjuntos de datos grandes.

Además, se comprobaron las reglas de redundancia y sobreajuste para determinar la naturaleza de los descriptores utilizados en el modelo. En este sentido, la regla de sobreajuste, $R^N = -0.008 (-0.054)$, se cumplió; mientras que, la regla de redundancia, $R^P = 0.015 (0.100)$, indica que algunos descriptores, en este caso nHDon y nHBonds, están correlacionados con la variable dependiente. Sin embargo, estos descriptores no se pueden eliminar ya que son importantes para la descripción correcta de nuestro modelo de regresión al ser variables que marcan límites en la cantidad de elementos presentes en una molécula.

Mediante un análisis usando un gráfico de correlación de Pearson, se puede observar que existe una alta correlación entre los descriptores nHDon y nHBonds, los cuáles muestran un valor de R^2 de 87.7. Esto se puede interpretar en términos de la cantidad de enlaces de hidrógeno que pueden formarse al existir una gran cantidad de donadores de H en las moléculas, lo que implica que a medida que aumente el valor de uno, el valor del otro descriptor también. Estos mismos descriptores tienen una correlación de mediano valor con el descriptor D/Dr06, con R^2 de 49.2 y 50.7 respectivamente, donde para una gran cantidad de moléculas que presentan altos valores de donadores de hidrógeno (y formación de enlaces de hidrógeno) poseen anillos de 6 miembros, principalmente anillos aromáticos y ciclohexilos. No obstante, esta correlación no es progresiva como en el caso de nHBonds y nHDon. Misma situación ocurre cuando se hace un análisis entre el descriptor nHDon y TI2 el cual muestra un valor de $R^2 = 50.2$. El descriptor TI2 y el D/Dr06 también muestra una mediana correlación con un valor de 48.1. En este último, algunas moléculas con alto valor de TI2 (asociado a la forma altamente elongada de los compuestos) poseen valores altos de D/Dr06, los cuáles contienen en particular un número elevado de anillos de tipo fenilo. Estos datos se pueden visualizar en la **Figura 8** que muestra las correlaciones mediante un gráfico de temperatura para la correlación de Pearson. Los descriptores con alta correlación son rojos, y los que tienen poca correlación son amarillos.

Figura 8. Gráfico de correlación de Pearson para los 15 descriptores usados en el modelo QSPR.

Por otro lado, la capacidad de predicción del modelo fue validada mediante la validación cruzada dejando varios fuera, $Q^2_{LMO} = 67.886 \ (\pm 1.043)$, un valor que indica que el modelo de regresión tiene un buen poder predictivo. El parámetro de robustez lo indica el alto valor de $Q^2_{BOOT} = 66.882 \ (\pm 1.104)$ basado en "*bootstrapping*", que se repitió 5000 veces.

La validación externa fue esencial ya que un $Q^2 _{LMO}$ alto solo indica una buena validación interna, pero no muestra una alta capacidad de predicción del modelo creado. Por lo tanto, para el procedimiento de validación externa, el 70% de todas las moléculas del conjunto de datos se seleccionaron aleatoriamente para el proceso de entrenamiento y el 30% restante se utilizó como conjunto de prueba. Usando esta relación de muestra, en un proceso que se repitió diez veces, se asegura el uso de todas las moléculas utilizadas para la generación del modelo ya sea en el conjunto de entrenamiento o de prueba. En la **Figura 9** se muestran cuatro de los diez experimentos realizados, con sus intervalos de confianza superior/inferior a un nivel de confianza del 95%. Con el mismo propósito, se empleó la regla de la Q^2 -Asintótica, $\delta Q = 0,000$ (-0.005).

Por otro lado, el modelo mostrado en (18) pasó todas las pruebas estadísticas propuestas por Roy *et al.*,¹⁶⁻¹⁹ como un valor promedio derivado de diez experimentos: (a) $Q^2 = 67.88 (\pm 1.043)$; (b) $r^2 = 0.679 (\pm 0.000)$; (c) $(r^2 - r_0^2)/r^2 = 0.001 (\pm 0.000)$; (d) $k = 0.999 (\pm 0.000)$ (or $k' = 0.991 (\pm 0.000)$); (e) $|r_0^2 - r'_0^2| = 0.127 (\pm 0.000)$.

Figura 9. Gráficos de dispersión de datos de *p*MIC predicho frente a valores de *p*MIC experimentales selectos. Los puntos azules representan moléculas del conjunto de entrenamiento (70%) y los diamantes amarillos representan moléculas utilizadas para el conjunto de prueba (30%). Para cada gráfica, se eligió aleatoriamente las moléculas utilizadas en los conjuntos de datos de entrenamiento y prueba.

Para una predicción aceptable, el valor de Δr_m^2 debería ser preferiblemente menor que 0.2; mientras que, $\overline{r_m^2}$ debería ser mayor que 0.5. En nuestro modelo, Δr_m^2 presenta un valor de 0.229 (±0.000), mientras que $\overline{r_m^2}$ tiene un valor promedio de 0.552 (±0.000). Los valores para cada experimento se pueden consultar en Anexos, **Tabla S3**.

Dado que uno de los puntos importantes para la validación de un modelo de relación estructura como es el caso de un QSPR o QSAR, se debe revisar el dominio de aplicabilidad de este. *El dominio de aplicabilidad de un (Q)SAR (o QSPR como en este proyecto) se define como el espacio, conocimiento o información fisicoquímica, estructural o biológico sobre el que se ha desarrollado el conjunto de entrenamiento del modelo, y para el que se aplica a predicciones de nuevos compuestos. El dominio de aplicabilidad de un (Q)SAR debe describirse en términos de los parámetros más relevantes, por ejemplo, en los descriptores utilizados para el modelo. Idealmente, el (Q)SAR sólo deberá utilizarse para hacer predicciones dentro de ese dominio mediante interpolación, y no mediante extrapolación.²⁰ El dominio de aplicabilidad se representa gráficamente mediante el gráfico de Williams, tal como se muestra en la Figura 10 para cuatro de los diez experimentos realizados por muestreo.*

Figura 10. Gráficos de Williams selectos de las moléculas con actividad antibacteriana contra *A. baumannii*. La línea vertical punteada en rojo indica el límite indicado por la regla de la palanca ($h^* = 3p/n$, donde *n* es el número de moléculas y *p* es el número de descriptores en el modelo más uno). Las líneas horizontales punteadas superior/inferior en negro representan los límites para los cuales se utiliza el triple del valor de desviación estándar (3×SDEC).

Esto permite la detección de moléculas que nuestro modelo no puede predecir adecuadamente, por lo que se consideran valores atípicos (denominados como "*outliers*")²⁰⁻²², moléculas con estructuras distintivas (valores atípicos altos dado por la regla de la palanca, $h > h^*$), o aquellas asociadas con la respuesta (residuos predichos >3*SDEC, es decir mayor a tres veces la desviación estándar). El apalancamiento es uno de los DM más simples que corresponde a la distancia euclidiana al centro del entrenamiento establecido en el espacio de descriptores moleculares corregido considerando correlaciones entre los descriptores²³. Todos los compuestos que están fuera de los límites establecidos por los valores límites dictados por la regla de la palanca (*leverage limit*) y tres veces la desviación estándar en el cálculo del error son puntos atípicos. De los gráficos de Williams es posible obtener las moléculas que el modelo en (18) no puede predecir adecuadamente, dado que se encuentran fuera del límite marcado por la regla de la palanca. Esto es, no es posible predecir adecuadamente a un número de moléculas dadas por el tipo de descriptor que poseen. En este aspecto, en la **Figura 11** se muestran las estructuras de las moléculas.

Figura 11. Estructuras químicas marcadas como *outliers* obtenidos del análisis de los gráficos de Williams. Se observa un número de moléculas con grupos amonio y algunos con estructuras únicas.

Brevemente se describen las características que hacen sean considerados como puntos atípicos:

- En el compuesto **1**, (Figura 11), aunque comparte una estructura similar con los de la familia de alcaloides de tipo batzelladina²⁴ utilizados en esta base de datos, los dos fragmentos cíclicos tipo éter unidos al núcleo central con un nitrógeno cargado positivamente, así como dos aminas alifáticas primarias cargadas colgantes son distintivamente diferentes del resto de moléculas analizadas.
- Asimismo, los compuestos 1, 2 y 5 a 13, 14, 15 y 17 se consideran como *outliers* debido a la gran cantidad de átomos de nitrógeno con carga positiva presentes.
- Dos derivados de fluoroquinolona están presentes como *outliers*: el compuesto 3 posee una piridina 3,5-difluorosustituida en lugar de los grupos ciclopropilo o etilos comúnmente unidos en el nitrógeno; mientras que, el compuesto 4 tiene una estructura de tipo piridina en el núcleo como en el ácido nalidíxico. Estas dos características son únicas entre el conjunto de fluoroquinolonas utilizadas en nuestro modelo.

- Los compuestos **14** y **15**, ambos aminoglucósidos, se consideran *puntos atípicos* de nuestro modelo, ya que se sugiere que los grupos amino al estar en medio acuoso, se protonan generando compuestos de tipo amonio cuaternarios.
- El compuesto **16** es un flavanona-7-*O*-glicósido. Aunque hay muchas flavanonas en el conjunto de datos, ninguna de ellas presenta un disacárido (o cualquier mono o polisacárido), lo que hace que **16** sean única.
- Por otro lado, en el modelo se ven muchos ejemplos de triazoles sustituidos, sin embargo, la molécula **17** tiene un benzotriazol que es único; por lo tanto, se considera un punto atípico dado que en el modelo no existen más moléculas similares que generen más información para incluirlo.
- Aunque existen muchos compuestos con alcoholes aromáticos, el compuesto **18** (ácido gálico) posee un fragmento bencenotriol que no se encuentra en ninguna otra molécula.
- Finalmente, la estructura **19** tiene la estructura de la hidantoína, único entre el conjunto de moléculas activas contra *A. baumannii*.

Por otro lado, los puntos atípicos observados pueden también deberse a los denominados como acantilados de actividad (*activity cliffs*).²⁵ Se conoce de la literatura que los puntos atípicos en los datos utilizados pueden no estar relacionados con errores en la medición de la actividad o por fluctuaciones estadísticas, pero si a acantilados de actividad. Éstos están definidos por la relación que posee en la diferencia de actividades de dos compuestos y su "distancia" que los separan en un espacio químico dado. Es decir, los acantilados de actividad se presentan para moléculas con una similitud estructural en la cual pequeños cambios en la estructura (por ejemplo, un reemplazo de hidrógeno por un átomo de cloro²⁶) genera una diferencia enorme en las actividades biológicas. En el caso de los *outliers* encontrados en el modelo QSPR generado no poseen actividades biológicas con valores muy lejanos entre sí, por lo que no se presentan debido a los acantilados de actividad, pero sí debido a la estructura química particular que poseen los compuestos analizados.

f. Validación del poder predictivo

El modelo generado fue validado externamente mediante la predicción de diferentes conjuntos de moléculas que no se incluyeron en la construcción del modelo con las siguientes especificaciones: (1) solo se usaron moléculas con valores de MIC reportados y activos contra *A. baumannii*, y (2) se excluyeron las moléculas superiores a 300 μ g/ml. La curación de datos, como se indicó anteriormente, se realizó en un total de 98 moléculas, que se dibujaron en Avogadro, y sus descriptores moleculares se obtuvieron del paquete de software Dragon. Los descriptores calculados así como sus valores de pMIC se pueden consultar en Anexos, **Tabla S4**.

Se utilizaron tres conjuntos de compuestos de la siguiente manera: (a) el primer conjunto de moléculas reportadas por Matsingos *et al.*²⁷ que involucran derivados de linezolid; (b) compuestos sintetizados por Singh²⁸, Wang²⁹ y Zhou³⁰ como el segundo conjunto, y finalmente, (c) estructuras derivadas de oxazolidinonas descritas por Lyons³¹ y colaboradores. Por otro lado, nuestro modelo no predice bien los compuestos

que exhiben, por ejemplo, una gran cantidad de átomos de nitrógeno cargados, como los informados por Vereshchagin³², o de moléculas con grupos funcionales poco comunes tales como los reportados por Siricilla³³, de acuerdo con los resultados de los *outlier*s analizados anteriormente. Este hecho puede explicarse por el número limitado de moléculas similares (cargadas y estructuralmente) utilizadas en la generación del modelo QSPR. Sin embargo, este tipo de moléculas es muy interesante e importante para el desarrollo de compuestos antibacterianos ya que muchos de ellos utilizan transporte de difusión facilitada relacionado con aminoácidos como lisina, histidina y arginina.³⁴

Nuestro modelo aplicado al primer conjunto de análogos de linezolid con diferentes sustituyentes acilamino ubicados en el carbono C5 de la molécula, permite analizar a detalle sus características estructurales. Se observa un aumento en los valores de *p*MIC al pasar de grupos alquilo de cadena pequeña como Me, Et o *n*Pr, a fragmentos alquílicos cíclicos o de ramificación pequeña como *I*Pr, ciclopropilo, ciclobutilo. y finalmente a sustituyentes aromáticos. Este aumento progresivo se muestra en la **Figura 12**, donde la gráfica de datos muestra una correlación con un valor de R^2 de 75.54. El único sustituyente que se observa diferente con respecto de los más cercanos es el de grupo tetrahidrotiofeno, el cual es no aromático, mientras que, en el caso del tiofeno, benceno, tiazol, indol y 4-metilbencilo si son aromáticos.

El segundo conjunto de compuestos comprende tres grupos diferentes de moléculas para los cuales nuestro modelo clasifica primero los derivados la molécula divin (acrónimo para *DIvision INhibitor*)³⁰, pasando a los análogos de pirazinoindol y, finalmente, con el subconjunto de 2-aminotiazol sulfanilamido-oximas, como se ve en la **Figura 13**. Por la gran diversidad estructural que presentan los compuestos, no es posible observar una tendencia marcada como en el caso de los derivados de linezolid. Sin embargo, se puede establecer que, para el tercer conjunto de datos, estos poseen al grupo 2-aminotiazol, estructura que es parte importante de los derivados betalactámicos conocidos como monobactamas, como es el caso del aztreonam, y que por lo mismo éstos sean activos frente a *A. baumannii*. Para este segundo análisis, el valor de *R*² es de 71.64.

El conjunto de compuestos conteniendo varios derivados de oxazolidinona se muestran en la **Figura 14**, donde el valor de R^2 es de 71.56. Al igual que el conjunto anterior, existe una gran variedad estructural que no permite un análisis detallado. En lo general, las primeras moléculas se clasifican de acuerdo con la estructura de la 1,5-naftiridin-2(1H)-ona; mientras que, las últimas tienen una estructura principal de 1,8-naftiridin-2(1H)-ona. Las moléculas del centro poseen el átomo de nitrógeno en diferentes posiciones del núcleo de quinolin-2(1H)-ona. En algunas estructuras, la incorporación de pequeños grupos como fluoruros, grupos metoxi o nitrilos son observados.

Figura 13. Gráfico de *p*MIC experimental vs. *p*MIC predicho para moléculas usadas para la validación del modelo QSPR. Estructuras seleccionadas se muestran dentro del gráfico.

Figura 14. Gráfico de *p*MIC experimental vs. *p*MIC predicho para derivados de oxazolidinona utilizados para la validación del modelo QSPR.

2.3 Interpretación del modelo QSPR

La comprensión de los descriptores presentados por el modelo QSPR nos permite obtener algunas ideas sobre las características químicas que presentan las moléculas y que son relevantes para la actividad antibacteriana contra *A. baumannii*. La ecuación (18) muestra dos descriptores de tipo topológico (D/Dr06 y TI2), uno autocorrelación en 2D (GATS6m), seis descriptores de conteo de grupos funcionales (nArCOOH, nRCONH2, nROR, nImidazoles, nHDon y nHBonds) y seis descriptores centrados en fragmentos de átomos (C018, C029, C032, H051, N075 y N079), todos ellos descriptores bidimensionales. En la **Figura S1** se muestra los descriptores graficados contra su valor de *p*MIC. En la mayoría de los descriptores existe poca correlación de la actividad con los descriptores. A continuación, se discutirá en lo general cada uno de los descriptores, así como ejemplos donde se observan en las moléculas del conjunto.

g. Descriptores topológicos

Una de las principales aportaciones de la teoría de grafos aplicado a la química^{35, 36}, es la de la representación de estructuras moleculares como grafos desprovistos de átomos de hidrógeno, comúnmente conocidos como grafos moleculares, en los que los átomos están representados por vértices y los enlaces por aristas. Las conexiones entre átomos pueden describirse mediante varios tipos de matrices topológicas (por ejemplo,

matrices de distancia o de adyacencia), que pueden tratarse matemáticamente para derivar un único número, generalmente conocido como invariante de gráfico, índice teórico de gráfico o índice topológico (*Topological Index*, por sus siglas en inglés, TI). Los TI se pueden definir como descriptores de tipo bidimensional, que se pueden calcular fácilmente a partir de gráficos moleculares y no dependen de la forma en que se representa o etiqueta el grafo. En lo general, ofrecen una forma sencilla de medir la ramificación, la forma y el tamaño molecular.³⁷

Entre algunas ventajas de estos descriptores se encuentran:

- No requiere ninguna medición de tipo experimental, además de que se pueden calcular para moléculas nuevas o ya conocidas.
- Es posible el uso de índices topológicos sin un conocimiento previo de la estructura del receptor o del mecanismo de acción de los fármacos. Dado que son descriptores 2D y no 3D, se pueden reducir algunos problemas que se tienen en QSARs 3D como en los estudios por CoMFA).
- Como se mencionó anteriormente, cualquier estructura es susceptible de ser descrita en términos de características topológicas. A diferencia de otros descriptores, los TI se pueden calcular para compuestos con estructuras muy diferentes y los modelos teóricos se pueden construir en bases de datos sin una estructura principal común.

El primer descriptor del modelo es D/Dr06, un descriptor topológico. Los índices de anillos de distancia/desvío, D/Drk, se calculan mediante la suma de las sumatorias de las filas de matrices de cociente de distancia/desvío de los vértices que pertenecen a anillos individuales en la molécula. Estos descriptores pueden considerarse descriptores de subestructura especiales que reflejan entornos geométricos locales en sistemas cíclicos complejos.³⁸ D/Dr06 muestra un valor de coeficiente positivo, lo que indica que la presencia de este descriptor mejora la actividad de la molécula. Este descriptor aparece cuando una estructura cíclica de 6 miembros está presente en la molécula.

Del conjunto de compuestos, la mayoría de las estructuras cíclicas pertenecen a anillos de tipo benceno (tanto carbocíclicos como heterocíclicos). El descriptor D/Dr06 se ha utilizado de forma similar para la descripción de la actividad anticancerígena de moléculas aromáticas.³⁹ El valor más alto de D/Dr06 pertenece al compuesto **2**, donde dos grupos adamantilo están presentes en la molécula. Los valores de cero corresponden a moléculas que no muestran ningún sistema cíclico de 6 miembros, como los compuestos **22** a **25**, como se ve en la **Figura 15**. Además, las moléculas que muestran valores altos de D/Dr06 también muestran valores altos de *p*MIC.

Figura 15. Valores más altos y bajos del descriptor D/Dr06 asociados a moléculas mostrando su valor de *p*MIC experimental asociado.

El segundo término es el descriptor TI2, denominado como segundo índice de Mohar, el cual es calculado de los valores propios de la matriz Laplaciana,⁴⁰ y que se calcula de acuerdo con la siguiente ecuación:

$$\Gamma I2 = \frac{4}{\text{nSK} - \lambda_{\text{nSK}-1}} \tag{19}$$

donde nSK es el número de átomos distintos de hidrógeno y λ_{nSK-1} es el primer valor propio distinto de cero. TI2 es un descriptor topológico y pertenece a los índices de Mohar que se relacionan con la solubilidad de compuestos. En general, se asocia con el tamaño, forma y simetría, así como con la ramificación o ciclicidad de la molécula. El descriptor TI2 muestra un valor de coeficiente positivo, lo que indica que, al aumentar el valor del descriptor, los valores pMIC esperados también aumentarán. Este descriptor se ha utilizado en la explicación de la actividad de los derivados de diarilurea⁴¹ y en el análisis QSAR de aminometilpiperidonas.⁴² En la **Figura 16** se muestran las gráficas de valores de los descriptores D/Dr06 y TI2. Para el caso del primer descriptor, dado los valores de D/Dr06 se puede establecer que para moléculas con actividad hacia *A. baumannii*, el valor máximo se da por la estructura que contiene el valor más grande constituido por el compuesto 2 que contiene grupos adamatilo. Para el caso del descriptor TI2 se observa una distribución homogénea de moléculas.

Figura 16. Gráficos de dispersión de datos mostrando los valores de los descriptores D/Dr06 y TI2 contra sus pMIC experimentales. Se observa una distribución homogénea circular para el caso de TI2.

h. Descriptores de grupos funcionales

Los seis descriptores pertenecientes al conteo de grupos funcionales (FGC), se consideran variables indicativas. Su valor dependerá del número de grupos funcionales presentes o ausentes en la molécula, lo que significa que no todos los compuestos los presentarán. Los FGC se han utilizado para identificar características estructurales que son importantes para una propiedad de particular interés en el conjunto de moléculas estudiadas. Por tanto, su presencia o ausencia puede alterar significativamente la actividad prevista en el modelo. Por ejemplo, en el artículo publicado por Tanabe *et al*, muestran como la clasificación por grupos funcionales en compuestos cancerígenos tiene un efecto importante sobre la actividad y que es explicado en términos de los modelos QSAR que contemplan grupos funcionales.⁴³ Cada descriptor de FGC puede entenderse fácilmente en términos de la naturaleza de los grupos funcionales. Por ejemplo, nArCOOH, nRCONH2, nROR y nImidazoles representan el número de: ácidos carboxílicos aromáticos, amidas primarias alifáticas, éteres alifáticos y restos de imidazol, respectivamente (Figura 17). El descriptor nHDon indica el número de átomos donadores de hidrógeno ($-NH_2 y - OH$) para los cuales es posible la formación de enlaces de hidrógeno. De la misma manera, el descriptor nHBonds representa la cantidad de enlaces de hidrógeno intramoleculares que son posibles cuando hay átomos aceptores como N, O o F, como se muestra en la Figura 18.

Figura 17. Descriptores asociados a conteo de grupos funcionales en moléculas representativas.

Los enlaces de hidrógeno intramoleculares son cruciales para la actividad biológica de muchos compuestos. Está bien establecido que la formación de enlaces de hidrógeno intramoleculares puede conducir a sistemas de anillos temporalmente cerrados que son de naturaleza más hidrofóbica; mientras que, las formas abiertas están expuestas al disolvente, lo que confiere un carácter más hidrofílico a la molécula.⁴⁴ Por ejemplo, pequeñas moléculas hidrofílicas, como los betalactámicos, utilizan las porinas, proteínas formadoras de poros, para ingresar al citoplasma/periplasma;⁴⁵ mientras que, los fármacos hidrofóbicos como los macrólidos difunden a través de la bicapa lipídica.⁴⁶ En nuestro modelo, el descriptor nHDon muestra un valor positivo, lo que indica que una gran cantidad de átomos donantes de hidrógeno (alta solubilidad acuosa) conduce a un aumento en la actividad biológica. Sin embargo, como el descriptor nHBonds posee un coeficiente negativo, indica que a medida que aumenta el número de enlaces de hidrógeno intramoleculares, la actividad biológica disminuirá, lo que se correlaciona con una naturaleza más lipófila de las moléculas. Por lo tanto, las moléculas altamente polares se ven favorecidas como antibacterianas contra A. baumannii, como se esperaba de las bacterias gramnegativas.

Figura 18. Descriptores asociados a la formación de enlaces de hidrógeno intramoleculares y de los donadores de hidrógeno presentes en una molécula de la base de datos.

i. Descriptores de fragmentos centrados en el átomo

En el modelo QSPR se encuentran seis descriptores de fragmentos centrados en átomos (*Atom-Centered Fragments*, por sus siglas en inglés, ACF). Los descriptores ACF se basan en fragmentos estructurales que contienen información sobre el átomo central y sus vecinos enlazantes.⁴⁷⁻⁴⁹ Cada ACF se define por el tipo de enlace, así como por el número y la naturaleza de los vecinos unidos al átomo central. Asimismo, los ACF pueden incorporar información de los vecinos directamente enlazados al átomo central (de radio 1 o primera capa), así como también a vecinos de mayor distancia topológica (de radio 2 o segunda capa),⁵⁰⁻⁵² como se observa en la siguiente **Figura 19**.

Figura 19. Esquema general de las capas analizadas para un átomo central. Para los escriptores usados en el modelo QSPR, sólo los átomos unidos en la capa 1 para cada átomo en las estructuras químicas son utilizados para generar los ACFs. Adaptado de referencia [52]

Por ejemplo, C018 (=CHX) corresponde a un átomo de C sp^2 que tiene un enlace simple a un hidrógeno y a cualquier átomo electronegativo (X = N, O, S, etc.). El descriptor C029 (R--CX--X), para el cual "--" representa un enlace aromático (por ejemplo, benceno) o enlaces deslocalizados (como en el enlace N-O en un grupo NO₂), corresponde a un átomo central de C sp^2 que tiene un enlace simple a un átomo X electronegativo; por otro lado, el átomo de carbono está enlazado doblemente a un átomo X electronegativo y a un grupo R (alquilo o arilo), en el que sus enlaces están deslocalizados.

El descriptor C032 (X--CX--X) se comporta de manera similar al C029, pero en lugar de un grupo R, se reemplaza por un tercer átomo X. Este descriptor también se ha utilizado para el análisis de características químicas esenciales para la actividad anticoronaviral.⁵³ El descriptor H051 representa el entorno en el que está unido un átomo de hidrógeno. Se define como un hidrógeno que está enlazado a un carbono-alfa (C_{α}) ; un C_{α} puede definirse como un carbono unido a través de un enlace simple con un átomo X descrito anteriormente. El C_α puede estar enlazado a través de doble enlace (-C=X), triple enlace (-C=X) o en un enlace aromático (-C-X). Un ejemplo de estos hidrógenos son los observados en compuestos carbonílicos como aldehídos o cetonas, con un grupo metilo o metileno unido al carbono de carbonilo. Este descriptor se ha utilizado para explicar la actividad de una serie de moléculas que contienen fragmentos nitroaromáticos como radiosensibilizadores.⁵⁴ Los dos descriptores siguientes, N075 y N079, son fragmentos estructurales a base de nitrógeno. El primero se define como un átomo central de N sp² que está unido a dos grupos R o a un grupo R y X (R--N--R o R--N--X), como en los fragmentos de tipo piridina. Este descriptor es muy importante, ya que muchas moléculas analizadas presentan este tipo de fragmento estructural. El segundo descriptor está relacionado con cualquier átomo de nitrógeno que tenga una carga positiva. En la Figura 20, se muestran ejemplos representativos de cada descriptor de los ACF.

j. Descriptor de correlación 2D

Los descriptores de autocorrelación de tipo 2D-A (*2D-Autocorrelation*)⁵⁵ y 3D-A (*3D-Autocorrelation*)⁵⁶ generan histogramas de distancias de pares de átomos dentro de una molécula hasta una distancia de corte. La principal diferencia entre estos descriptores que designa su dimensionalidad está en su representación de la distancia interatómica. Para 2D-A, las distancias se miden en términos del número de enlaces entre dos átomos conectados. Los descriptores de tipo 3D-A, por otro lado, representan la distancia interatómica en términos de distancia euclidiana que normalmente se mide en angstroms. Para extender estos descriptores más allá de las características geométricas de una molécula, las distancias de los pares de átomos se ponderan según las propiedades del átomo, como carga parcial, electronegatividad, etc. La definición formal de 2DA y 3DA se muestra en la siguiente ecuación:

$$Autocorrelation(r_a, r_b) = \sum_{i}^{n} \sum_{j}^{n} \delta(r_a \le r_{i,j} < r_b) P_i P_j$$
(20)

donde $r_{i,j}$ es la distancia entre átomos i y j, y n es el número total de átomos en la molécula. P_i y P_j son las propiedades atómicas para los átomos i y j usados para ponderar la autocorrelación. $r_a y r_b$ se definen como los límites superior e inferior de cada intervalo de distancia consecutivo. Dependiendo del tipo de ponderación que se considere, los valores pueden adquirir valores positivos o negativos como en la carga parcial, o no poseer signo como en la masa atómica. No obstante, existe pérdida significativa de información cuando en pares de átomos existe cancelación debido a los signos contrarios.⁵⁷ En el modelo de la **Ecuación (18)**, el descriptor GATS6m^{58, 59} pertenece a los índices de autocorrelación 2D donde el coeficiente de Geary es una función de tipo distancia que puede ser cualquier propiedad fisicoquímica (w), calculada para cada átomo, como masa atómica, polarizabilidad o volumen, entre otros, y está representado por la **Ecuación 21**.

Figura 20. Descriptores de fragmentos centrados en átomos presentes en el modelo QSPR.

Sumando los productos de una determinada propiedad de dos átomos situados a una determinada distancia o retraso espacial (k), se puede obtener una autocorrelación espacial.

$$GATS(k,w) = \frac{\left(\frac{1}{2\Delta k}\right) \cdot \sum_{i=1}^{A} \sum_{j=1}^{A} \left(w_i - w_j\right)^2 \cdot \delta(d_{ij};k)}{\left(\frac{1}{A-1}\right) \cdot \sum_{i=1}^{A} \left(w_i - \overline{w}\right)^2}$$
(21)

donde A es el número de átomos distintos de hidrógeno, \overline{w} es el promedio del valor de la propiedad atómica w_i , y donde $\delta(d_{ij}; k)$ es la delta de Kronecker y Δk es el número de pares de vértices a una distancia igual a k. El descriptor GATS6m es la autocorrelación media de Geary de lag6/ponderada por masa atómica, lo que significa que este descriptor considera la masa atómica de cualquier átomo en la estructura con diferentes distancias de camino (lags) de 6. Una fuerte autocorrelación espacial entre pares de átomos produce valores bajos de este índice. Además, se tiene que las estructuras simétricas o poco ramificadas, así como las moléculas con un número bajo de heteroátomos (átomos además de C y H), produzcan valores bajos a cero. El descriptor GATS6m presenta un coeficiente negativo en la ecuación (18), lo que indica que al aumentar la autocorrelación entre pares de átomos considerando sus masas atómicas a una distancia de 6 entre ellos, el valor de este descriptor aumentará. provocando una reducción en su valor *p*MIC. Como se ve en la Figura 21a, existe una distribución homogénea de los datos al trazar el descriptor GATS6m frente a los valores pMIC correspondientes. Ocho moléculas del conjunto de datos tienen un valor cero de GATS6m; sus estructuras se muestran en la Figura 21b. Además, se ve que estas moléculas tienen un intervalo medio de *p*MIC (entre 3.5 y 5) en relación con su ubicación en el diagrama de dispersión. En la Figura 21c, para la molécula con el valor GATS6m más alto, se muestran rutas seleccionadas para las cuales la suma de sus masas atómicas produce el valor final.

Figura 21. (a) Gráfico de dispersión de datos y valores de GATS6m. (b) Compuestos representativos con valores calculados de 0 de GATS6m. (c) Representación gráfica para una molécula con el valor de GATS6m más alto, mostrando caminos topológicos utilizados para la generación su valor de GATS6m.

k. Análisis de moléculas mediante diagramas de Venn

Desde un punto de vista general, los descriptores del modelo de la **Ecuación (18)** se pueden clasificar en variables globales e indicativas. Términos globales como GATS6m y TI2 están presentes en las moléculas y brindan información sobre toda la estructura; mientras que, las variables indicativas solo aparecen si la estructura molecular contiene el fragmento. Además, los descriptores pueden estar asociados con las propiedades estéricas y electrónicas de la molécula (como el caso de D/Dr06, GATS6m y *n*Imidazoles, así como los seis descriptores de fragmentos centrados en átomos); mientras que, otros están más relacionados con la solubilidad de los compuestos, como en el caso de nHDon, nHBonds, TI2, así como grupos funcionales como nArCOOH, nRCONH2 y nROR.

Los parámetros electrónicos pueden asociarse con fragmentos centrados en átomos, que indican la distribución electrónica de sustituyentes alrededor de un átomo específico. Como muchas moléculas incluyen dentro de su estructura fragmentos centrados en átomos específicos, su inclusión conducirá a un aumento o disminución en el valor de *p*MIC previsto. Por ejemplo, los tres ACF basados en carbono central (C018, C029 v C032) tienen signos positivos, lo que indica que su presencia mejora la bioactividad. Además, como son descriptores de ACF de carbono, pueden asociarse con características de la estructura central de la molécula. Sin embargo, los descriptores H051, N075 y N079 provocan una disminución de la actividad. El descriptor H051 enumera átomos de hidrógeno que son reactivos y propensos a extraerse con bases. Los átomos de nitrógeno como los descritos por el descriptor N075 son buenos aceptores de enlaces de hidrógeno, lo que lleva a la generación de interacciones inter e intramoleculares mediante el uso de sus pares libres de electrones, lo que disminuye la solubilidad de las moléculas, como lo indica el descriptor nHBonds, por tanto, disminuvendo la actividad predicha. Por otro lado, se espera que las moléculas que están bien solvatadas en medios acuosos tengan valores altos de *p*MIC. La Figura 22 muestra el porcentaje de distribución de los descriptores de moléculas en el conjunto de datos. El 95,9% de las moléculas (568) tienen el grupo funcional nHDon y casi todos los demás descriptores entran dentro de esta categoría.

Figura 22. Frecuencia porcentual de los descriptores localizados en moléculas del conjunto de datos para la generación del modelo QSPR.

El segundo descriptor principal que aparece en el conjunto de datos es nHBonds, con el 53,9% de las moléculas (319), seguido del descriptor N075 en 278 moléculas del subconjunto (47%). Considerando el elevado número de compuestos bioactivos, que incluyen heterociclos fusionados con piridina o que contienen piridina, así como su tendencia a participar en enlaces de hidrógeno, la presencia del descriptor N075 en un gran porcentaje es importante para dar cuenta de la descripción de la actividad de las moléculas.^{60, 61}

Por otro lado, se analizaron los grupos de moléculas a través de histogramas que muestran diferentes conjuntos en función del peso molecular de los compuestos del modelo. En este sentido, en la **Figura 23** se puede observar lo siguiente: 141 compuestos (130 – 305 umas); 291 moléculas (306 – 510 umas); 141 compuestos (511 – 720 umas); 26 moléculas (721 – 1000 umas); finalmente 27 moléculas (1100 – 1600 umas). Compuestos con pesos moleculares por encima de los 1100 umas pertenecen a derivados de polimixinas. En este sentido, tenemos conjuntos de moléculas que no rebasan los 1600 umas, lo que podría considerarse como un límite respecto del peso molecular de los compuestos que pueden tener actividad contra *A. baumannii*.

Figura 23. Histograma mostrando la frecuencia de moléculas con intervalos específicos de peso molecular.

Una forma más efectiva de visualizar conjuntos de datos es mediante el uso de diagramas como el de Venn que clasifica los datos en acorde con propiedades similares. Usando esta aproximación, se tiene una mejor visualización de los datos utilizados en nuestro modelo respecto de los descriptores utilizados. Así entonces, se observa que algunas moléculas están fuera de los límites de los descriptores nHDon/nHBonds, lo que concuerda con la presencia de compuestos sin grupos donantes, como hidroxilos (-OH) o aminas (-NH2), como en los productos naturales. El resto de las moléculas se ubican en estas categorías principales, lo que se puede ver adecuadamente en el diagrama de Venn de la **Figura 24**. También se ve que ocho moléculas carecen del resto de los descriptores moleculares utilizados en el modelo. Por tanto, se representan fuera del diagrama de Venn como un único grupo.

Figura 24. Diagrama de Venn mostrando la correlación de los diferentes descriptores químicos del conjunto de datos.

2.4 Conclusiones y perspectivas

En este capítulo se mostró el desarrollo de un modelo predictivo QSPR del cual se enumeran las siguientes conclusiones:

- 1. Se realizó la búsqueda de compuestos con reporte de actividad hacia *A. baumannii* en servidores en línea (SciFinder), del cual se mostró poca información con respecto a los resultados obtenidos para otras bacterias.
- 2. A partir de los datos encontrados, se creó una base con un total de 944 compuestos. Estos muestran una variedad estructural grande, con pequeños conjuntos de moléculas de una misma familia de fármacos (tetraciclinas, monobactamas, macrólidos, etc.) localizadas en la base de datos.
- 3. Mediante curado de la información y análisis estructural, se obtuvieron un total de 592 moléculas, a los cuales se calcularon descriptores moleculares de tipo 0D, 1D y 2D.
- 4. constituido de 15 descriptores los cuáles se dividen en variables indicativas y globales. Entre ellas se encuentran descriptores de fragmentos centrados en átomos (C018, C029, C032, H051, N075 y N079), descriptores de conteo de grupos funcionales (nArCOOH, nRCONH2, nROR, nImidazoles, nHDon y nHBonds), dos descriptores de tipo topológico (D/Dr06 y TI2), uno autocorrelación en 2D (GATS6m). Cada descriptor se analizó por su importancia en el modelo QSPR.
- 5. El modelo QSPR de la Ecuación 18 se validó estadísticamente mediante conjuntos de entrenamiento y de prueba, satisfaciendo cada parámetro estadístico (valores de R^2 de 70.278 (±0.907), $Q^2_{LMO} = 67.886$ (±1.043), entre otros). Asimismo, para corroborar el poder predictivo del modelo, se utilizó conjuntos de datos no utilizados en la generación del modelo, con valores de R^2 por encima de 70 para cada uno.

La descripción del conjunto de moléculas utilizadas en este apartado, junto con la discusión de los parámetros más importantes observados en las moléculas mediante el análisis del modelo QSPR, permitirá proponer nuevas moléculas con dichas características en el diseño de nuevos candidatos a fármacos.

Entre las perspectivas importantes para mejorar el modelo QSPR:

- Analizar otros descriptores que puedan optimizar el aspecto predictivo del modelo, por ejemplo, descriptores asociados a la carga de las moléculas como en el caso de nitrógenos cuaternarios.
- Para las moléculas analizadas y utilizadas en la generación del modelo QSPR, realizar un análisis sistemático de acantilados de actividad utilizando, por ejemplo, índices de Tanimoto para la comparación en estructuras químicas (tetraciclinas, monobactamas, etc.)
- Un análisis detallado de la actividad de moléculas observadas como puntos atípicos, que puedan ser puntos de partida para el diseño de nuevas moléculas.

2.5 Referencias

- 1. Prado-Prado, F. J.; Gonzalez-Diaz, H.; Santana, L.; Uriarte, E., Unified QSAR approach to antimicrobials. Part 2: predicting activity against more than 90 different species in order to halt antibacterial resistance. *Bioorg Med Chem* **2007**, *15* (2), 897-902.
- Semenyuta, I. V.; Trush, M. M.; Kovalishyn, V. V.; Rogalsky, S. P.; Hodyna, D. M.; Karpov, P.; Xia, Z.; Tetko, I. V.; Metelytsia, L. O., Structure-Activity Relationship Modeling and Experimental Validation of the Imidazolium and Pyridinium Based Ionic Liquids as Potential Antibacterials of MDR Acinetobacter baumannii and Staphylococcus aureus. *International Journal of Molecular Sciences* 2021, *22* (2), 563.
- 3. Fourches, D.; Muratov, E.; Tropsha, A., Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. *J Chem Inf Model* **2010**, *50* (7), 1189-204.
- Gabrielson, S. W., SciFinder. *Journal of the Medical Library Association: JMLA* 2018, *106* (4), 588.
- 5. Ambure, P.; Cordeiro, M. N. D. S., Importance of Data Curation in QSAR Studies Especially While Modeling Large-Size Datasets. In *Ecotoxicological QSARs*, Roy, K., Ed. Springer US: New York, NY, 2020; pp 97-109.
- 6. Waldman, M.; Fraczkiewicz, R.; Clark, R. D., Tales from the war on error: the art and science of curating QSAR data. *J Comput Aided Mol Des* **2015**, *29*(9), 897-910.
- 7. Hersey, A.; Chambers, J.; Bellis, L.; Patricia Bento, A.; Gaulton, A.; Overington, J. P., Chemical databases: curation or integration by user-defined equivalence? *Drug Discov Today Technol* **2015**, *14*, 17-24.
- 8. Papadatos, G.; Gaulton, A.; Hersey, A.; Overington, J. P., Activity, assay and target data curation and quality in the ChEMBL database. *J Comput Aided Mol Des* **2015**, *29*(9), 885-96.
- 9. Young, D.; Martin, T.; Venkatapathy, R.; Harten, P., Are the Chemical Structures in Your QSAR Correct? *QSAR & Combinatorial Science* **2008**, *27*(11-12), 1337-1345.
- 10. Kowalska-Krochmal, B.; Dudek-Wicher, R., The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. *Pathogens* **2021**, *10*(2), 165.
- 11. Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. *J Cheminform* **2012**, *4*(1), 17.
- 12. Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M.; Leardi, R., MobyDigs: software for regression and classification models by genetic algorithms. *Data handling in science and technology* **2003**, *23*, 141-67.
- 13. Holland, J. H., *Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence*. MIT press: 1992.
- 14. Mattioni, B. E.; Jurs, P. C., Development of quantitative structure-activity relationship and classification models for a set of carbonic anhydrase inhibitors. *J Chem Inf Comput Sci* **2002**, *42*(1), 94-102.
- 15. Miller, A., *Subset selection in regression*. CRC Press: 2002.
- 16. Roy, K.; Chakraborty, P.; Mitra, I.; Ojha, P. K.; Kar, S.; Das, R. N., Some case studies on application of "r(m)2" metrics for judging quality of quantitative structure-activity relationship predictions: emphasis on scaling of response data. *J Comput Chem* **2013**, *34*

(12), 1071-82.

- 17. Roy, K.; Das, R. N., QSTR with extended topochemical atom (ETA) indices. 16. Development of predictive classification and regression models for toxicity of ionic liquids towards Daphnia magna. *J Hazard Mater* **2013**, *254-255*, 166-178.
- 18. Roy, P. P.; Roy, K., On Some Aspects of Variable Selection for Partial Least Squares Regression Models. *QSAR & Combinatorial Science* **2008**, *27*(3), 302-313.
- 19. Ojha, P. K.; Mitra, I.; Das, R. N.; Roy, K., Further exploring rm2 metrics for validation of QSPR models. *Chemometrics and Intelligent Laboratory Systems* **2011**, *107*(1), 194-205.
- Netzeva, T. I.; Worth, A. P.; Aldenberg, T.; Benigni, R.; Cronin, M. T. D.; Gramatica, P.; Jaworska, J. S.; Kahn, S.; Klopman, G.; Marchant, C. A.; Myatt, G.; Nikolova-Jeliazkova, N.; Patlewicz, G. Y.; Perkins, R.; Roberts, D. W.; Schultz, T. W.; Stanton, D. T.; van de Sandt, J. J. M.; Tong, W.; Veith, G.; Yang, C., Current Status of Methods for Defining the Applicability Domain of (Quantitative) Structure-Activity Relationships:The Report and Recommendations of ECVAM Workshop 521,2. *Alternatives to Laboratory Animals* 2005, *33* (2), 155-173.
- 21. Kar, S.; Roy, K.; Leszczynski, J., Applicability Domain: A Step Toward Confident Predictions and Decidability for QSAR Modeling. In *Computational Toxicology: Methods and Protocols*, Nicolotti, O., Ed. Springer New York: New York, NY, 2018; pp 141-169.
- 22. Roy, K.; Kar, S.; Ambure, P., On a simple approach for determining applicability domain of QSAR models. *Chemometrics and Intelligent Laboratory Systems* **2015**, *145*, 22-29.
- 23. Tropsha, A.; Gramatica, P.; Gombar, V. K., The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models. *QSAR & Combinatorial Science* **2003**, *22* (1), 69-77.
- 24. Lin, Y. C.; Ribaucourt, A.; Moazami, Y.; Pierce, J. G., Concise Synthesis and Antimicrobial Evaluation of the Guanidinium Alkaloid Batzelladine D: Development of a Stereodivergent Strategy. *J Am Chem Soc* **2020**, *142* (21), 9850-9857.
- 25. Maggiora, G. M., On Outliers and Activity CliffsWhy QSAR Often Disappoints. *Journal of Chemical Information and Modeling* **2006**, *46* (4), 1535-1535.
- 26. Chiodi, D.; Ishihara, Y., "Magic Chloro": Profound Effects of the Chlorine Atom in Drug Discovery. *Journal of Medicinal Chemistry* **2023**, *66* (8), 5305-5331.
- 27. Matsingos, C.; Al-Adhami, T.; Jamshidi, S.; Hind, C.; Clifford, M.; Mark Sutton, J.; Rahman, K. M., Synthesis, microbiological evaluation and structure activity relationship analysis of linezolid analogues with different C5-acylamino substituents. *Bioorg Med Chem* **2021**, *49*, 116397.
- 28. Singh, A.; Kumar, N.; Singh, S.; Sewariya, S.; Sharma, M. K.; Chandra, R., High-valued pyrazinoindole analogues: Synthesis, antibacterial activity, structure activity relationship and molecular dynamics analyses. *Results in Chemistry* **2021**, *3*, 100194.
- 29. Wang, J.; Zhang, P. L.; Ansari, M. F.; Li, S.; Zhou, C. H., Molecular design and preparation of 2-aminothiazole sulfanilamide oximes as membrane active antibacterial agents for drug resistant Acinetobacter baumannii. *Bioorg Chem* **2021**, *113*, 105039.
- 30. Zhou, M.; Eun, Y. J.; Guzei, I. A.; Weibel, D. B., Structure-activity studies of divin: an inhibitor of bacterial cell division. *ACS Med Chem Lett* **2013**, *4*(9), 880-885.
- Lyons, A.; Kirkham, J.; Blades, K.; Orr, D.; Dauncey, E.; Smith, O.; Dick, E.; Walker, R.; Matthews, T.; Bunt, A.; Finlayson, J.; Morrison, I.; Savage, V. J.; Moyo, E.; Butler, H. S.; Newman, R.; Ooi, N.; Smith, A.; Charrier, C.; Ratcliffe, A. J.; Stokes, N. R.; Best, S.; Salisbury, A. M.; Craighead, M.; Cooper, I. R., Discovery and structure-activity

relationships of a novel oxazolidinone class of bacterial type II topoisomerase inhibitors. *Bioorg Med Chem Lett* **2022**, *65*, 128648.

- 32. Vereshchagin, A. N.; Frolov, N. A.; Konyuhova, V. Y.; Kapelistaya, E. A.; Hansford, K. A.; Egorov, M. P., Investigations into the structure-activity relationship in gemini QACs based on biphenyl and oxydiphenyl linker. *RSC Adv* **2021**, *11* (6), 3429-3438.
- 33. Siricilla, S.; Mitachi, K.; Yang, J.; Eslamimehr, S.; Lemieux, M. R.; Meibohm, B.; Ji, Y.; Kurosu, M., A New Combination of a Pleuromutilin Derivative and Doxycycline for Treatment of Multidrug-Resistant Acinetobacter baumannii. *J Med Chem* **2017**, *60* (7), 2869-2878.
- 34. Kakarla, P.; Kc, R.; Shrestha, U.; Ranaweera, I.; Mukherjee, M. M.; Willmon, T. M.; Hernandez, A. J.; Barr, S. R.; Varela, M. F., Functional Roles of Highly Conserved Amino Acid Sequence Motifs A and C in Solute Transporters of the Major Facilitator Superfamily. In *Drug Resistance in Bacteria, Fungi, Malaria, and Cancer*, Arora, G.; Sajid, A.; Kalia, V. C., Eds. Springer International Publishing: Cham, 2017; pp 111-140.
- 35. Costa, P. C. S.; Evangelista, J. S.; Leal, I.; Miranda, P. C. M. L., Chemical Graph Theory for Property Modeling in QSAR and QSPR—Charming QSAR & amp; QSPR. *Mathematics* **2021**, *9*(1), 60.
- 36. Milne, G. W., Mathematics as a basis for chemistry. *J Chem Inf Comput Sci* **1997**, *37* (4), 639-44.
- 37. Gozalbes, R.; Doucet, J. P.; Derouin, F., Application of topological descriptors in QSAR and drug design: history and new trends. *Curr Drug Targets Infect Disord* **2002**, *2*(1), 93-102.
- 38. Randić, M., On Characterization of Cyclic Structures. *Journal of Chemical Information and Computer Sciences* **1997**, *37*(6), 1063-1071.
- 39. Helguera, A. M.; Combes, R. D.; Gonzalez, M. P.; Cordeiro, M. N., Applications of 2D descriptors in drug design: a DRAGON tale. *Curr Top Med Chem* **2008**, *8* (18), 1628-55.
- 40. Trinajstic, N.; Babic, D.; Nikolic, S.; Plavsic, D.; Amic, D.; Mihalic, Z., The Laplacian matrix in chemistry. *Journal of Chemical Information and Computer Sciences* **2002**, *34* (2), 368-376.
- 41. Sadeghian-Rizi, S.; Sakhteman, A.; Hassanzadeh, F., A quantitative structure-activity relationship (QSAR) study of some diaryl urea derivatives of B-RAF inhibitors. *Res Pharm Sci* **2016**, *11* (6), 445-453.
- 42. Amini, Z.; Fatemi, M. H.; Gharaghani, S., Hybrid docking-QSAR studies of DPP-IV inhibition activities of a series of aminomethyl-piperidones. *Comput Biol Chem* **2016**, *64*, 335-345.
- 43. Tanabe, K.; Lucic, B.; Amic, D.; Kurita, T.; Kaihara, M.; Onodera, N.; Suzuki, T., Prediction of carcinogenicity for diverse chemicals based on substructure grouping and SVM modeling. *Mol Divers* **2010**, *14* (4), 789-802.
- 44. Kuhn, B.; Mohr, P.; Stahl, M., Intramolecular hydrogen bonding in medicinal chemistry. *J Med Chem* **2010**, *53* (6), 2601-11.
- 45. Yang, N. J.; Hinner, M. J., Getting Across the Cell Membrane: An Overview for Small Molecules, Peptides, and Proteins. In *Site-Specific Protein Labeling: Methods and Protocols*, Gautier, A.; Hinner, M. J., Eds. Springer New York: New York, NY, 2015; pp 29-53.
- 46. Khondker, A.; Bider, R. C.; Passos-Gastaldo, I.; Wright, G. D.; Rheinstadter, M. C., Membrane interactions of non-membrane targeting antibiotics: The case of aminoglycosides, macrolides, and fluoroquinolones. *Biochim Biophys Acta Biomembr* **2021**, *1863* (1), 183448.

- 47. Ghose, A. K.; Crippen, G. M., Atomic Physicochemical Parameters for Three-Dimensional Structure-Directed Quantitative Structure-Activity Relationships I. Partition Coefficients as a Measure of Hydrophobicity. *Journal of Computational Chemistry* **2004**, *7*(4), 565-577.
- 48. Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J., Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods. *The Journal of Physical Chemistry A* **1998**, *102* (21), 3762-3772.
- 49. Viswanadhan, V. N.; Ghose, A. K.; Revankar, G. R.; Robins, R. K., Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. *Journal of Chemical Information and Computer Sciences* **2002**, *29* (3), 163-172.
- 50. Adamson, G. W.; Lynch, M. F.; Town, W. G., Analysis of structural characteristics of chemical compounds in a large computer-based file. Part II. Atom-centred fragments. *Journal of the Chemical Society C: Organic* **1971**, (0), 3702-3706.
- 51. Glen, R. C.; Bender, A.; Arnby, C. H.; Carlsson, L.; Boyer, S.; Smith, J., Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. *IDrugs* **2006**, *9*(3), 199.
- 52. Rodgers, S.; Glen, R. C.; Bender, A., Characterizing bitterness: identification of key structural features and development of a classification model. *J Chem Inf Model* **2006**, *46* (2), 569-76.
- 53. De, P.; Kumar, V.; Kar, S.; Roy, K.; Leszczynski, J., Repurposing FDA approved drugs as possible anti-SARS-CoV-2 medications using ligand-based computational approaches: sum of ranking difference-based model selection. *Structural Chemistry* **2022**, *33* (5), 1741-1753.
- 54. De, P.; Roy, K., Nitroaromatics as hypoxic cell radiosensitizers: A 2D-QSAR approach to explore structural features contributing to radiosensitization effectiveness. *European Journal of Medicinal Chemistry Reports* **2022**, *4*, 100035.
- 55. Moreau, G.; Broto, P., The autocorrelation of a topological structure: A new molecular descriptor. **1980**.
- 56. Broto, P.; Moreau, G.; Vandycke, C., Molecular structures: perception, autocorrelation descriptor and SAR studies. Perception of molecules: topological structure and 3-dimensional structure. *European journal of medicinal chemistry* **1984**, *19*(1), 61-65.
- 57. Sliwoski, G.; Mendenhall, J.; Meiler, J., Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign. *Journal of Computer-Aided Molecular Design* **2016**, *30* (3), 209-217.
- 58. Geary, R. C., The Contiguity Ratio and Statistical Mapping. *The Incorporated Statistician* **1954**, *5* (3), 115-146.
- 59. Velázquez-Libera, J. L.; Caballero, J.; Toropova, A. P.; Toropov, A. A., Estimation of 2D autocorrelation descriptors and 2D Monte Carlo descriptors as a tool to build up predictive models for acetylcholinesterase (AChE) inhibitory activity. *Chemometrics and Intelligent Laboratory Systems* **2019**, *184*, 14-21.
- 60. Alizadeh, S. R.; Ebrahimzadeh, M. A., Antiviral Activities of Pyridine Fused and Pyridine Containing Heterocycles, A Review (from 2000 to 2020). *Mini Rev Med Chem* **2021**, *21* (17), 2584-2611.

61. Altaf, A. A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E., A review on the medicinal importance of pyridine derivatives. *J. Drug Des. Med. Chem* **2015**, *1* (1), 1-11.

CAPITULO 3 *CRIBADO VIRTUAL Y OPTIMIZACIÓN DE UN COMPUESTO LÍDER*

En este capítulo se muestra la exploración de moléculas provenientes de una base de datos, BIOFACQUIM, utilizando el modelo QSPR descrito en el Capítulo 2, así como la evaluación biológica de los compuestos más activos, de acuerdo con el modelo (*p*MIC predicho), en diferentes cepas bacterianas multirresistentes. Asimismo, usando los parámetros explicados por los descriptores moleculares del modelo QSPR, se analizaron moléculas optimizadas a partir de la estructura del compuesto más activo obtenido en este proyecto.

3.1 Bases de datos de productos naturales: BIOFACQUIM

Las bases de datos de productos naturales (Natural products databases, NPDB) son fuentes de información relevantes de compuestos biológicamente activos y, a menudo, comprenden estructuras moleculares complejas aisladas de diversos organismos. Los productos naturales se definen en lo general como sustancias químicas producidas por organismos vivos. Muchos de los productos naturales incluyen todas las moléculas pequeñas que resultan de reacciones metabólicas, mientras que otras definiciones clasifican como productos naturales a aquellos resultantes del metabolismo secundario o no esencial. Los productos naturales son una alternativa prometedora al uso de principios activos obtenidos a través de síntesis. Debido a su amplia diversidad de andamios moleculares y de la complejidad estructural, como en el caso de la actinomicina D (Cosmegen®)¹ o la anfotericina B (AmBisome®), entre otros, los productos naturales ofrecen ventajas y desafíos en el proceso de descubrimiento de fármacos.² Estas propiedades pueden ser benéficas en comparación con los compuestos sintéticos típicos de moléculas pequeñas, por ejemplo, masas moleculares altas³, gran cantidad de átomos de carbono⁴ y oxígeno con hibridación *sp*³, que también se correlacionan con valores bajos de cLogP (o una mayor hidrofilicidad⁵⁻⁸), y mayor rigidez.⁹ Además, pequeñas modificaciones estructurales en estos andamios conducen, a menudo, a una mejora de la actividad biológica. No obstante, identificar compuestos bioactivos de interés es un desafío y, frecuentemente, requiere tiempo adicional para su aislamiento, caracterización y, si es posible, síntesis completa.^{10,11} Los modelos QSPR/QSAR han permitido la búsqueda y optimización de mejores moléculas bioactivas al determinar qué características fisicoquímicas y estructurales (descriptores moleculares) son puntos clave para la actividad biológica.¹²

El cribado virtual comprende el uso de herramientas computacionales para buscar y analizar grandes bases de datos de moléculas pequeñas para identificar posibles compuestos bioactivos. El cribado virtual se puede dividir en dos categorías principales según el tipo de información disponible: cribado virtual basado en ligandos, LBVS, y el basado en la estructura, SBVS, de los cuales existe extensa literatura al respecto.^{13,14} Sin embargo, en los últimos años se ha mejorado el desarrollo de técnicas para mejorar la precisión de la predicción de la actividad. El uso de QSAR/QSPR como técnica para el cribado virtual de grandes bibliotecas de pequeños compuestos ha demostrado acelerar el ritmo del descubrimiento reduciendo el número de candidatos potenciales. Al comparar las tasas de aciertos de técnicas como el cribado de alto rendimiento (HTS) con el cribado virtual basado en QSAR/QSPR, se ve que la tasa de aciertos del HTS oscila entre el 0.01% y el 0.1%, mientras que, para este último abarca entre 1% y 40%.¹⁵ Esto ha encontrado aplicación en la búsqueda de nuevos fármacos antipalúdicos,¹⁶ anti-esquistosomiasis,¹⁷ antituberculosos¹⁸ y antivirales,^{19,20} para los cuales varios compuestos demostraron ser activos. La confiabilidad de los modelos QSAR/QSPR proviene de los datos

utilizados para la generación de los modelos, lo que se refleja dentro de su dominio de aplicabilidad. En este sentido, disponer de una gran cantidad de información estructural permite un mayor grado de confianza en los datos de predicción para el cribado virtual. De lo contrario, la extrapolación de datos puede dar lugar a falsos positivos.

Debido a que no existe un recurso comunitario aceptado globalmente para productos naturales, un número impresionante de sitios contienen información para varias moléculas aisladas, que a menudo difieren en anotación y estructura.²¹⁻²³ BIOFACQUIM²⁴ es una base de datos mexicana de productos naturales que comprende 528 compuestos aislados de varias plantas y otros organismos en todo México. Para la evaluación de moléculas con posible actividad antibacteriana usando nuestro modelo, se seleccionó la base de datos BIOFACQUIM ya que aquellos productos naturales aislados de diferentes especies de México representarían una opción confiable y asequible para ensayos biológicos.

a. Selección, curado de estructuras y cálculo de descriptores

Para realizar el cribado virtual, se procedió a seleccionar y curar la información de los 528 compuestos reportados de la base de datos molecular BIOFACQUIM. Para mejorar la consistencia de los datos, todos los compuestos fueron curados mediante (1) aromatización de carbociclos y heterociclos donde fuese necesario, (2) estandarización de los grupos carboxilo, nitro y sulfonilo, si estaban presentes, y (3) adición de enlaces faltantes cuando fuera necesario. Las estructuras de las moléculas de interés se dibujaron en Avogadro y sus descriptores moleculares se obtuvieron del paquete de software Dragon. Se puede encontrar una lista completa de descriptores en la **Tabla de Anexos A2**. Para cada molécula, en este apartado se calcularon solamente los descriptores que se mostraron en la **Ecuación 18** del Capítulo 2, con el fin de poder usar sus valores para la predicción de su valor de *p*MIC.

b. Análisis de moléculas mediante modelo QSPR

Como se mostró en la **Ecuación 18**, un valor alto del *p*MIC calculado implica una concentración pequeña del compuesto, que se correlaciona con un incremento en su potencia. En este sentido, se busca que los mejores candidatos posean valores altos del *p*MIC. En este sentido, se utilizó el modelo sobre las 528 moléculas de la base de datos BIOFACQUIM obteniendo sus valores calculados, que se pueden consultar en los Anexos, en la **Tabla S5**. Para la discusión de los resultados, se establecieron conjuntos de moléculas incluyendo al peso molecular aunado a los 15 descriptores calculados y descritos en la **Ecuación 18**.

La **Figura 25** muestra la correlación entre los descriptores de las 528 moléculas de la base de datos BIOFACQUIM asociados a la estructura de cada una de ellas. Se observa que, así como en el análisis de la base de datos del modelo QSPR general, existe una alta correlación entre los descriptores nHDon y nHBonds, nuevamente teniendo en consideración el elevado número de donadores de hidrógeno, así como la formación de enlaces de hidrógeno intramoleculares. Por lo mismo, el descriptor de éteres alifáticos (nROR) como fragmento que puede formar enlaces de hidrógeno intramoleculares con diferentes donadores de hidrógeno se encuentra también altamente correlacionado. Más aún, el descriptor D/Dr06 aparece altamente correlacionado con el descriptor nROR. Esto es visible en la mayoría de las estructuras donde se encuentra

fragmentos de tipo hexosa (anillos de seis miembros). Por otro lado, el descriptor H051 se correlaciona con el D/Dr06 y con TI2. Esto sugiere la presencia de hidrógenos en C_{α} a grupos como carbonilos en moléculas con estructuras con alto grado de ramificación.

Figura 25. Gráfico de correlación de Pearson para los descriptores analizados para el conjunto de moléculas de la base de datos BIOFACQUIM.

Un análisis en 3D utilizando al valor de *p*MIC como eje z y modificando los dos ejes restantes con los descriptores con mayor correlación, se puede observar una tendencia de incremento en la mayoría de los casos, **Figura 26**. Por ejemplo, se establece que a mayor número de grupos éteres alifáticos habrá un mayor valor de *p*MIC y que a su vez está conforme al aumento en el valor de D/Dr06. Esto indica que, la presencia de un gran número de anillos de tipo hexosa son los que confieren esta propiedad. Derivado de lo mismo, al cambiar el parámetro D/Dr06 por nHDon o nHBonds nos da el mismo patrón de aumento que está acorde con la generación de múltiples enlaces de hidrógeno intramoleculares dado por la gran cantidad de oxígenos en las estructuras. Cambiando a GATS6m muestra una distribución más lineal y no parabólica cuando se comparan con las otras tres gráficas, esto debido a que, aunque hay un aumento del *p*MIC asociado a este descriptor, GATS6m no posee correlaciones con otros descriptores.

Figura 26. Gráficos 3D de correlación del valor de pMIC con los descriptores D/Dr06, nHDon, nHBonds y GATS6m utilizando como segundo eje estático al de valores de nROR.

Un segundo análisis se realizó para las 32 estructuras con los valores más bajos de *p*MIC predicho (valores debajo de *p*MIC = 3.7) donde, adicional a los valores ya discutidos obtenidos para nHDon y nHBonds, se observa que existe una correlación de mediano valor entre el descriptor H051 y D/Dr06. Las correlaciones se muestran en la **Figura 27**. Esto se puede entender por el elevado número de hidrógenos en C_α a carbonilos, que presentan valores altos de D/Dr06 por múltiples anillos de seis miembros. Un tercer análisis de 28 moléculas con los valores más altos de *p*MIC (mayores a *p*MIC = 5.52) predicho se muestra en la **Figura 28**. Estos resultan de importancia debido a que, por la transformación logarítmica aplicada a la relación de *p*MIC, se establece que valores altos implica una concentración baja de la muestra para que ejerza su actividad biológica. En la **Tabla 2** se muestran los valores para las moléculas con mayor valor de *p*MIC predicho. Algunas estructuras de las moléculas se muestran en la **Figura 29**. Debido a la gran cantidad de estructuras que poseen anillos de seis miembros y que a su vez contienen fragmentos de tipo glicósido que, por su naturaleza, poseen elevado número de donadores de hidrógeno con la capacidad de generar enlaces de hidrógeno intramoleculares. Asimismo, es notable observar la alta cantidad de éteres alifáticos, así como de hidrógenos en

 C_{α} que están altamente correlacionados entre ellos. Por el tipo de compuestos, se puede observar que son moléculas de alto peso molecular, varios de ellos por encima de las 1000 umas, con alta ramificación (valores altos de TI2).

Figura 27. Gráfico de correlación de Pearson para los descriptores analizados en el conjunto de 32 moléculas con los valores predichos más bajos por nuestro modelo.

Figura 28. Gráfico de correlación de Pearson para los descriptores analizados en el conjunto de 28 moléculas con los valores predichos más altos por el modelo QSPR en la Ecuación 18.

Figura 29. Estructura química de compuestos analizados por el modelo QSPR, mostrando aquellas con valores más altos asociados a extractos de *Ipomoea*.
MolID	MW	D/Dr06	GATS6m	nROR	nHDon	nHBonds	C018	H051	N075	TI2	<i>p</i> MIC
26	274.24	101.297	0.399	1	1	0	1	0	0	1.208	5.910
27	404.51	208.41	1.05	5	2	2	0	0	0	3.678	5.533
28	1167.41	1692.143	0.951	12	16	8	0	2	0	8.304	9.049
29	1195.47	1739.777	0.958	12	16	8	0	2	0	8.397	9.076
30	1341.63	2360.184	0.965	13	19	10	0	2	0	10.723	9.756
31	1690.16	2257.102	1.01	14	13	8	0	9	0	6.18	8.879
32	2473.43	6328.172	1.071	19	16	11	0	10	0	20.998	12.845
33	2449.3	7015.971	1.082	19	16	11	0	8	0	21.234	13.451
34	2445.37	6531.924	1.071	19	16	11	0	10	0	21.416	12.972
35	2501.49	6713.547	1.076	19	16	9	0	10	0	21.566	13.485
36	272.27	101.297	0.894	1	0	0	1	0	0	1.208	5.579
37	346.31	89.966	1.133	2	1	0	1	0	0	1.397	5.920
38	560.71	440.654	0.966	4	8	4	0	0	0	5.474	5.695
39	250.27	80.687	0.942	1	2	1	1	0	0	1.546	5.580
40	1151.41	1669.117	0.921	11	16	9	0	2	0	8.266	8.511
41	1179.47	1715.713	0.923	11	16	9	0	2	0	8.347	8.539
42	869.18	889.623	0.957	7	10	5	0	2	0	8.006	6.834
43	1035.28	1396.119	0.967	10	14	8	0	2	0	8.601	7.984
44	1165.44	1695.422	0.921	11	15	10	0	2	0	8.575	8.216
45	1193.5	1742.017	0.923	11	15	9	0	2	0	8.623	8.446
46	250.27	80.687	0.942	1	2	1	1	0	0	1.546	5.580
47	1199.65	1656.598	1.024	10	10	7	0	4	0	8.71	7.644
48	1223.67	1189.333	1.054	10	8	6	0	5	0	5.649	7.156
49	512.56	409.063	0.805	3	6	2	1	2	1	4.621	6.430
50	302.36	106.192	1.753	5	2	1	0	0	0	1.027	5.304
51	1369.82	1718.197	1.079	10	8	6	0	5	0	6.149	7.460
52	1383.85	1778.609	1.097	10	8	6	0	6	0	6.324	7.386
53	2795.76	9251.423	1.099	20	16	8	0	10	0	22.254	15.481

Tabla 2 – Valores para los descriptores calculados para el conjunto de moléculas de la base de datos BIOFACQUIM con mayor actividad predicha por el modelo de la Ecuación 18.

La **Tabla 2** muestra que las moléculas con los valores de *p*MIC más altos previstos son los compuestos 32 a 35 y 53, que se aislaron de varias plantas del género *Ipomoea*.^{25, 26} Sus estructuras moleculares contienen varios grupos funcionales que contribuyen a su actividad prevista. Se observan tres características importantes: (1) todos ellos tienen una gran cantidad de anillos similares a piranosa, lo que puede contribuir a sus propiedades de hidrofilicidad; (2) la mayoría de ellos contienen grandes cadenas laterales alifáticas y/o anillos de lactona macrocíclicos, que pueden contribuir a su lipofilicidad; (3) todos ellos presentan al menos un grupo éster terminal que puede ser propenso a escindirse por hidrólisis en medios acuosos. Las moléculas 59 a 62 y 64 también exhiben fragmentos de ácido carboxílico terminales.

Al analizar estas características en el modelo QSPR, podemos obtener algunas ideas sobre la información estructural que se correlaciona con los valores predichos. Por ejemplo, todas las moléculas exhiben una gran cantidad de grupos éteres alifáticos y, según lo establecido del modelo en la **Ecuación 18**, a medida que aumenta el número de éteres alifáticos (nROR), mayor será su actividad. Esto está altamente correlacionado con una gran cantidad de átomos donantes (oxígenos) y, por lo tanto, a medida que aumenta la cantidad de nHDon, también aumenta la bioactividad predicha. Sin embargo, un gran número de átomos donantes también aumenta el número posible de enlaces de hidrógeno intramoleculares (nHBonds), lo que disminuye los valores predichos.

Otro descriptor que parece afectar los valores previstos es H051, que implica la presencia de hidrógenos unidos a átomos de C_{α} , conocidos como hidrógenos alfa (H_{α}). A medida que aumenta

el número de H_{α} , la bioactividad tiende a disminuir. En aquellas moléculas que se predicen con los valores de pMIC más altos, los grupos éster y ácido carboxílico aparecen en gran número, lo que sugiere que este tipo de grupos funcionales no son adecuados para su perfil farmacocinético, ya que todos exhiben H_a. Otra característica es la presencia de una gran cantidad de anillos de azúcares (en forma de piranosas, fucosas, ramnosas, etc.), que son anillos de 6 miembros; por lo tanto, se muestra un valor alto del descriptor D/Dr06. Además, debido a su estructura, estas moléculas están altamente ramificadas, lo que se refleja en sus valores de TI2. GATS6m es de naturaleza compleja, pero se correlaciona bien con las moléculas analizadas. Como número promedio de 6 vías posibles para las que se pueden incluir átomos pesados, hay una disminución en la bioactividad prevista. Hay muchos compuestos bioactivos conocidos cuyas masas moleculares son sustancialmente altas, por ejemplo, los macrólidos y algunos otros productos naturales como la digitoxina^{2, 3, 27, 28}, que por tanto violan una de las reglas de Lipinski utilizadas para la evaluación de posibles nuevos fármacos.²⁹ Las moléculas 31, 48 y 53 presentan valores de GATS6m que oscilan entre 1.0 y 1.1, pero que están asociados a una masa molecular alta, como en la molécula 53 que tiene un peso molecular de 2795.76 g/mol; sin embargo, nuestro modelo predice una pMIC elevada para estos compuestos. Esto puede sugerir que podría haber un límite en la masa de la molécula y la cantidad de átomos de oxígeno o cualquier otro elemento pesado que hará que las moléculas sean menos activas.

3.2 Compuestos de extractos de *Ipomoea sp*.

c. Actividad antibacterial de glucósidos y análisis SAR

Habiendo identificado moléculas con alto potencial de actividad contra *A. baumannii*, y además que se aislaron de plantas del género *Ipomoea*, se buscaron compuestos similares del mismo género de plantas que estuvieran disponibles. Efectivamente, varias moléculas aisladas de plantas de las especies *I. stans, I. purga, I. murucoides* e *I. tyrianthina*,³⁰⁻³² ofrecidas amablemente por el Dr. Ismael León Rivera del Centro de Investigaciones Químicas de la UAEM, los cuales se sometieron a tratamiento con el modelo QSPR para obtener sus valores predichos antes del trabajo experimental. Los resultados se muestran en la **Tabla 3** y la **Figura 30** representa las moléculas con los valores de *p*MIC.

Los valores más altos previstos de *p*MIC son para los compuestos 59 (*p*MIC = 8.422), 63 (*p*MIC = 8.223) y 64 (*p*MIC = 8.242), respectivamente. Características importantes de estos compuestos se describen a continuación. En primer lugar, las moléculas de 54 a 68 presentan grupos de éteres alifáticos de los anillos de tipo azúcar y, en consecuencia, un gran número de donadores de hidrógeno (descriptor nHDon), lo que contribuye a un aumento de su actividad antibacteriana. Como los anillos de tipo azúcar son estructuras de seis miembros, el descriptor D/Dr06 también promueve un aumento en la *p*MIC esperada. Sin embargo, debido a una gran cantidad de átomos de oxígeno y grupos carbonilo, los descriptores nHBonds y H-051 tienen un efecto considerable en la disminución de la *p*MIC predicha. Además, el valor del GATS6m calculado, en comparación con otras moléculas, implica una pequeña contribución negativa a la actividad predicha, que se equilibra con la contribución del descriptor D/Dr06. Se predice que los compuestos 60, 61 y 62 (**Figura 30**) tendrán los valores de *p*MIC más bajos (4.781, 4.733 y 4.264, respectivamente). Esta situación se debe a la presencia de un solo anillo de azúcar en

cada estructura, por lo tanto, solo un grupo éter alifático y un número reducido de átomos de oxígeno. Además, dada su estructura molecular (baja simetría), sus valores de GAST6m también son los más altos entre los compuestos, disminuyendo así el valor predicho. En consecuencia, se espera que un número mayor a 2 anillos que no formen enlaces de hidrógeno intramoleculares, sean valiosos para la actividad antibacteriana de estos compuestos.

MolID	MW	D/Dr06	GATS6m	nROR	nHDon	nHBonds	H051	TI2	<i>p</i> MIC
54	1139.49	637.544	1.05	8	8	4	5	4.452	6.553
55	1095.43	603.051	1.06	8	7	4	5	4.134	6.406
56	1155.49	645.374	1.047	8	9	4	5	4.4	6.672
57	1225.64	1192.314	1.016	10	9	5	7	5.92	7.289
58	1107.49	600.453	1.072	8	6	5	5	4.095	6.080
59	1153.38	1669.117	0.957	12	16	11	2	8.266	8.422
60	334.46	90.65	0.904	2	4	3	2	4.886	4.374
61	326.33	164.888	1.054	1	5	1	0	4.222	4.733
62	342.33	166.979	1.09	1	6	2	0	3.98	4.624
63	1646.15	2393.949	1.019	13	14	12	6	5.644	8.223
64	1019.28	1307.203	0.962	10	13	6	2	9.197	8.242
65	855.1	437.562	0.955	8	9	5	2	3.704	6.688
66	1093.46	601.959	1.069	8	6	4	5	4.081	6.285
67	1037.39	565.718	1.019	8	7	4	5	4.448	6.410
68	1123.49	624.213	1.054	8	7	4	5	4.266	6.424

Tabla 3 – valores predichos para moléculas obtenidas de extractos de Ipomoea stans

Al igual que en conjuntos de moléculas anteriormente descritas, se hizo un análisis por correlación de Pearson de los diferentes descriptores encontrados en las moléculas de interés. Se puede observar altas correlaciones entre los descriptores, especialmente a los asociados a nHDon y nHBonds, por la presencia de valores muy grandes de éstos. Como se ve en la **Figura 31**, todas las moléculas, exceptuando a la estructura 60, poseen más de un anillo de 6 miembros, además de su extensa ramificación para la mayoría de los compuestos.

Figura 30. Estructuras químicas de moléculas aisladas de *Ipomoea* usadas para la identificación de nuevos candidatos mediante el modelo QSPR.

Figura 31. Gráfico de correlación de Pearson para los descriptores analizados en el conjunto de moléculas aisladas de *Ipomoea stans* predichas por el modelo QSPR.

Como se indicó anteriormente, el creciente número de bacterias multirresistentes representa un riesgo importante para la salud humana en todo el mundo. Aunque *A. baumannii* representa una seria amenaza, la búsqueda de antibióticos de amplio espectro para el tratamiento de infecciones causadas por varios de los patógenos ESKAPE es crucial. Para determinar si las moléculas analizadas mediante el modelo QSPR muestran actividad antibacterial hacia este grupo de patógenos, se realizaron los bioensayos correspondientes en colaboración con el Dr. Jesús Silva Sánchez, del Instituto Nacional de Salud Pública (INSP), utilizando cepas de aislados clínicos, productores de betalactamasas y resistentes carbapenémicos, los cuales se muestran en la **Tabla 4**.

Cepas bacterianas									
ID Sample	<i>E. coli</i> ATCC 25922	<i>S aureus</i> ATCC	<i>A baumannii</i> 9736	<i>A. baumannii</i> 10324	<i>E. coli</i> 10225	<i>K. pneumoniae</i> 6411	<i>K. pneumoniae</i> 3407-2	<i>P. aeruginosa</i> 4899	<i>P. aeruginosa</i> 4677
DMSO	+	+	+	+	+	+	+	+	+
54	-	-	-	-	-	+	-	-	-
55	-	+	-	-	-	+	-	+	+
56	+	+	+	-	-	+	+	+	+
58	-	-	-	-	-	-	+	-	-
60	+	+	+	+	+	+	+	+	+
61	-	-	-	+	-	-	-	-	-
62	-	-	-	+	-	-	-	-	-
63	-	-	+	+	-	-	-	-	-
64	-	-	+	-	-	-	-	-	-

Tabla 4. Análisis de susceptibilidad de las muestras 54 a 64 sobre cepas bacterianas de aislados clínicos multirresistentes. Los experimentos se realizaron por duplicado usando 6 μ g/mL de solución de compuesto sobre cada placa de agar. Positivo a susceptibilidad marcado en (+), y negativo en (-).

De los resultados se desprenden características importantes de las estructuras moleculares de los glicósidos. Primero, las estructuras moleculares de los compuestos 54, 55, 56 y 58 contienen el mismo núcleo de tetrasacárido, que está conectado por un anillo de macrolactona. Del 54 al 55, la eliminación de un átomo de carbono del 2-metilbutirato central al 2-metilpropionato aumenta la actividad del glucósido, siendo activo no sólo en *K. pneumonia* sino ahora también en *P. aeruginosa y S. aureus*. En el compuesto 56, la reinserción del átomo de carbono, pero con la adición de un grupo hidroxilo en la posición tres del grupo 2-metilbutirato refuerza el espectro de actividad al ser activo para *A. baumannii*, como se ve en la **Figura 32**. Sin embargo, la eliminación del grupo hidroxilo de los grupos 2-metilbutirato central y externo y la adición de un átomo de carbono del anillo de macrolactona (de diez átomos a once) hace que la molécula 58 pierda actividad de amplio espectro y sea solo activa contra *K. neumonía*. Esto sugiere que los grupos hidroxilo ubicados en regiones específicas de este núcleo molecular mejoran la bioactividad de este conjunto de glicósidos.

Figura 32. Análisis SAR de glicósidos mostrando características importantes para su actividad biológica.

Los compuestos 60 a 62 son los compuestos más pequeños. Comparten en común un ácido carboxílico alifático terminal junto con un anillo de quinovosa (6-deoxi-D-glucosa). Aunque 60 tiene una amplia actividad antibacteriana contra bacterias multirresistentes, 61 y 62 solo muestran actividad contra *A. baumannii*. Esta importante pérdida de actividad puede atribuirse a la eliminación de la cadena alifática que conecta el anillo de piranosa y el ácido carboxílico terminal, siendo reemplazada por un núcleo de fenilo más rígido. Una inspección minuciosa del

compuesto 63 revela la estructura del compuesto 60 en su interior, formando un enlace éster en el grupo ácido carboxílico terminal. Esta característica podría explicar la actividad retenida contra *A. baumannii*. De manera similar, las moléculas 54 a 56 comparten características estructurales comunes, como en el anillo de macrolactona con el mismo conjunto de átomos; Además, la falta de grupos hidroxilo en los metilbutiratos externos puede afectar la actividad esperada.

Un análisis más a fondo de las estructuras químicas de 32 a 35 y 53, las moléculas más potentes según el modelo de la **Ecuación 18**, revela que el núcleo de 60 está presente (**Figura 33**). Además, el anillo de macrolactona junto al carbono quiral también es una característica común, con el ciclo formado por diez u once grupos metileno como en las moléculas 54 a 58. Esto podría sugerir que los compuestos de la base de datos de BIOFACQUIM también ejercerán actividad antibacteriana hacia *A. baumannii* y otras bacterias resistentes.

Figura 33. Estructura del compuesto 60 y su localización como andamio en diferentes moléculas.

d. Postulación de mecanismo de acción de glicósidos

Una parte importante para el entendimiento de la bioactividad de las moléculas probadas es la de los posibles mecanismos de acción que pueden ejercer. Para proponer uno, se construyó una versión simplificada del diagrama de Venn en el que es posible observar la correlación entre los descriptores H051 y nROR observados en las moléculas aisladas. El propósito de este diagrama en la **Figura 34** es identificar moléculas con mecanismos de acción conocidos y con similitud estructural (mismos descriptores moleculares) con las moléculas 54 a 68. Además, otros tipos de compuestos utilizados también forman parte del conjunto interno de moléculas. Estos compuestos tienen diferentes fragmentos estructurales en comparación con los compuestos 54 a 68, y presentan diferentes mecanismos de acción.

Figura 34. Diagrama de Venn simplificado, mostrando la correlación de descriptores nHDon, nHBonds, nROR y H051, donde se observa al conjunto de moléculas de los aislados de *Ipomoea stans* y algunos otros como macrólidos o compuestos tipo esteroides en el medio del diagrama.

Desde un punto de vista estructural, los compuestos 56 y 63 se parecen a los de los antibióticos conocidos como macrólidos.²⁸ Ejemplos de macrólidos son la eritromicina A, oleandomicina, josamicina y espiramicina, aisladas de diferentes microorganismos, así como muchos derivados semisintéticos como la claritromicina, la fluritromicina y otros compuestos únicos como la azitromicina. Además, los últimos miembros nuevos, cetólidos y fluorocetólidos, también están relacionados estructuralmente con la familia de los macrólidos. Como se indicó anteriormente, al comparar las nuevas moléculas con los macrólidos, se comparten varias características que se pueden observar en la Figura 35. Los macrólidos se caracterizan bien por la presencia de un anillo de lactona macrocíclico de 14 a 16 miembros al que están unidos uno o más desoxiazúcares. En el caso de compuestos como 56 y 63, el anillo de macrolactona se muestra conectando dos o tres anillos desoxiazúcares. Además, debido al número de grupos carbonilo en los macrólidos, los α -H también se encuentran presentes en la molécula. Esta misma tendencia ocurre para compuestos del 54 al 58 y del 65 al 68, donde se observa al grupo éster. Además, también son características comunes un gran número de grupos éter alifáticos y un gran número de átomos de oxígeno presentes en los grupos hidroxilo y otros motivos. Los macrólidos son compuestos bacteriostáticos potenciales cuyo mecanismo de acción se basa en la unión al sitio P en la subunidad 50S del ribosoma bacteriano. Debido a esto, podemos sugerir que los compuestos 56 y 64, entre otros, podrían exhibir una acción similar sobre las bacterias, actuando, así como inhibidores de la síntesis de proteínas.

Figura 35. Análisis comparativo de la estructura de un macrólido con la estructura de un glucósido mediante el uso del modelo de la Ecuación 18.

3.3 Molécula "60" como compuesto líder.

81

Un compuesto líder se define como aquel compuesto químico representativo de una serie de compuestos con suficiente potencial para convertirse en un candidato a fármaco que puede llegar a fases clínicas. Un compuesto líder, aunque tiene actividad farmacológica o biológica el cuál puede ser útil terapéuticamente; sin embargo, puede tener una estructura subóptima que requiera modificación para tener una mejor interacción con su blanco biológico. La estructura química del compuesto líder sirve como punto de partida para modificaciones con el fin de mejorar la potencia, selectividad o parámetros farmacocinéticos. Asimismo, es posible que fragmentos biológico y pueden requerir modificaciones químicas para tener propiedades farmacológicas aceptables como para ser probados biológica o clínicamente. El compuesto 60, al ser una molécula pequeña, puede considerarse un compuesto líder cuya eficacia mediante transformaciones químicas específicas podría mejorar. Por tanto, para mejorar la posible actividad de la molécula, se generaron diferentes aproximaciones para su optimización que a continuación se discuten.

e. Análisis de similitud molecular con compuestos biológicamente activos

Como se ha mencionado, el tamaño de la molécula 60, así como su estructura en general lo hace proclive a modificaciones químicas. Más aún, su estructura posee fragmentos que pueden ser clave para la actividad biológica. Es importante señalar que las moléculas aisladas de *Ipomoea* anteriormente discutidas comparten dentro de sus estructuras un fragmento desoxiazúcar denominado como 6-desoxi-D-glucosa, como en el compuesto 60, y que podría ser relevante para su actividad. Mediante una inspección minuciosa del fragmento, buscamos moléculas en la base de datos ChEMBL³³ para compuestos bioactivos que incorporen este deoxiazúcar en sus estructuras. Una amplia variedad de moléculas posee el fragmento, desde anticancerígenas hasta antimicóticos, entre otros,³⁴⁻⁴² lo que demuestra su importancia dentro de la actividad de las moléculas.

Por ejemplo, en la **Figura 36(a)**, el compuesto derivado de una saponina con un grupo espirostanol aislado de las hojas de S. hispidum mostró actividad como antimicótico frente a cepas de *T. mentagrophytes*, *T. rubrum*, *A. niger* y *C. albicans*, mostrando valores de MIC menores a 50 µg/mL para las primeras dos cepas. Derivados de filantostatina como en el caso del compuesto **35(b)** se han utilizado como nuevos compuestos con actividad antineoplásica en líneas celulares de cáncer de colon, de mama, entre otros. Los compuestos conocidos como cardenólidos, como en **35(c)**, han sido aislados de extractos de *S. stella*, mostrando alta actividad citotóxica con valores de IC₅₀ menores a 1µg/mL. Para la mayoría de estos compuestos se ha obsevrado la conjugación con fragmentos glicosídicos que se especulan tienen importancia para su transporte hacia el interior de las células. Los lignanos de tipo arilnaftalenos como en el compuesto **35(e)** también han sido utilizados en pruebas de citotoxicidad y en la mayoría de ellos se ha observado su conjugación con un anillo de azúcar. El compuesto en **36(f)** es un derivado del producto tiocolchicósido el cuál se utilizó como potencial agonista de receptores GABA y glicina en cerebro de rata y médula espinal, teniendo efectos aún mayores que el compuesto de partida.

Asimismo, se llevó a cabo un análisis de similitud molecular con el compuesto A, reportado por Jung y colaboradores, donde se puede ver que el compuesto 60 posee una similitud del 89 y 90% en dos de sus conformaciones que al traslaparse con el compuesto A, permite ver las similitudes entre ambos (**Figura 37**). La estructura del fragmento 6-desoxi-D-glucosa, también denominado D-quinovosa, es un fragmento inusual en compuestos derivados de productos naturales. Se sabe de algunas estructuras, como es el caso de la isatropolona A⁴³ donde el anillo de desoxiazúcar se encuentra fusionado con un anillo de tropolona. Por lo mismo, la investigación es de relevancia para conocer si el fragmento en la molécula 60 puede considerarse como un fragmento privilegiado, útil para el diseño de moléculas bioactivas.

Figura 36. Compuestos biológicamente activos que contienen al fragmento 6-desoxi-D-glucosa.

Figura 37. Análisis de similitud molecular del compuesto 60 con la estructura del compuesto A, con un porcentaje de similitud del 89 y 90% para conformaciones analizadas.

f. Optimización de compuesto líder de acuerdo con el QSPR

Dada la definición de compuesto líder como un potencial andamio al cual se le pueden realizar diferentes modificaciones estructurales a fin de aumentar su potencia y afinidad hacia un receptor, se procedió a analizar derivados de la molécula 60 acorde con lo estipulado por el modelo QSPR. Primero, se predice que el compuesto 60 sea soluble en agua y tenga un valor de LogP calculado inferior a 1.0, por lo tanto, con buena absorción gastrointestinal (GI). Según la Ecuación 18, la incorporación de grupos funcionales específicos contribuye favorablemente a la *p*MIC esperada. En este sentido, se pueden emplear grupos funcionales tales como ácidos carboxílicos aromáticos, amidas alifáticas primarias y éteres alifáticos para mejorar la actividad de los análogos derivados de 60, ya que representan transformaciones químicas simples, como se proponen en la Figura 38. Los valores de *p*MIC calculados para los nuevos derivados pueden puede verse en la **Tabla 5**. En este aspecto, la mayoría de los compuestos (60a, b y c) retienen el anillo de desoxiazúcar debido a que, como se mencionó anteriormente, se pudo obtener una correlación de la actividad biológica de distintos compuestos con una variedad en cuanto a su actividad biológica. Para las moléculas 60d y 60e, la modificación de los grupos hidroxilo del anillo de azúcar usando grupos metilo para su transformación a éteres de tipo alifático incrementará los valores de sus *p*MIC al aumentar este su valor predicho, de acuerdo con el modelo QSPR de la Ecuación 18.

Tabla 5 – Valores de *p*MIC predichos para derivados de la molécula 60 usando el modelo de la Ecuación 18. Los compuestos poseen fragmentos y grupos funcionales establecidos por el modelo QSPR.

MolID	MW	D/Dr06	GATS6m	nROR	nHDon	nHBonds	C018	H051	N075	TI2	<i>p</i> MIC
60	334.46	90.65	0.904	0	0	2	4	3	2	4.886	4.374
60a	333.48	90.65	0.922	0	1	2	5	3	2	4.886	5.730
60b	454.57	266.815	0.842	1	0	2	4	3	2	7.848	5.105
60c	334.51	90.71	0.893	0	0	3	3	3	0	4.958	4.810
60d	376.55	103.221	0.867	0	0	5	1	0	2	4.848	5.664
60e	390.58	108.402	0.862	0	0	5	0	0	2	5.284	5.565

Figura 38. Optimización de la molécula 60, incorporando fragmentos específicos (grupos funcionales) indicados por el modelo QSPR.

g. Análisis de parámetros fisicoquímicos de nuevos derivados

En todos los compuestos propuestos, sus valores de *p*MIC previstos son más altos que los del compuesto principal. Las propiedades fisicoquímicas de los compuestos 60 y derivados se probaron utilizando el servidor SwissADME⁴⁴, para el cual se dan alertas específicas en la **Figura 39**. Los compuestos obedecen las reglas de Lipinski. Estos parámetros permiten evaluar si un compuesto con una determinada actividad farmacológica o biológica tiene propiedades fisicoquímicas que probablemente lo convertirían en un fármaco activo por vía oral.⁴⁵ Se observa que las moléculas presentan alta flexibilidad debido a la cadena alifática. Asimismo, los compuesto 60e se calcula tenga un mayor grado de lipofilicidad. No obstante, se espera que todos los derivados sean solubles en agua y se predice que serán absorbidos pasivamente por el tracto gastrointestinal. La molécula 60e también podría atravesar la barrera hematoencefálica según lo calculado por el servidor y que se muestra en la **Figura 40**.⁴⁶ Esto debido al aumento en el grado de hidrofobicidad causado por la adición de grupos metilo en los hidroxilos del anillo desoxiazúcar.

Figura 39. Análisis de parámetros fisicoquímicos de las moléculas propuestas derivados del andamio estructural 60. Se puede observar que la introducción de grupos funcionales permite el incremento o la disminución de la lipofilicidad de las moléculas.

3.4 Conclusiones y perspectivas

En este capítulo se realizó cribado virtual sobre una base de datos de productos naturales, BIOFACQUIM, donde se cumplieron los siguientes objetivos:

- 1. Mediante el uso del modelo QSPR (**Ecuación 18**) aplicado al cribado virtual de moléculas de la base de datos BIOFACQUIM, permitió identificar compuestos con potencial acción antibacterial.
- 2. Las moléculas con alto valor de *p*MIC predicho fueron compuestos glicosídicos aislados de extractos de plantas del género *Ipomoea*, las cuáles presentan características importantes como la presencia de anillos desoxiazúcares, así como para algunos, la formación de un anillo de macrolactona.
- 3. Debido a la dificultad de conseguir muestras para ensayos biológicos de moléculas provenientes de la base de datos BIOFACQUIM, el modelo QSPR se empleó en la predicción de la actividad de compuestos aislados de extractos de *Ipomoea stans*.
- 4. Se realizó un ensayo de susceptibilidad sobre las moléculas aisladas de *Ipomoea stans*, los cuáles mostraron ser activos frente a diferentes cepas bacterianas multirresistentes

86

a fármacos.

- 5. Derivado de los ensayos de susceptibilidad de los compuestos, se identificó a la molécula 60 como un candidato de amplio espectro.
- 6. La estructura del compuesto 60 se encuentra presente dentro de otras moléculas de mayor tamaño, como en el caso de los compuestos 53 o 56, por lo que se sugiere que su actividad antibacterial está relacionada con su presencia.
- 7. Por su estructura química, la molécula 60 representa un compuesto líder que tiene la posibilidad de modificaciones estructurales que permitan mejorar sus propiedades fisicoquímicas. Se propusieron las moléculas 60a-e los cuáles tienen un perfil farmacológico en acorde con lo establecido por el modelo QSPR, además de mejorar la actividad predicha de su valor de *p*MIC.

Como perspectivas, se deberá analizar más bases de datos en la búsqueda de compuestos que puedan ejercer actividad antibacterial. Estos compuestos pueden ser sujetos a análisis de similitud con otros compuestos químicos para la obtención y análisis biológicos, así como también a modificaciones estructurales usando los parámetros de la **Ecuación 18** para mejorar su actividad predicha.

Figura 40. Diagrama de huevo cocido para las moléculas 60a-e. Se estima que la molécula 60e tenga la probabilidad de atravesar la barrera hematoencefálica por sus características estructurales.

3.5 Referencias

- 1. Mayer, A. M. S.; Guerrero, A. J.; Rodríguez, A. D.; Taglialatela-Scafati, O.; Nakamura, F.; Fusetani, N., Marine Pharmacology in 2016–2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. *Marine Drugs* **2021**, *19*(2), 49.
- 2. Feher, M.; Schmidt, J. M., Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. *J Chem Inf Comput Sci* **2003**, *43*(1), 218-27.
- 3. Whitty, A.; Zhong, M.; Viarengo, L.; Beglov, D.; Hall, D. R.; Vajda, S., Quantifying the chameleonic properties of macrocycles and other high-molecular-weight drugs. *Drug Discov Today* **2016**, *21* (5), 712-7.
- 4. Buschleb, M.; Dorich, S.; Hanessian, S.; Tao, D.; Schenthal, K. B.; Overman, L. E., Synthetic Strategies toward Natural Products Containing Contiguous Stereogenic Quaternary Carbon Atoms. *Angew Chem Int Ed Engl* **2016**, *55* (13), 4156-86.
- 5. Ganesan, A., The impact of natural products upon modern drug discovery. *Curr Opin Chem Biol* **2008**, *12* (3), 306-17.
- 6. Kong, D.-X.; Jiang, Y.-Y.; Zhang, H.-Y., Marine natural products as sources of novel scaffolds: Achievement and concern. *Drug discovery today* **2010**, *15* (21-22), 884-886.
- 7. Wei, W.; Cherukupalli, S.; Jing, L.; Liu, X.; Zhan, P., Fsp(3): A new parameter for druglikeness. *Drug Discov Today* **2020**, *25* (10), 1839-1845.
- Furukawa, A.; Schwochert, J.; Pye, C. R.; Asano, D.; Edmondson, Q. D.; Turmon, A. C.; Klein, V. G.; Ono, S.; Okada, O.; Lokey, R. S., Drug-Like Properties in Macrocycles above MW 1000: Backbone Rigidity versus Side-Chain Lipophilicity. *Angew Chem Int Ed Engl* 2020, *59* (48), 21571-21577.
- 9. Cragg, G. M.; Schepartz, S. A.; Suffness, M.; Grever, M. R., The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. *J Nat Prod* **1993**, *56* (10), 1657-68.
- 10. Chhetri, B. K.; Lavoie, S.; Sweeney-Jones, A. M.; Kubanek, J., Recent trends in the structural revision of natural products. *Nat Prod Rep* **2018**, *35* (6), 514-531.
- 11. Muratov, E. N.; Bajorath, J.; Sheridan, R. P.; Tetko, I. V.; Filimonov, D.; Poroikov, V.; Oprea, T. I.; Baskin, II; Varnek, A.; Roitberg, A.; Isayev, O.; Curtarolo, S.; Fourches, D.; Cohen, Y.; Aspuru-Guzik, A.; Winkler, D. A.; Agrafiotis, D.; Cherkasov, A.; Tropsha, A., QSAR without borders. *Chem Soc Rev* **2020**, *49* (11), 3525-3564.
- 12. Banegas-Luna, A. J.; Ceron-Carrasco, J. P.; Perez-Sanchez, H., A review of ligand-based virtual screening web tools and screening algorithms in large molecular databases in the age of big data. *Future Med Chem* **2018**, *10* (22), 2641-2658.
- 13. Vazquez, J.; Lopez, M.; Gibert, E.; Herrero, E.; Luque, F. J., Merging Ligand-Based and Structure-Based Methods in Drug Discovery: An Overview of Combined Virtual Screening Approaches. *Molecules* **2020**, *25* (20), 4723.
- 14. Wang, Z.; Sun, H.; Shen, C.; Hu, X.; Gao, J.; Li, D.; Cao, D.; Hou, T., Combined strategies in structure-based virtual screening. *Phys Chem Chem Phys* **2020**, *22* (6), 3149-3159.
- 15. Neves, B. J.; Braga, R. C.; Melo-Filho, C. C.; Moreira-Filho, J. T.; Muratov, E. N.; Andrade, C. H., QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery. *Front*

Pharmacol **2018**, *9*, 1275.

- Zhang, L.; Fourches, D.; Sedykh, A.; Zhu, H.; Golbraikh, A.; Ekins, S.; Clark, J.; Connelly, M. C.; Sigal, M.; Hodges, D.; Guiguemde, A.; Guy, R. K.; Tropsha, A., Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. *J Chem Inf Model* 2013, *53* (2), 475-92.
- Neves, B. J.; Dantas, R. F.; Senger, M. R.; Melo-Filho, C. C.; Valente, W. C.; de Almeida, A. C.; Rezende-Neto, J. M.; Lima, E. F.; Paveley, R.; Furnham, N.; Muratov, E.; Kamentsky, L.; Carpenter, A. E.; Braga, R. C.; Silva-Junior, F. P.; Andrade, C. H., Discovery of New Anti-Schistosomal Hits by Integration of QSAR-Based Virtual Screening and High Content Screening. *J Med Chem* **2016**, *59* (15), 7075-88.
- Gomes, M. N.; Braga, R. C.; Grzelak, E. M.; Neves, B. J.; Muratov, E.; Ma, R.; Klein, L. L.; Cho, S.; Oliveira, G. R.; Franzblau, S. G.; Andrade, C. H., QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. *Eur J Med Chem* 2017, *137*, 126-138.
- 19. Lian, W.; Fang, J.; Li, C.; Pang, X.; Liu, A. L.; Du, G. H., Discovery of Influenza A virus neuraminidase inhibitors using support vector machine and Naive Bayesian models. *Mol Divers* **2016**, *20*(2), 439-51.
- 20. Kurczyk, A.; Warszycki, D.; Musiol, R.; Kafel, R.; Bojarski, A. J.; Polanski, J., Ligand-Based Virtual Screening in a Search for Novel Anti-HIV-1 Chemotypes. *J Chem Inf Model* **2015**, *55* (10), 2168-77.
- 21. Sorokina, M.; Steinbeck, C., Review on natural products databases: where to find data in 2020. *J Cheminform* **2020**, *12*(1), 20.
- 22. Sorokina, M.; Merseburger, P.; Rajan, K.; Yirik, M. A.; Steinbeck, C., COCONUT online: Collection of Open Natural Products database. *J Cheminform* **2021**, *13*(1), 2.
- 23. Rutz, A.; Sorokina, M.; Galgonek, J.; Mietchen, D.; Willighagen, E.; Gaudry, A.; Graham, J. G.; Stephan, R.; Page, R.; Vondrasek, J.; Steinbeck, C.; Pauli, G. F.; Wolfender, J. L.; Bisson, J.; Allard, P. M., The LOTUS initiative for open knowledge management in natural products research. *Elife* **2022**, *11*, e70780.
- 24. Pilon-Jimenez, B. A.; Saldivar-Gonzalez, F. I.; Diaz-Eufracio, B. I.; Medina-Franco, J. L., BIOFACQUIM: A Mexican Compound Database of Natural Products. *Biomolecules* **2019**, *9* (1), 31.
- 25. Munoz-Rodriguez, P.; Carruthers, T.; Wood, J. R. I.; Williams, B. R. M.; Weitemier, K.; Kronmiller, B.; Goodwin, Z.; Sumadijaya, A.; Anglin, N. L.; Filer, D.; Harris, D.; Rausher, M. D.; Kelly, S.; Liston, A.; Scotland, R. W., A taxonomic monograph of Ipomoea integrated across phylogenetic scales. *Nat Plants* **2019**, *5* (11), 1136-1144.
- 26. Nimmakayala, P.; Vajja, G.; Reddy, U. K., Ipomoea. In *Wild Crop Relatives: Genomic and Breeding Resources*, Kole, C., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp 123-132.
- 27. Protti, I. F.; Rodrigues, D. R.; Fonseca, S. K.; Alves, R. J.; de Oliveira, R. B.; Maltarollo, V. G., Do Drug-likeness Rules Apply to Oral Prodrugs? *ChemMedChem* **2021**, *16*(9), 1446-1456.
- 28. Stepanic, V.; Ziher, D.; Gabelica-Markovic, V.; Jelic, D.; Nunhuck, S.; Valko, K.; Kostrun, S., Physicochemical profile of macrolides and their comparison with small molecules. *Eur J Med Chem* **2012**, *47*(1), 462-72.
- 29. Walters, W. P., Going further than Lipinski's rule in drug design. *Expert Opin Drug Discov* **2012**, *7*(2), 99-107.
- 30. Leon-Rivera, I.; Del Rio-Portilla, F.; Enriquez, R. G.; Rangel-Lopez, E.; Villeda, J.; Rios, M.

Y.; Navarrete-Vazquez, G.; Hurtado-Dias, I.; Guzman-Valdivieso, U.; Nunez-Urquiza, V.; Escobedo-Martinez, C., Hepta-, hexa-, penta-, tetra-, and trisaccharide resin glycosides from three species of Ipomoea and their antiproliferative activity on two glioma cell lines. *Magn Reson Chem* **2017**, *55* (3), 214-223.

- Leon-Rivera, I.; Villeda-Hernandez, J.; Campos-Pena, V.; Aguirre-Moreno, A.; Estrada-Soto, S.; Navarrete-Vazquez, G.; Rios, M. Y.; Aguilar-Guadarrama, B.; Castillo-Espana, P.; Rivera-Leyva, J. C., Evaluation of the neuroprotective activity of stansin 6, a resin glycoside from Ipomoea stans. *Bioorg Med Chem Lett* 2014, *24* (15), 3541-5.
- 32. Miron-Lopez, G.; Herrera-Ruiz, M.; Estrada-Soto, S.; Aguirre-Crespo, F.; Vazquez-Navarrete, L.; Leon-Rivera, I., Resin glycosides from the roots of Ipomoea tyrianthina and their biological activity. *J Nat Prod* **2007**, *70* (4), 557-62.
- Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A. P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L. J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M. P.; Overington, J. P.; Papadatos, G.; Smit, I.; Leach, A. R., The ChEMBL database in 2017. *Nucleic Acids Research* 2016, *45* (D1), D945-D954.
- 34. Gonzalez, M.; Zamilpa, A.; Marquina, S.; Navarro, V.; Alvarez, L., Antimycotic spirostanol saponins from Solanum hispidum leaves and their structure-activity relationships. *J Nat Prod* **2004**, *67*(6), 938-41.
- 35. Lee, C. L.; Hwang, T. L.; Yang, J. C.; Cheng, H. T.; He, W. J.; Yen, C. T.; Kuo, C. L.; Chen, C. J.; Chang, W. Y.; Wu, Y. C., Anti-Inflammatory Spirostanol and Furostanol Saponins from Solanum macaonense. *J Nat Prod* **2014**, *77*(8), 1770-83.
- 36. Tezuka, Y.; Honda, K.; Banskota, A. H.; Thet, M. M.; Kadota, S., Kinmoonosides A-C, three new cytotoxic saponins from the fruits of Acacia concinna, a medicinal plant collected in myanmar. *J Nat Prod* **2000**, *63* (12), 1658-64.
- Pettit, G. R.; Schaufelberger, D. E.; Nieman, R. A.; Dufresne, C.; Saenz-Renauld, J. A., Antineoplastic agents, 177. Isolation and structure of phyllanthostatin 6. *J Nat Prod* 1990, *53* (6), 1406-13.
- Susplugas, S.; Hung, N. V.; Bignon, J.; Thoison, O.; Kruczynski, A.; Sevenet, T.; Gueritte, F., Cytotoxic arylnaphthalene lignans from a Vietnamese acanthaceae, Justicia patentiflora. *J Nat Prod* 2005, *68* (5), 734-8.
- 39. Shi, D. K.; Zhang, W.; Ding, N.; Li, M.; Li, Y. X., Design, synthesis and biological evaluation of novel glycosylated diphyllin derivatives as topoisomerase II inhibitors. *Eur J Med Chem* **2012**, *47*(1), 424-31.
- Zhang, H. J.; Rumschlag-Booms, E.; Guan, Y. F.; Wang, D. Y.; Liu, K. L.; Li, W. F.; Nguyen, V. H.; Cuong, N. M.; Soejarto, D. D.; Fong, H. H. S.; Rong, L., Potent Inhibitor of Drug-Resistant HIV-1 Strains Identified from the Medicinal Plant Justicia gendarussa. *J Nat Prod* 2017, *80* (6), 1798-1807.
- 41. Wang, T. M.; Hojo, T.; Ran, F. X.; Wang, R. F.; Wang, R. Q.; Chen, H. B.; Cui, J. R.; Shang, M. Y.; Cai, S. Q., Cardenolides from Saussurea stella with cytotoxicity toward cancer cells. *J Nat Prod* **2007**, *70* (9), 1429-33.
- 42. Gelmi, M. L.; Fontana, G.; Pocar, D.; Pontremoli, G.; Pellegrino, S.; Bombardelli, E.; Riva, A.; Balduini, W.; Carloni, S.; Cimino, M., Novel 3-O-glycosyl-3-demethylthiocolchicines as ligands for glycine and gamma-aminobutyric acid receptors. *J Med Chem* **2007**, *50* (9), 2245-8.
- 43. Yan, Y.; Yang, J.; Wang, L.; Xu, D.; Yu, Z.; Guo, X.; Horsman, G. P.; Lin, S.; Tao, M.; Huang, S. X., Biosynthetic access to the rare antiarose sugar via an unusual reductase-epimerase.

Chem Sci **2020**, *11* (15), 3959-3964.

- 44. Daina, A.; Michielin, O.; Zoete, V., SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. *Sci Rep* **2017**, *7*(1), 42717.
- 45. Lipinski, C. A., Lead- and drug-like compounds: the rule-of-five revolution. *Drug Discovery Today: Technologies* **2004**, *1* (4), 337-341.
- 46. Daina, A.; Zoete, V., A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. *ChemMedChem* **2016**, *11* (11), 1117-21.

CAPITULO 4 *DERIVADOS DE 8HQ COMO AGENTES ANTIBACTERIALES*

Como parte importante en el desarrollo y búsqueda de nuevos compuestos bioactivos, la optimización de fármacos representa una oportunidad para mejorar la potencia, afinidad, entre otros parámetros de sustancias químicas cuyo perfil farmacológico se conoce. En este sentido, dentro de la base de compuestos con actividad antibacterial reportada hacia A. baumannii explorada en el Capítulo 2, es posible llevar a cabo la optimización de compuestos que contengan un andamio estructural con características de compuesto líder. Entre estas moléculas, las denominadas quinolinas representan un grupo ampliamente estudiado que permiten modificaciones químicas particulares y que dentro de nuestra base de datos algunas moléculas se muestran con actividad antibacterial importante (Figura 41). Asimismo, la actividad del ion Zn(II) dentro de los organismos se ha reportado como esencial al ser parte integral de algunas proteínas. Reportes de actividad biológica de compuestos basados en Zn ha promovido la investigación para generar nuevos tratamientos contra cáncer, antibióticos, antifúngicos, entre otros. En este capítulo se muestra la optimización, de dos antibióticos, la nitroxolina y el clioquinol mediante incorporación de halógenos en sus estructuras, su síntesis y pruebas biológicas. También la exploración de complejos derivados de las hidroxiquinolinas con zinc y su análisis espectroscópico y pruebas biológicas se muestra en la segunda parte de este capítulo.

Figura 41. Estructuras químicas encontradas en la base de compuestos con actividad contra A. baumannii.

4.1 La 8-hidroxiquinolina (8HQ) como parte de los agentes antibacteriales

a. Propiedades fisicoquímicas de la 8HQ

Las 8-hidroxiquinolinas (también denominadas como oxinas, 8-quinolinoles, 8HQs) y sus derivados, son una subclase compuestos heterocíclicos que poseen el fragmento quinolina y que poseen una gran variedad de funciones biológicas. La 8HQ una pequeña molécula aromática plana, entre siete mono-hidroxiquinolinas isoméricas. La 8HQ se ha utilizado como fungicida en la agricultura y como conservador en las industrias textil, maderera y papelera.¹ Existe vasta cantidad de artículos relacionados con el uso de la 8HQ por su excelente facilidad de transformación química en condiciones suaves de reacción. Esta versatilidad le permite tener una amplia gama de aplicaciones, como por ejemplo en neuroprotección como agente quelante, en la disminución de agregados en enfermedades como Alzheimer², como anticancerígeno³ como intercalador de ADN e inhibidor de otras dianas biológicas⁴, inhibidor de metaloproteasas^{5, 6}, como parte de antivirales⁷, antifúngicos⁸, antibacteriales⁹, entre otros.

En particular, las 8-hidroxiquinolinas se han estudiado como agentes quelantes por su capacidad de coordinar iones metálicos. La 8HQ y sus derivados son ligantes bidentados que coordinan iones metálicos utilizando sus átomos de oxígeno y nitrógeno mediante el efecto quelato promovido al formar anillos de cinco miembros. Estos átomos donantes proporcionan preferencia por el Cu(II) y el Zn(II) y en lo general tienen una alta afinidad por iones metálicos

con altos estados de oxidación. Como consecuencia, los derivados de la 8HQ se utilizan ampliamente con fines analíticos, de separación y quelación de metales.¹⁰ En química de coordinación y organometálica son ampliamente estudiados por sus propiedades luminiscentes¹¹, como ligantes direccionales¹², entre otras características importantes. Asimismo, se conoce la poca solubilidad de la 8HQ en medio acuoso, excepto cuando éste se encuentra en medio ácido (pH entre 0.1 a 4) donde el par electrónico del nitrógeno se enlaza a un hidrógeno, adquiriendo éste carga positiva y facilitando su solubilidad en agua.

Entre las posiciones más notables para su derivación química se encuentran las posiciones 5 y 7 del anillo de 8-hidroxiquinolina, como se muestra en la **Figura 42**. El primero debido a los efectos resonantes causados por la donación del par electrónico del oxígeno, el cual es un director fuerte *orto/para-*, susceptible de adiciones electrofílicas aunado a un menor impedimento estérico. La posición 7 también es favorecida por efectos de resonancia, sin embargo, es menos recurrida por el efecto estérico que puede presentar la posición 8 ocupada por el grupo OH, especialmente si este se ha derivatizado a grupos más voluminosos como éteres o ésteres para su protección. Las posiciones 2 y 3 son poco favorecidas en el contexto de adiciones electrofílicas por el efecto de resonancia.⁹ De los estudios de relación estructura-actividad de derivados de 8HQ, se ha podido establecer algunas condicionantes para su actividad biológica.

Figura 42. Esquema general de la derivatización química en el fragmento 8-hidroxiquinolina, mostrando con énfasis las posiciones más estudiadas. Imagen adaptada de referencia [9]

Para la actividad antibacterial, sea en bacterias grampositivas o negativas, la protección del grupo OH disminuye o inhibe la acción de la 8HQ, resaltando la importancia de su estructura libre. Por otro lado, grupos voluminosos o de cadenas largas (alifáticas generalmente) conducen a una mayor actividad antibacterial. También es notable observar que la posición 3

94

del anillo de quinolina puede modificar severamente la actividad dependiendo de la naturaleza del sustituyente. Finalmente, las posiciones 5 y 7 suelen estar constituidas por grupos electroatractores tales como halógenos o grupos nitro, aunque también es conocido que la variación estructural puede ayudar a mejorar las propiedades físicas del compuesto como su solubilidad.

b. Nitroxolina y clioquinol como agentes antibacteriales

Entre los compuestos más representativos derivados de la 8HQ, se encuentran dos en particular: la nitroxolina y el clioquinol, cuyas estructuras químicas se muestran en la **Figura 43**. Desde un punto de vista químico, ambas estructuras poseen grupos funcionales electroatractores. Los halógenos son considerados como grupos que generan mayor lipofilicidad a las estructuras orgánicas, mientras que el grupo nitro permite mayor hidrosolubilidad.

Figura 43. Análisis de las moléculas nitroxolina y clioquinol como antibacteriales.

A pesar de sus versátiles propiedades farmacológicas (antiparasitarias, antibacterianas, antifúngicas, antiinflamatorias, atenuantes de enfermedades neurodegenerativas, antineoplásicas), durante muchas décadas el clioquinol generó temores sobre su uso clínico debido a una reacción adversa grave común resultante de su uso principalmente en Japón: la neuromielitis óptica subaguda (SMON), descubierta en Japón alrededor del año 1958. Sin embargo, teniendo en cuenta las propiedades del clioquinol como agente quelante de metales, el grupo de Ashley Bush y colaboradores decidieron utilizar la sustancia en un modelo murino de la enfermedad de Alzheimer, con un resultado interesante: la reducción de placas amiloides en el cerebro de ratones. Estos reportes, aunado al avance de la química medicinal, biología molecular y genética, se pudo obtener modelos donde controlando la dosis de clioquionol pudo ser utilizada en pacientes con Alzheimer, mejorando su capacidad cognitiva de los pacientes tras 36 semanas de dosis. Sin embargo, su capacidad como agente antibacteriano ha sido menos estudiado. Considerando ensayos *in vitro*, el grupo de Chan *et al.*¹³ evaluó la eficacia de la asociación de clioquinol con tiostreptón, un antibiótico oligopéptido cíclico natural de la clase de los tiopéptidos obtenido de varias cepas de estreptomicetos. Basándose en la capacidad quelante de metales pesados del primer compuesto para optimizar la actividad antibacteriana del segundo compuesto, reportaron que el clioquinol en una concentración de 1 µg/ml, junto con el tiostreptón, inhibió eficazmente el crecimiento de A. baumannii. En esta misma línea de estudio, Magallón *et al.*¹⁴ también enfatizaron la capacidad del clioquinol así como de la piritiona para formar complejos con iones como Cu(II) y el Zn(II) como parte de su actividad antibacteriana, reduciendo los niveles de resistencia en cepas de *A. baumannii*. La adición de cloro y yodo a la estructura genera que la molécula se más lipofílica, lo que explicaría su poca solubilidad y su utilidad sólo en combinación con otros compuestos químicos.

La nitroxolina ha tenido menos controversia y mayor exploración en cuanto a su posible actividad antimicrobiana. El fármaco es conocido por su actividad bacteriostática contra *Escherichia coli*, un importante agente etiológico que causa infecciones del tracto urinario en pacientes hospitalizados.¹⁵ La nitroxolina se utilizó por primera vez en 1962 para el tratamiento y profilaxis de infecciones agudas y recurrentes del tracto urinario causadas por *E. coli* en pacientes adultos y pediátricos. Debido al poco conocimiento de la farmacología y técnicas en aquel entonces dificultaba definir una ventana terapéutica adecuada para la acción antibacteriana efectiva de la sustancia y comprender su espectro de acción, por lo que poco a poco llevo a su desuso en gran parte del mundo. En reportes obtenidos por Abouelhassan *et al.*,¹⁶ la nitroxolina demostró actividad antibacteriana de amplio espectro, mostrando valores de MICs de 4.69 a 6.25 µM para *A. baumannii*, 12.5 µM para *E. coli*, 9.38 a 25 µM para *S. aureus*, 18.8 µM para *S. epidermidis*. Asimismo, en un modelo *ex vivo* de infección de heridas por biopelículas bacterianas (con fragmentos de piel de cerdo), la nitroxolina redujo la viabilidad de las biopelículas formadas por *A. baumannii*, *E. coli*, *S. aureus* y *S. epidermidis*, con una tasa de destrucción del 99%.

4.2 Análisis de derivados de 8HQ mediante modelo QSPR de antibacteriales

Debido a los potenciales usos de la nitroxolina y el clioquinol como agentes antibacteriales, usando el modelo OSPR de la Ecuación 18, se obtuvieron los valores predichos para la actividad antibacterial de diferentes derivados de 8HQ que se muestran en la Figura 44. En este sentido, se muestran valores de *p*MIC que oscilan entre 1.2 y 4.2, como se muestra en la **Tabla 6**. Debido a la estructura de los compuestos analizados, es previsible el entendimiento de los valores predichos: a) todas son moléculas planas que poseen anillos de 6 miembros, lo cual se refleja en valores similares para el descriptor D/Dr06; b) al ser moléculas pequeñas, no se observa gran ramificación, por lo que el valor de TI2 se tiene en las estructuras como valores pequeños cercanos a 1, indicando una forma más circular; c) poseen un donador de hidrógeno que tiene la capacidad de formar enlaces de hidrógeno intramoleculares. Solamente en el caso de las moléculas 67 y 74 poseen el descriptor H051 asociado al número de hidrógenos de metilo presentes en la molécula; d) finalmente, todos poseen el descriptor N075 debido a la presencia del nitrógeno de quinolina cuya hibridación sp^2 le confiere aromaticidad. Asimismo, el alto valor de autocorrelación que existe en las moléculas que poseen halógenos pesados como el caso del compuesto 69, 72 y 76, genera que exista una disminución en la actividad predicha de las sustancias. No obstante, el modelo no considera los efectos causados por los átomos de halógeno que se encuentran distribuidos en las moléculas en otros aspectos como la solubilidad. Por otro lado, los valores predichos para las moléculas 72 y 73 no son los mismos que los obtenidos experimentalmente, permitiendo observar las limitaciones que el modelo QSPR de la Ecuación 18 tiene para algunas moléculas. Sin embargo, es notable observar que para la molécula 77, el cual se plantea como un derivado de clioquinol, se tiene un valor predicho de *p*MIC de 4.01, lo que sugiere podría tener buena actividad antibacterial. Asimismo, las moléculas 78, 79 y 80, estructuras derivadas de la nitroxolina, presentan valores mayores a 3.35.

Figura 44. Compuestos derivados de 8HQ (molécula 66) analizados mediante el modelo QSPR general.

Por lo mismo se decidió proceder a la evaluación biológica de derivados de 8HQ, partiendo de compuestos comerciales y sintetizando los que fueran necesarios.

MolID	MW	D/Dr06	GATS6m	nHDon	nHBonds	H051	N075	TI2	<i>p</i> MIC
66	145.17	39.689	0	1	1	0	1	1.075	4.066
67	159.2	45.609	0	1	1	3	1	1.227	3.757
68	179.61	44.768	0	1	1	0	1	1.026	4.068
69	224.06	45.609	6.073	1	1	0	1	1.164	1.412
70	214.05	50.688	3.648	1	1	0	1	1.085	2.475
71	396.95	50.688	3.577	1	1	0	1	1.085	2.506
72	305.5	50.688	6.509	1	1	0	1	1.085	1.222
73	190.17	56.336	1.378	1	1	0	1	1.473	3.482
74	228.08	56.608	2.914	1	1	3	1	1.243	2.488
75	225.24	62.12	0.149	2	1	0	1	1.631	4.142
76	258.5	50.688	6.215	1	1	0	1	1.085	1.351
77	224.61	63.768	0.189	1	1	0	1	1.537	4.008
78	224.61	62.256	1.622	1	1	0	1	1.381	3.376
79	269.06	62.256	1.548	1	1	0	1	1.381	3.409
80	316.06	62.256	1.529	1	1	0	1	1.381	3.417

Tabla 6 – Valores predichos de *p*MIC de derivados de 8HQ mediante el uso del modelo de la **Ecuación 18**.

4.3 Síntesis, espectroscopia y evaluación biológica de derivados de la 8HQ

Las moléculas 66 a 75 son compuestos comerciales y de los cuales se ha examinado su actividad biológica como posibles antibióticos. Sin embargo, las moléculas 76 a 80 no han sido exploradas. Estas sustancias son análogos de clioquinol y nitroxolina, cuya actividad se describe como activa frente a *A. baumannii*, sin embargo, sólo en presencia de otros inhibidores como es el caso de del tiostreptón anteriormente descrito. Por lo tanto, se llevó a cabo la síntesis de las moléculas 76 a 80 para explorar sus posibles propiedades antibacteriales.

c. Síntesis de 7-bromo-5-cloro-8-hidroxiquinolina, molécula 76

La reacción se llevó a cabo mediante la solubilización de la 5-cloro-8-hidroxiquinolina (5Cl-8HQ) en tetrahidrofurano (THF) anhidro (50 mL). Tras 10 minutos de agitación, se agregó 1.1 equivalentes de *N*-bromosuccinimida (NBS) a la disolución bajo atmósfera inerte de N₂ (o Ar). Posteriormente, cinco gotas de H₂SO₄ se añadieron al medio de reacción, a lo cual, tras cinco minutos de agitación se observó un aumento brusco de la temperatura (60°C). Tras dos horas de reacción a temperatura ambiente, se observó la formación de sólido café abundante. La suspensión se vertió en 300 mL de agua fría, del cual se generó un sólido amarillo pálido. El sólido se filtró y se purificó mediante recristalización en etanol (EtOH) caliente, de la cual se obtuvo un sólido blanco cristalino en forma de agujas en 72% de rendimiento, según se muestra en el **Esquema 2**. El compuesto solubiliza en dimetilsulfóxido (DMSO), THF y EtOH caliente; es poco soluble en acetona (Me₂CO), diclorometano (DCM o CH₂Cl₂), y cloroformo (CHCl₃). Es insoluble en agua, hexano (nHex), benceno (C₆H₆), tolueno (PhMe), acetonitrilo (MeCN), éter dietílico (Et₂O), acetato de etilo (AcOEt) y alcoholes a temperatura ambiente.

Esquema 2. Síntesis del compuesto 7-bromo-5-cloro-8-hidroxiquinolina, molécula 76.

Se obtuvo la Resonancia Magnética Nuclear (RMN) de ¹H en DMSO-d₆ anhidro del compuesto 76, **Figura 45**. Se observan cuatro señales en la región de aromáticos, ubicados en δ (ppm) 8.99 (*dd*), 8.50 (*dd*), 7.9 (*s*) y 7.77 (*dd*). La señal en 7.9 ppm se asigna al protón entre los átomos de Cl y Br. Debido al efecto de deslocalización electrónica del anillo causado por los halógenos, las señales salen a campo más bajo que en el compuesto de partida. Por otro lado, la señal en 8.99 ppm se asigna al protón en posición *orto* al nitrógeno de la quinolina la cual se desdobla como un doble de dobles (*dd*), con valores de constantes de acoplamiento de ³*J*_{HH} = 4.2 y ⁴*J*_{HH} = 1.6 Hz.

La asignación se basa en la cercanía del protón con el nitrógeno el cual genera un efecto de desprotección de la densidad electrónica; por tanto, su desplazamiento químico se muestra a

campo bajo. La señal en 8.5 ppm (*dd*), se asigna al protón en posición *para* a nitrógeno, cuyas constantes de acoplamiento poseen valores de ${}^{3}J_{HH} = 8.5 \text{ y} {}^{4}J_{HH} = 1.6 \text{ Hz}$. Esta asignación se basa en la desprotección del hidrógeno en posición "*para*" por causa del efecto inductivo del nitrógeno en el anillo de quinolina. Finalmente, la señal ubicada en 7.77 ppm también se desdobla como un *dd* con valores de valores de ${}^{3}J_{HH} = 8.5 \text{ y} {}^{4}J_{HH} = 4.1 \text{ Hz}$. El hidrógeno "*para*" posee una correlación a cuatro enlaces con el hidrógeno "*orto*" debido a la disposición en forma "w" que existe entre ambos átomos; por lo mismo, la constante de acoplamiento se refleja en un valor pequeño de ${}^{4}J_{HH} = 1.6 \text{ Hz}.^{17, 18}$ Estos valores son similares a otros sistemas de quinolinas reportados en la literatura.¹⁹ Una señal ensanchada se puede apreciar en 10.98 ppm, la cual corresponde para el grupo OH de la molécula 76 con posible intercambio con agua presente en concentraciones bajas.

Figura 45. RMN de ¹H (500 MHz, DMSO-d₆) del compuesto 7-bromo-5-cloro-8-hidroxiquinolina. 76.

El espectro de ¹³C{¹H} muestra 9 señales correspondientes a los carbonos de quinolina, como se muestra en la **Figura 46**. Para establecer el orden de las señales con sus respectivos átomos de carbono, se utilizaron espectros en 2D HSQC(¹H/¹³C{¹H}) y HMBC(¹H/¹³C{¹H}), **Figura 47**.

Del espectro de HSQC se muestran cuatro correlaciones a un enlace protón – carbono, que se asignan de la siguiente manera: a 149.8 ppm está unido al protón en 8.99 ppm; a 123.3 ppm está unido al hidrógeno en 7.77 ppm; la señal de 7.98 ppm en protón se enlaza directamente al carbono en 130.1 ppm; y finalmente la señal de carbono en 133.4 correlaciona con el protón en 8.5 ppm. El resto de los carbonos se asignaron con base en el espectro de HMBC el cual muestra las correlaciones a 2 hasta 4 enlaces. Se determinó que el carbono unido al grupo OH se presenta a 150.5 ppm debido al efecto desprotector del oxígeno por su alta electronegatividad. Los carbonos en 125.2 y 104.4 ppm corresponden a los unidos a Cl y Br, respectivamente.

Finalmente, la señal en 119.1 ppm se asigna al carbono cuaternario cercano a cloro, mientras que la señal restante en 138.7 ppm corresponde al carbono cuaternario unido a nitrógeno. El espectro de infrarrojo del compuesto 76 muestra una banda ancha ubicada en 3075 cm⁻¹, la cual está asociado a la banda de OH de la estructura de 8HQ, característico de estos sistemas.

Figura 47. Espectros parciales RMN HSQC/HMBC ¹H,¹³C{¹H, DMSO-d₆, del compuesto. 76.

El mecanismo de reacción, **Esquema 3**, se propone de la siguiente manera:

- Como primer paso, la NBS lleva su a cabo protonación mediante el uso del par de electrones de un átomo de oxígeno hacia la especie H⁺ proveniente del ácido sulfúrico.
- Posteriormente, ocurre un ataque de la 5Cl-8HQ hacia el átomo de bromo de la NBS protonada, a través de un mecanismo de sustitución electrofílica aromática.
- En el tercer paso, la abstracción de un hidrógeno de la quinolina bromada regenera la aromaticidad del anillo y la formación del producto de reacción.

En el trabajo mostrado por Adhikari²⁰ sobre la bromación de la acetofenona, se reportó que la presencia de un ácido de Lewis como lo es el ácido *p*-toluenosulfónico (*p*TsOH) es esencial para el comienzo de la reacción. Bajo diferentes condiciones de reacción variando la estequiometría de la NBS y acetofenona usada, así como la temperatura, la formación del producto bromado. El mecanismo sugerido con base en los resultados favorece la protonación del oxígeno de carbonilo, generando la formación del catión bromo. Similar propuesta es mostrada por Xue y colaboradores²¹ para la bromación de compuestos carbonílicos insaturados usando ácido benzoico como catalizador ácido.

Esquema 3. Mecanismo de reacción para la formación del compuesto 76.

Mediante evaporación lenta de una solución saturada del compuesto 76 en CH₂Cl₂, se obtuvieron cristales adecuados para su difracción por Rayos X, **Figura 48**.

Figura 48. Diagrama ORTEP del compuesto 76. Elipsoides al 50% de probabilidad.

La estructura muestra cuatro moléculas dentro de la celda cristalina, de un sistema monoclínico. La molécula presenta un enlace de hidrógeno intramolecular O-H…N con una distancia de 2.58(13) Å, en un anillo de 5 miembros representado por el grafo S(5). Por otro lado, la estructura cristalina posee diferentes enlaces intermoleculares. El primero de ellos se muestra entre dos moléculas de quinolina donde los grupo O-H…N forman enlaces de hidrógeno con distancias de enlace de 1.847(14) Å. Estos enlaces de hidrógeno generan estructuras cíclicas (*Ring*, R) de 10 miembros representados por el grafo $R_2^2(10)$, donde el superíndice y subíndice en R_2^2 denotan el número de grupos donadores de hidrógeno y el número de grupos aceptores, respectivamente. Un anillo de 20 miembros es generado a través de interacciones no covalentes entre un hidrógeno de CH y el átomo de Br, en un enlace de hidrógeno no clásico C-H···Br, con un valor de distancia de 2.992 Å. La formación del anillo sigue el recorrido a través de los contactos O-H···N de ambas quinolinas, tal como se muestra en la **Figura 49**, representado por el grafo $R_4^4(20)$. Estas interacciones por enlace de hidrógeno permiten que las moléculas se orienten semi-perpendicular entre ellas, formando cadenas en forma de zigzag a lo largo de los ejes *a* y *c*, como se muestra en la **Figura 50**. Generando planos a través de dos moléculas conectadas a través de enlaces de hidrógeno, se puede observar un acomodo semi-perpendicular con un ángulo de 58° entre planos, tal como se muestra en la **Figura 51**. Derivado de este apilamiento, interacciones π - π entre anillos aromáticos son observados a lo largo del eje b dentro del cristal. Distancias calculadas entre centroides para cada conjunto de átomos formando anillos denominados como Cg1 (conformado por seis átomos N1, C1, C2, C3, C4, C9), Cg2 (seis átomos C4, C5, C6, C7, C8, C9), y Cg3 (anillo de 10 miembros N1, C1, C2, C3, C4, C5, C6, C7, C8, C9), Figura 52. Interacciones entre anillos Cg1…Cg1, Cg2…Cg2 y Cg3…Cg3 poseen valores de 3.963(4) Å cada uno.

Figura 49. Principales interacciones intermoleculares de la molécula **76**. Interacciones intermoleculares vía enlaces de hidrógeno entre grupo OH…N de quinolina, $R_2^2(10)$, y CH…Br, $R_4^4(20)$. También un enlace de hidrógeno intramolecular *S*(5) de la quinolina.

Los parámetros de celda y otros datos importantes de la estructura cristalina se muestran en la **Tabla 7**.

Fórmula Empírica	C9H5ClBrNO
Peso molecular (g/mol)	258.5
Temperatura/K	293
Sistema Cristalino (Grupo Espacial)	Monoclínico (<i>P 2/c</i>)
a/Å	15.082(4)
b/Å	3.9623(6)
c/Å	16.276(6)
α/°	90.00
β/°	114.52(4)
Y/°	90.00
Volumen/Å ³	884.928
Z	2
Densidad calculada (pcalcg/cm³)	1.940
μ/mm^{1}	4.898
F(000)	504.0
Crystal size/mm³	$0.16 \times 0.14 \times 0.12$
Radiation	Μο Κα (λ = 0.71073)
"20 range for data collection"/"	8.912 a 58.998
"Index ranges"	$-19 \le h \le 20, -4 \le k \le 3, -15 \le l \le 19$
Reflexiones colectadas	2555
Reflexiones independientes	1480 [$R_{int} = 0.0537$, $R_{sigma} = 0.0801$]
Data/restricciones/parámetros	1480/0/122
"Goodness-of-fit on F ² "	1.000
Índices R finales [I>=2σ (I)]	$R_1 = 0.0818, wR_2 = 0.1890$
Índices R finales [todos los datos]	$R_1 = 0.1318, wR_2 = 0.2346$
"Largest diff. peak/hole" e Å ^{.3}	1.05/-1.37

Tabla 7. Datos cristalográficos del compuesto 7-bromo-5-cloro-8-hidroxiquinolina

Figura 50. Apilamiento de moléculas vía interacciones π - π . La interacción se promueve por la formación de enlaces de hidrógeno intermoleculares.

Figura 51. Planos generados a través de dos moléculas conectadas por enlaces de hidrógeno, con un acomodo semi–perpendicular y un ángulo de 58° entre planos.

_

Figura 52. Apilamiento π - π desfazado, mostrando las principales interacciones entre los centroides de las quinolinas.

Adicionalmente, interacciones por enlace de halógeno (Hal) débil entre Cl y Br son observados en la estructura cristalina, donde el átomo de bromo apunta de manera adyacente al átomo de cloro. El tipo de interacción que presenta la molécula 76 puede categorizarse dentro de enlaces de Tipo II, **Figura 53**, donde el ángulo R–Hal–Hal y entre moléculas se observa de 180° y de 90°, con interacciones de un halógeno a otra vía el agujero σ . El valor del ángulo entre el C7–Br1– Cl1 es de $\theta_2 = 93.7^\circ$, muy cercano al valor ideal. Por otro lado, debido a que el ángulo formado por los átomos C5–Cl1–Br1 muestra un valor de 147.03°, el cual está por debajo del ángulo ideal de 180°, se puede establecer que el contacto de los pares de electrones del bromo tiene una interacción muy débil con el átomo de cloro.²²⁻²⁵

La distancia calculada entre pares de átomos es de 3.951(3) Å. Sin embargo, este valor se encuentra por encima de la suma de radios de van der Waals, de 3.6 Å, sugiriendo interacciones débiles. Shikhaliyev *et al.,*²⁶ reportaron la síntesis de diclorodiazabutadienos–aril–bromo sustituidos, los cuáles mostraron enlaces de halógenos entre átomos de Cl y Br, con valores de enlaces de 3.478(2) y 3.823(2) Å, y valores de ángulos de 176.86° y 106.79°, **Figura 54**. Estos valores son lejanos a los observados en la molécula 76, no obstante, la direccionalidad de las interacciones es similares. La corroboración de enlaces de halógeno puede establecerse mediante cálculos DFT para observar la distribución electrónica alrededor del halógeno, tal como se realizó para los compuestos diazabutadienos.

Figura 53. Interacciones por enlaces de halógeno, mostrando las características que categorizan los contactos en enlaces de halógeno de Tipo II.

Figura 54. Estructura de diazabutadienos halogeno-sustituidos mostrando enlaces de halógeno entre átomos de cloro y bromo a diferentes ángulos y distancias de enlace. Imagen adaptada de referencia [26]

d. Síntesis de 5-cloro-8-hidroxi-7-nitroquinolina

La reacción se llevó a cabo mediante la solubilización de la 5Cl-8HQ en medio ácido usando ácido acético como disolvente, AcOH (50 mL). Se disminuyó la temperatura a 0°C usando baño de hielo/acetona, y con vigorosa agitación, se añadió gota a gota HNO₃ concentrado (68-70%). El sólido formado se filtró y purificó mediante recristalización usando CH₂Cl₂. Se obtuvo un sólido naranja aterciopelado en 84% rendimiento, según se muestra en el **Esquema 4**. El compuesto es soluble en poca concentración en CH₂Cl₂ y CHCl₃. El compuesto solubiliza en dimetilsulfóxido (DMSO), y THF; es poco soluble en acetona, diclorometano (DCM o CH₂Cl₂), EtOH caliente y cloroformo (CHCl₃). Es insoluble en agua, hexano, benceno (C₆H₆), tolueno (PhMe), acetonitrilo (MeCN), éter dietílico (Et₂O), y alcoholes a temperatura ambiente. La solubilidad en DMSO aumenta conforme se incrementa la temperatura del medio.

Esquema 4. Síntesis del compuesto 5-cloro-8-hidroxi-7-nitroquinolina.

Se obtuvo la RMN de ¹H en DMSO-d₆ anhidro del compuesto 77, **Figura 55**. Se observan cuatro señales en la región de aromáticos, ubicados en δ (ppm) 9.09 (*dd*), 8.59 (*dd*), 8.19 (*s*) y 7.94 (*dd*). La señal en 8.19 ppm se asigna al protón entre los grupos Cl y NO₂ el cual se muestra como un singulete. Debido al efecto de deslocalización electrónica del anillo causado por el cloro, adicional al efecto electroatractor del grupo nitro, las señales se observan a campo más bajo que en el compuesto de partida. La señal en 9.09 ppm se asigna al protón en posición *orto* al nitrógeno de la quinolina como un doble de dobles (*dd*), con valores de constantes de acoplamiento de ³*J*_{HH} = 4.3 y ⁴*J*_{HH} = 1.5 Hz. La señal en 8.59 ppm (*dd*), se asigna al protón en posición *para* a nitrógeno, cuyas constantes de acoplamiento poseen valores de ³*J*_{HH} = 8.5 y ⁴*J*_{HH} = 4.3 Hz, en analogía con lo discutido para el compuesto 76. El espectro de ¹³C{¹H} muestra 9 señales correspondientes a los carbonos del anillo de quinolina. Para su correcta asignación, se utilizaron espectros en 2D HSQC(¹H/¹³C{¹H}) y HMBC(¹H/¹³C{¹H}), **Figura 56**.

Figura 55. RMN de ¹H (500 MHz, DMSO-d6) del compuesto 5-cloro-8-hidroxi-7-nitroquinolina

Del espectro de HSQC se muestran cuatro correlaciones a un enlace protón – carbono, que se asignan de la siguiente manera: a 150.1 ppm está unido al protón en 9.09 ppm; a 125.9 ppm está unido al hidrógeno en 7.94 ppm; la señal de 8.19 ppm en protón se enlaza directamente al carbono en 121.9 ppm; y finalmente la señal de carbono en 133.6 correlaciona con el protón en 8.59 ppm. Es de notar el cambio en los desplazamiento del carbono "*meta*" a nitrógeno en el anillo tipo piridina, donde para el derivado 76, la señal se observa a campo alto (123.3) comparado con el del grupo nitro, molécula 77, que tiene un desplazamiento en 125.9 ppm, es decir a campo bajo. Por otro lado, la señal de carbono del hidrógeno singulete, su señal para el compuesto 76 es en 130.1 ppm, mientras que para la molécula 77, este se observa en 121.9, es decir, hay un cambio de campo bajo a campo alto. Este cambio se puede analizar con base en la estructuras resonantes, donde la densidad electrónica del carbono varía de acuerdo con el sustituyente unido a la quinolina. El espectro de infrarrojo muestra una banda en 2275 cm⁻¹, la cual se asigna a la banda de OH, la cual se encuentra desplazado por efecto del grupo nitro. Dos bandas a 3128 y 3077 cm⁻¹ se pueden observar con mediana intensidad, asignada a las bandas de estiramiento de carbonos *sp*² del anillo de quinolina.

Figura 56. Espectros parciales RMN HSQC/HMBC ¹H, ¹³C{¹H}, DMSO-d₆, del compuesto 77.

El mecanismo, **Esquema 5**, de la reacción para la generación de la molécula 77 se propone de la siguiente manera:

- Como primer paso, el ácido nítrico lleva a cabo protonación del grupo OH a través del ataque nucleofílico del oxígeno al hidrógeno del AcOH.
- Posteriormente, la generación del catión nitronio se lleva mediante expulsión de una molécula de agua.
- En el tercer paso, el ataque nucleofílico del par de electrones del anillo de quinolina hacia el ion nitronio.
• En el último paso, la abstracción del protón de la quinolina por parte del ácido acético para la regeneración de la aromaticidad del anillo y formación del producto final.

La reactividad del ácido nítrico en medios orgánicos propuesto por Benford e Ingold^{27, 28} en 1930, propone la generación del ion nitronio en nitrometano y en ácido acético en lugar del ácido sulfúrico. Se observó la nitración de compuestos aromáticos, estableciendo el paso determinante la adición del nitronio al anillo aromático a través de una sustitución electrofílica aromática, y validado por experimentos de cinética química por Andreozzi *et al.*^{29, 30}

Esquema 5. Mecanismo de reacción para la formación del compuesto 77.

De una solución saturada a temperatura ambiente de DMSO, se obtuvieron cristales adecuados para su difracción por Rayos X, **Figura 57**. Se puede observar en la **Figura 58** que el grupo nitro posee un ángulo de torsión al plano de la quinolina, para los átomos C6–C7–N2–O3 de 16.24° y para C8–C7–N2–O2 de 17.95°. Es notable esta conformación debido a la presencia del oxígeno O1 cercano al átomo O2 del grupo nitro, con una distancia de 2.639 Å.

Debido a la cercanía para ambos átomos de oxígeno se esperaría que el grupo nitro adoptara una conformación perpendicular al anillo de quinolina para minimizar repulsión electrónica. Más aún, durante el proceso de refinamiento se pudo observar la localización del hidrógeno H1 sobre el átomo de nitrógeno N1 de la quinolina mediante análisis de densidad electrónica residual, por lo que la estructura se podría establecer como un zwitterion.

Figura 57. Estructura de Rayos de X de monocristal del compuesto 77. Elipsoides al 50% de probabilidad.

Los parámetros de celda y otros datos importantes de la estructura cristalina se muestran en la **Tabla 8**.

Fórmula Empírica	C9H5ClN2O3
Peso molecular (g/mol)	224.60
Temperatura/K	293
Sistema Cristalino (Grupo Espacial)	Triclínico (<i>P-1</i>)
a/Å	5.6197(5)
b/Å	8.5951(9)
c/Å	9.0163(10)
α/°	95.358(9)
β/°	96.954(9)
Y/°	92.084(8)
Volumen/Å ³	429.911
Z	2
Densidad calculada ($ ho_{calc}g/cm^3$)	1.735
μ/mm ⁻¹	0.429
F(000)	228.0
Crystal size/mm³	$0.16 \times 0.14 \times 0.12$
Radiation	Mo Kα (λ = 0.71073)
"20 range for data collection"/°	6.272 to 59.058
"Index ranges"	$-7 \le h \le 6, -9 \le k \le 11, -11 \le l \le 11$
Reflexiones colectadas	3418
Reflexiones independientes	2038 [$R_{int} = 0.0208$, $R_{sigma} = 0.0377$]
Data/restricciones/parámetros	2038/0/140
"Goodness-of-fit on F ² "	1.048
Índices R finales [I>=2σ (1)]	$R_1 = 0.0420$, $wR_2 = 0.0915$
Índices R finales [todos los datos]	$R_1 = 0.0586$, $wR_2 = 0.1050$
"Largest diff. peak/hole" e Å-3	0.36/-0.24

Tabla 8. Datos cristalográficos del compuesto 5-cloro-8-hidroxi-7-nitroquinolina

Figura 58. Conformación del grupo nitro respecto del plano de la estructura plana de la quinolina, con ángulos de 16.24 y 17.95°.

Diferentes interacciones intermoleculares pueden observarse dentro del cristal y que se muestran en la **Figura 59**.

Figura 59. Principales interacciones de la molécula 77. Interacciones intermoleculares vía enlaces de hidrógeno entre grupo OH…N de quinolina, $R_2^2(10)$, CH…O, $R_4^4(20)$, O…O, $R_2^2(24)$, CH…O/O…Cl, $R_2^2(30)$ y O…Cl, R(12). También un enlace de hidrógeno intramolecular *S*(5) de la quinolina.

La molécula presenta un enlace de hidrógeno intramolecular O–H…N con una distancia de 2.325(2) Å, en un anillo de 5 miembros representado por el grafo *S*(5). Por otro lado, la estructura cristalina posee diferentes enlaces intermoleculares. El primero de ellos se muestra entre dos moléculas de quinolina donde los grupos O–H…N forman enlaces de hidrógeno con distancias de enlace de 1.823(2) Å. Estos enlaces de hidrógeno generan estructuras cíclicas representados por el grafo $R_2^2(10)$. Un anillo de 20 miembros es generado a través de interacciones no covalentes entre un hidrógeno de CH y el átomo de O3, en un enlace de hidrógeno no clásico C–H…O, con un valor de distancia de 2.519 Å.

La formación del anillo sigue el recorrido a través de los contactos O–H…N de ambas quinolinas, representado por el grafo $R_4^4(20)$. Estas interacciones por enlace de hidrógeno permiten que las moléculas se orienten de manera paralela entre sí, formando estructuras con contactos entre heteroátomos y los centroides de los anillos aromáticos. Contactos entre átomos de oxígeno 02…02 entre grupos nitro de dos moléculas generan interacciones con valores de enlace de 3.507(2) Å, las cuales se representan por el grafo $R_2^2(24)$. Usando esta misma interacción C–H…O, un anillo de 30 miembros, representado por el grafo $R_2^2(30)$, es generado a través de interacciones de halógeno entre el átomo de Cl1 y el O3 del grupo nitro, con un valor de distancia de enlace de 3.186(2) Å.

Finalmente, un anillo de 12 miembros es generado mediante interacciones de enlace de halógeno entre 0…Cl, representado por el grafo R(12). La molécula presenta también interacciones heteroátomo– π , principalmente vía los átomos de oxígeno y cloro en diferentes posiciones dentro del cristal. Por ejemplo, una interacción mediante el átomo de O1 hacia el centroide Cg2 (C4, C5, C6, C7, C8, C9) posee un valor de distancia de 3.3743(19) Å. Distancias entre anillos de tipo Cg1 (N1, C1, C2, C3, C4, C9) y los átomos de Cl1 y O2 poseen valores de 3.3583(10) y 3.1380(19) Å respectivamente. El anillo Cg3 (N1, C1, C2, C3, C4, C5, C6, C7, C8, C9) posee contactos con los átomos de Cl1 y O1 con valores calculados de 3.6495(9) y 3.4622(19) Å. Estas interacciones se muestran en la **Figura 60**.

Finalmente, interacciones del átomo de Cl con el centroide formado por los átomos N2–C7, tienen un valor de distancia de 3.422 Å. Esta última interacción se observa debido a la generación de un enlace de halógeno entre el cloro y el agujero π del grupo nitro. Este tipo de contactos han sido descritos en la literatura bajo esquemas de cálculos DFT que muestran zonas de potencial interacción entre una base de Lewis y el grupo nitro. Por ejemplo, Frontera^{31,32} y colaboradores, reportaron los cálculos DFT sobre estructuras de tipo óxidos de nitropiridinas, los cuáles se proponen como excelentes donadores de agujeros π , donde se observa una región de potencial de +22.5 kcal/mol el cual se establece como un punto deficiente de electrones, **Figura 61a**. Asimismo, la estructura cristalina del compuesto revela que en el estado sólido, distancias de enlaces cortas de 2.99 y 3.06 Å pueden permitir la interacción entre un átomo de oxígeno y el agujero π , **Figura 61b**. En otra publicación por parte de Tai *et al.*,³³ se sintetizó un compuesto de platino, en donde los átomos de cloro apuntan hacia el enlace N–C del grupo nitro, con distancias de enlace de 3.205 Å, nuevamente sugiriendo la existencia de un enlace de halógeno vía interacción con el agujero π (**Figura 61c**).

Figura 60. Principales contactos entre centroides y heteroátomos. Se establece como interacción importante el contacto vía enlace de halógeno entre el cloro y el centroide N2-C7 (agujero π).

Figura 61. (a) Cálculo DFT de la densidad electrónica en el compuesto óxido de nitropiridina, el cual establece la existencia del agujero π sobre el grupo nitro. (b) Contacto O…agujero π en el estado sólido. (c) Estructura cristalina de un complejo de Pt, mostrando interacciones Cl…agujero π . Imagen adaptada de referencia [31,32]

e. Síntesis de derivados de 8-hidroxi-5-nitroquinolina

1. Para la síntesis del compuesto 7-cloro-8-hidroxi-5-nitroquinolina: La reacción se llevó a cabo mediante la solubilización de la 8-hidroxi-5-nitroquinolina (nitroxolina, NTX) en una solución acuosa de KOH 1.2M (50 mL). Tras 10 minutos de vigorosa agitación, se agregó gota a gota una disolución de NaOCl 5% exceso (10 mL) durante 20 minutos. Tras dos horas de reacción, se observó la formación de sólido rojo abundante. Agregando 10 mL de AcOH se generó un sólido naranja. El sólido colectado se purificó mediante columna de cromatografía, usando AcOEt:acetona (1:9) como la fase móvil. El sólido naranja se recristalizó de solución saturada de acetona, obteniendo un sólido naranja brillante aterciopelado en 81% de rendimiento, según se muestra en **Esquema 6**. El compuesto solubiliza en DMSO, THF y acetona; es poco soluble en AcOEt, CH₂Cl₂, CHCl₃ y EtOH caliente. Es insoluble en agua, *n*Hex, benceno, PhMe, MeCN, Et₂O, y alcoholes a temperatura ambiente.

Esquema 6. Síntesis del compuesto 7-cloro-8-hidroxi-5-nitroquinolina, 78.

2. Para la síntesis del compuesto 7-bromo-8-hidroxi-5-nitroquinolina: La reacción se llevó a cabo mediante la solubilización de la nitroxolina en THF anhidro (50 mL). Tras 10 minutos de agitación, se agregó 1.1 equivalentes de NBS a la disolución manteniendo atmósfera inerte de N₂ (o Ar). Tras completar la adición, se agregó 5 gotas de H₂SO₄. La temperatura se elevó espontáneamente hasta los 50 °C. Tras dos horas de reacción a temperatura ambiente, se observó la formación de sólido café abundante. La suspensión se vertió en 300 mL de agua fría, del cual se generó un sólido rojo intenso. El sólido se filtró y purificó mediante recristalización en acetona caliente, de la cual se obtuvo un sólido naranja aterciopelado en 74% de rendimiento, según se muestra en el **Esquema 7**. El compuesto solubiliza en DMSO, THF y acetona; es poco soluble en AcOEt, CH₂Cl₂, CHCl₃ y EtOH caliente. Es insoluble en agua, *n*Hex, benceno, PhMe, MeCN, Et₂O, y alcoholes a temperatura ambiente.

Esquema 7. Síntesis del compuesto 7-bromo-8-hidroxi-5-nitroquinolina, 79.

3. Para la síntesis del compuesto 8-hidroxi-7-yodo-5-nitroquinolina: La reacción se llevó a cabo mediante la solubilización de la nitroxolina en THF anhidro (50 mL). Tras 10 minutos de agitación, se agregó 1.1 equivalentes de *N*-iodosuccinimida (NIS) a la disolución manteniendo atmósfera inerte de N₂ (o Ar). Completado la adición, se agregó 5 gotas de H₂SO₄. La temperatura se elevó espontáneamente hasta los 60 °C. Tras dos horas de reacción a temperatura ambiente, se observó la formación de sólido café abundante. La suspensión se vertió en 300 mL de agua fría, del cual se generó un sólido rojo. El sólido se filtró y se dejó secando para obtener un 95% de rendimiento, según se muestra en el **Esquema 8**. El compuesto solubiliza en DMSO, THF y acetona; es poco soluble en AcOEt, CH₂Cl₂, CHCl₃ y EtOH caliente. Es insoluble en agua, *n*Hex, benceno, PhMe, MeCN, Et₂O, y alcoholes a temperatura ambiente.

Esquema 8. Síntesis del compuesto 8-hidroxi-7-yodo-5-nitroquinolina, 80.

Para los compuestos 78 y 79 se obtuvo su RMN de ¹H en DMSO-d₆, en tanto que para el compuesto 80 se requirió añadir 6 gotas de THF-d₈ para completar la solubilidad. En la **Figura 62**, se puede ver las cuatro señales en la región de aromáticos para cada uno de los compuestos.

Figura 62. Espectros de región aromática de RMN de ¹H (500 MHz, DMSO-d₆) de los compuestos 78, 79 y 80, derivados de la nitroxolina.

Para los hidrógenos unidos al anillo tipo piridina, los desplazamientos químicos son similares entre compuestos, generando desdoblamientos con valores de acoplamiento descritos anteriormente. Sin embargo, se puede ver un cambio en el desplazamiento químico de aproximadamente Δ_H = 0.25 ppm (de 8.6 ppm para el compuesto 78; de 8.72 ppm para 79, y de 8.85 ppm para el compuesto 80). Este cambio en el desplazamiento químico puede deberse a una desprotección causado por efectos inductivos y por efectos estéricos debido al tamaño del átomo de yodo. Para el caso de los desplazamientos de ¹³C{¹H}, 9 señales correspondientes a los carbonos del anillo de quinolina se ven para cada molécula. Para su correcta asignación, se utilizaron espectros en 2D HSQC(¹H/¹³C{¹H}) y HMBC(¹H/¹³C{¹H}), mostrados en la sección de **Anexos**. Para una comparativa más adecuada, se muestran los desplazamientos químicos en la **Figura 63** y la **Tabla 9**.

Figura 63. Espectros de RMN de ¹³C{¹H} (125.5 MHz, DMSO-d6) de los compuestos 78, 79 y 80, derivados de la nitroxolina.

El valor del desplazamiento para el C9 muestra una clara diferencia entre compuestos, donde para el compuesto 80, debido al efecto del átomo pesado causado por el yodo, éste se observa a campo alto, en 77.8 ppm, mientras que para el derivado de cloro se muestra en 115.3 ppm. El C5 también experimenta un corrimiento a campo bajo. Este carbono correlaciona al hidrógeno entre los grupos halógeno y nitro. Este desplazamiento a campo bajo se debe al efecto desprotector que ejercen los grupos electroatractores. Los carbonos C3 y C8 tienen valores similares para los derivados de Cl y Br en 125 y 131 ppm respectivamente; sin embargo, estos valores experimentan un cambio en el compuesto yodado, observándose C3 en 133.6 y C8 en 134.6 ppm respectivamente. Estos valores pueden deberse al efecto inductivo que ejercen los átomos de cloro y bromo respecto del compuesto con yodo.

Tabla 9 -	 Desplazamientos 	químicos de	¹³ C{ ¹ H} /ppm	de 7-halógeno-8	-hidroxi-5-nitroquinolinas
-----------	-------------------------------------	-------------	---------------------------------------	-----------------	----------------------------

	C1	C2	С3	C4	C5	C6	C7	C8	С9
78	158.8	135.3	135.8	147.4	129.7	122.3	125.4	131.2	115.3
79	159.8	135.5	135.3	147.3	132.3	122.7	125.5	131.6	104.4
80	162.0	134.4	133.6	148.0	137.1	122.7	125.3	134.6	77.8

El mecanismo propuesto para la síntesis del compuesto 78 se muestra en el **Esquema 9**. En este, la solución de NaOCl se encuentra en equilibrio químico con las especies NaOH y HOCl. Este último, el compuesto HOCl, es susceptible de ataque nucleofílico por parte de la quinolina en su forma de sal de quinolinato, expulsando al ion hidróxido. El anión hidróxido abstrae el hidrógeno de la quinolina regenerando la aromaticidad del sistema, para posterior adición de AcOH y obtener la quinolina neutra.

Esquema 9. Mecanismo de reacción para la formación del compuesto 78.

Por su parte, el mecanismo para la formación de los compuestos 79 y 80 procede de manera análoga la establecida para el compuesto 76. El ejemplo se muestra en el **Esquema 10**. Debido a que el grupo OH es un director *orto/ para* fuerte, así como el grupo NO₂ es un director *meta*, la posición orto al hidroxilo en la quinolina está fuertemente activado, por lo que la reacción de sustitución electrofílica puede llevarse a cabo.

Esquema 10. Mecanismo de reacción para la formación del compuesto 78.

f. Pruebas biológicas de derivados de 8HQ

Una vez sintetizados las correspondientes quinolinas, se llevaron a cabo pruebas de susceptibilidad sobre los derivados de 8HQ en cepas clínicas aisladas resistentes a carbapenemas y otros antibióticos. Como se puede ver en la **Tabla 10**, los derivados de la 7bromo-8-hidroxiquinolina, 69, y de la 5-nitroquinolina, 73, fueron efectivos contra las cepas evaluadas. El resultado de la molécula 73 está en acorde con lo reportado por otros grupos de investigación, así como también la corroboración de su eficacia en el tratamiento de infecciones. Es de notar que los compuestos 66 a 68 fueron activos solamente contra *P. aeruginosa*, y contra *Providencia*. Esto puede deberse en parte a la pobre solubilidad de los compuestos en medio acuoso.

Cepas bacterianas									
ID Sample	E. coli ATCC 25922	Providencia	A baumannii 9736	A. baumannii 10324	E. coli 10225	K. pneumoniae 6411	K. pneumoniae 3407-2	P. aeruginosa 4899	P. aeruginosa 4677
DMSO	+	+	+	+	+	+	+	+	+
66	-	+	-	-	-	-	-	+	+
67	-	+	-	-	-	-	-	+	+
68	-	+	-	-	-	-	-	+	+
69	+	-	+	+	+	+	+	+	+
70	-	-	-	-	-	-	-	-	-
71	-	-	-	-	-	-	-	-	-
72	-	-	-	-	-	-	-	-	-
73	+	+	+	+	+	+	+	+	+
74	-	-	-	-	-	-	-	-	-
75	-	-	-	-	-	-	-	-	-
76	-	+	-	-	-	-	-	-	-
77	-	+	-	-	-	-	-	-	-
78	+	+	+	+	+	+	+	+	+
79	+	+	+	+	+	+	+	+	+
80	+	+	+	+	+	+	+	+	+

Tabla 10 – Valores predichos de *p*MIC de derivados de 8HQ mediante el uso del QSPR

Mediante un análisis SAR (**Figura 64**) de las 8-hidroxiquinolinas evaluadas, se puede observar que los análogos de clioquinol (72), las moléculas 70, 74, 76 y 77 no fueron activas contra las cepas utilizadas, excepto para el caso de *Providencia* de las cuales solo 76 y 77 si llevaron a cabo inhibición de crecimiento bacteriano. Esto permite observar que los derivados de 8-hidroxiquinolinas con un átomo de cloro en la posición 5 no favorecen la actividad antibacterial. Sin embargo, para el caso de 76 que posee un átomo de bromo en la posición 7 del anillo, en semejanza a la estructura de la molécula 69, ésta si denota actividad aunque reducida por efecto del cloro.

De igual manera, el compuesto 77 muestra poca efectividad debido a la presencia del grupo nitro. Por el contrario, las moléculas 78, 79 y 80, que pueden considerarse análogos de la nitroxolina (73) si llevan a cabo inhibición de crecimiento bacteriano en las cepas utilizadas. Se establece que el grupo nitro en la posición 5 favorece la actividad antibacterial de las moléculas, independiente del sustituyente en la posición 7 del anillo de quinolina.

Figura 64. Análisis SAR de derivados de clioquinol y de nitroxolina. En los derivados de clioquinol, el átomo de cloro en la posición 5 del anillo inhibe la actividad antibacterial, mientras que un grupo nitro favorece, independiente del sustituyente ubicado en la posición 7 de la quinolina.

La actividad de los derivados de 8HQ se puede explicar mediante un diagrama de Craig. El diagrama de Craig (**Figura 65**) grafica dos parámetros importantes: la constante de Hammett (σ) la cual mide el carácter electrodonador^{34a} y el parámetro π de Hansch–Fujita que describe la hidrofobicidad de los sustituyentes, definida como la diferencia entre el coeficiente de partición octanol–agua (log*P*) de una molécula sustituida frente a la no sustituido.^{34b}

Del análisis de las estructuras utilizando el diagrama de Craig se puede observar que los halógenos, así como el grupo nitro, se encuentran en el cuadrante donde los valores de σ y π son positivos, indicando que son sustituyentes electroatractores y lipofílicos. Sin embargo, es de notar que los halógenos tienen mayor carácter lipofílico (siendo Cl < Br < I), mientras que el grupo nitro tiene mayor carácter de grupo electroatractor. Este análisis indica que el grupo nitro permite que la molécula sea más soluble en medio acuoso a través de la generación de interacciones no covalentes con el medio (enlaces de hidrógeno).

Asimismo, debido al efecto de resonancia sobre el grupo nitro, existe una mayor polarización de la molécula lo que refuerza las interacciones en medio acuoso. Por lo mismo, los análogos de clioquinol, donde la variación es al añadir halógenos, genera que las moléculas sean más hidrofóbicas y menos potentes al no poderse solubilizar. En tanto que los derivados de nitroxolina, en todos los casos existe actividad biológica debido a la presencia del grupo nitro en posición *para*, que genera interacciones con el agua y mejorando su biodisponibilidad. Utilizando este mismo diagrama, se esperaría que la adición de grupos funcionales como el OH, NH₂, OMe en la posición 7 del anillo de quinolina, permitiría a las moléculas tener mayor solubilidad en medio acuoso. Estos grupos funcionales son de fácil acceso sintético por lo que representarían la entrada a estructuras con mayor eficacia y potencia.

Figura 65. Diagrama de Craig donde se observan los cuadrantes en función de la capacidad electrodonadora/atractora $(-\sigma/+\sigma)$ y la hidrofilicadad/lipofilicidad de las moléculas $(-\pi/+\pi)$. Imagen adaptada de referencia [34]

4.4 Compuestos de coordinación de zinc con actividad biológica

Se conoce que los compuestos de coordinación ofrecen una nueva oportunidad para sobrellevar la resistencia microbiana, y en la literatura se ha hecho extensa la búsqueda de compuestos que ejerzan mejor actividad que sus análogos orgánicos. Los ligantes derivados de la 8HQ con halógenos como sustituyentes generan que la molécula sea más lipofílica, por tanto, existe una mayor absorción. Sin embargo, como se pudo observar en los resultados anteriormente descritos, una alta lipofilicidad también genera que sean menos propensos a ser distribuidos por el organismo al carecer de solubilidad en medio acuoso. La adición de un centro metálico no solo modifica la solubilidad de los compuestos en medio acuoso, sino que, al poseer diferentes geometrías moleculares distintas a las observadas para el átomo de carbono, permite que se ocupe un mayor espacio dentro de las cavidades, así como una permeabilidad a través de canales especiales para compuestos cargados o con el uso de transportadores asociados a ciertos iones metálicos.

El zinc es un cofactor esencial para el metabolismo bacteriano y muchas enterobacterias expresan los transportadores de zinc, ZnuABC y ZupT, para adquirir este metal en el huésped. Los iones metálicos, como los iones de hierro y zinc, se han aplicado ampliamente para inhibir patógenos a través de diferentes mecanismos, incluida la acción sinérgica con diferentes enzimas metabólicas, la regulación de las bombas de eflujo y la inhibición de la formación de biopelículas.³⁵⁻⁴⁰ Así también el uso de complejos metálicos basados en estos metales ha sido ampliamente investigado por sus potencial acción anticancerígena.⁴¹⁻⁴³

Por su parte, compuestos a base de Cu(II) o Fe(III) han sido explorados como alternativas por ser iones metálicos presentes en el organismo, los cuales los catalogan como inocuos y necesarios para varias funciones vitales.⁴⁴ Sin embargo, una problemática asociada a la investigación de estos compuestos es la compleja caracterización debido a las propiedades paramagnéticas que muestran. Adicionalmente, los iones metálicos en su forma "libre" (no formando complejos con ligantes multidentados) presentan citotoxicidad como en el caso de Cu(II), mientras que el Fe(III) es poco soluble en medio acuoso, limitando la aplicabilidad de estos iones metálicos.

Usando los ligantes 8HQ descritos anteriormente, y observando que para algunos derivados halogenados no mostraron actividad antibacterial, excepto para el caso de las moléculas 68 y 73, se exploró la coordinación de zinc hacia los ligantes derivados de 8HQ y observar sus propiedades fisicoquímicas, así como su evaluación biológica.

g. Síntesis de derivados de zinc con derivados de 8HQ

La síntesis de los derivados de zinc procede usando la metodología descrita a continuación: Se llevó a cabo la reacción de 0.5 equivalentes de acetato de Zn(II) dihidratado, Zn(OAc)₂·2H₂O, con el correspondiente derivado de 8HQ en CH₂Cl₂ con vigorosa agitación. Tras 3 horas de reacción, la precipitación inmediata de sólido abundante, con tonalidades amarillas a rojizas, se dio para todos los compuestos. Las reacciones se dejaron durante 12 horas de agitación a temperatura ambiente. Los sólidos formados se filtraron y purificaron mediante lavados con acetona (5x2mL), hexano (5x3mL). Se obtuvieron rendimientos de reacción que oscilaron entre el 50 al 80%. En el **Figura 66** se muestra las condiciones usando los derivados de 8HQ.

h. Caracterización en disolución de complejos de zinc(II)

Aunque la mayoría de los compuestos analizados fueron solubles en DMSO, algunos mostraron problemas para su medición por RMN. En este sentido, se analizó a detalle el compuesto con la molécula 76 como ligante coordinado a zinc. Para otros derivados de zinc, su análisis ha sido reportado por el grupo de Jianbo *et al.*⁴⁵

Se obtuvo la RMN de ¹H en DMSO-*d*₆ anhidro (**Figura 67**) del compuesto 84 (bis-(7-bromo-5cloro-8-hidroxiquinolinato) de zinc), donde se pueden ver 4 señales en la región de aromáticos, ubicados en δ (ppm) 8.51 (*dd*), 8.48 (*dd*), 7.79 (*s*) y 7.7 (*dd*), asignando la señal en 7.79 ppm al protón entre los grupos Cl y Br. Es importante notar que, debido a la estructura del compuesto, existe dinámica en solución a través de la coordinación y descoordinación del nitrógeno de la quinolina hacia el centro metálico, lo que genera que las señales de los protones aromáticos se ensanchen a temperatura ambiente. Más aún, la RMN de ¹H muestra que, a pesar de usar disolvente deuterado seco, se observan señales causadas por moléculas de agua presentes en la estructura. Efectivamente, un análisis por espectroscopía de infrarrojo muestra una banda ensanchada ubicada en 3350 cm⁻¹ (**Figura 68**) Esto podría sugerir que la presencia de moléculas de agua se debe a la coordinación de éstas hacia el centro metálico, formando un complejo octaédrico y no tetraédrico como se sugiere en la **Figura 66**.

Figura 66. Síntesis general de compuestos de coordinación usando Zn(II)

Figura 67. RMN de ¹H (500 MHz, DMSO-d₆) del compuesto 84. Señal residual de DMSO ubicado en 2.5 ppm. Señales ubicadas entre 1.0 y 2.0 ppm se asignan a impurezas difíciles de remover. Señal en 3.37 ppm se muestra para moléculas de agua presentes en la muestra.

Figura 68. Espectro de infrarrojo ATR del compuesto 84. Se observa la señal ensanchada en 3350 cm⁻¹, correspondiente a moléculas de agua presentes en la estructura del compuesto.

Por otro lado, se obtuvo la espectroscopía de RMN de ¹H en DMSO- d_6 anhidro (500 MHz) de los compuestos 89, 90 y 91 **(Figura 69)**. La señal asignada al hidrógeno en (D), el protón ubicado entre grupos nitro y halógenos, muestra un cambio en el desplazamiento hacia campo alto conforme se cambia de Cl a I en las estructuras. Asimismo, la señal en (B), el hidrógeno "*para*" a nitrógeno ahora se ubica a campo alto respecto de las quinolinas de partida. Este efecto se puede explicar por el efecto de retrodonación de la densidad electrónica del metal hacia la quinolina. Mediante un efecto inductivo a través de los enlaces, la densidad electrónica genera que haya mayor protección del hidrógeno, ubicándolo a campo alto. Las señales se observan ensanchadas, lo que puede deberse a un efecto dinámico en solución, a través de la coordinación/descoordinación de la quinolina hacia el Zn.

9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6

Figura 69. Espectros de región aromática de ¹H (500 MHz, DMSO-d₆) de los compuestos 89, 90 y 91.

i. Pruebas biológicas de derivados de Zn

Se llevaron a cabo pruebas de susceptibilidad sobre los derivados de 8HQ, en cepas clínicas aisladas resistentes a carbapenemas y otros antibióticos. Como se puede ver en la **Tabla 11**, los complejos de zinc exhiben buena actividad antibacterial, en donde se pudieron obtener los valores de MIC para cada cepa. Es notable observar que los complejos de zinc, 81, 82 y 86, cuyos ligandos son los de las moléculas 66, 68 y 77 (8-hidroxiquinolina, 5-cloro-8-hidroxiquinolina y 5-cloro-8-hidroxi-7-nitroquinolina) no fueron activos. Los complejos 83, 84, 85, 87 y 88 sí fueron activos, mostrando valores bajos de MIC. Los ligantes usados fueron análogos de clioquinol para el caso de 83 y 84 (uso de la 5,7-dicloro-8-hidroxiquinolina, 70, y 7-bromo-5-cloro-8-hidroxiquinolina, 76) y el uso propiamente del clioquinol en 85 (5-cloro-8-hidroxi-7-iodoquinolina, 72). Es notable observar que, mientras que el clioquinol no fue activo y el ligante 7-bromo-5-cloro-8-hidroxiquinolina exhibió solo actividad frente a una cepa de *Providencia*, los complejos con zinc demostraron alta actividad farmacológica. Esto sugiere que la

incorporación del zinc permite a los derivados de 8HQ ser más hidrosolubles y por tanto, ejercer su actividad antibacterial. Asimismo, dado el excelente comportamiento de la 7-bromo-8-hidroxiquinolina y de la nitroxolina como fármacos propiamente, sus complejos con zinc de igual manera exhibieron alta actividad farmacológica, mostrados en las moléculas 87 y 88. Por cuestiones de tiempo en la síntesis, caracterización y purificación, los derivados de zinc 89 a 91 no se pudieron evaluar, sin embargo, se espera que muestran alta actividad frente a cepas bacterianas, con valores de MIC similares a las observadas para la nitroxolina.

Tabla 11. Valores experimentales de MIC (µg/mL) para derivados de coordinación de 8HQ con zinc en diferentes
aislados clínicos multirresistentes a fármacos.

ID Sample	<i>E. coli</i> <i>ATCC</i> 25922	Providencia	A baumannii 9736	A. baumannii 10324	E. coli 10225	K. pneumoniae 3407-2	P. aeruginosa 4899	P. aeruginosa 4677
81	-	-	-	-	-	-	-	-
82	-	-	-	-	-	-	-	-
83	4	8	4	4	128	64	4	64
84	2	16	8	4	128	64	4	64
85	8	32	32	16	>128	128	8	128
86	-	-	-	-	-	-	-	-
87	4	16	4	4	32	32	8	16
88	16	1	2	2	16	8	16	16

4.5 Conclusiones y perspectivas

En este capítulo se realizó la optimización de una estructura simple (8-hidroxi-quinolina), donde se cumplieron los siguientes objetivos del proyecto:

- 1. Mediante un análisis de la base de datos, se encontró la estructura de la nitroxolina, de la cual se conocen sus propiedades antibacteriales, y representa una estructura simple susceptible de modificaciones químicas sencillas.
- 2. Se analizaron una serie de derivados de 8-hidroxiquinolinas con halógenos y nitro como sustituyentes mediante el empleo del modelo QSPR de la Ecuación 18, en el cual se observó que los derivados de nitroxolina y clioquinol tuvieron altos valores predichos de actividad.
- 3. Se realizó la síntesis de compuestos derivados de clioquinol y de nitroxolina, incorporando sustituyentes en la posición 7 del anillo, a través del empleo de reactivos de fácil manejo (NBS y NIS).
- 4. Un estudio en estado sólido de las moléculas 76 y 77 revela múltiples interacciones intermoleculares vía enlaces de hidrógeno y enlaces de halógeno, que permiten el entendimiento de la poca solubilidad de los compuestos en la mayoría de los disolventes.
- 5. La molécula 76 presenta dentro de su red cristalina enlaces de hidrógeno OH–N intermoleculares que forman anillos de 10 miembros entre anillos de quinolina. Asimismo, un enlace de halógeno Cl…Br con un valor de distancia de enlace de 3.951(3) Å permite la generación de estructuras macrocíclicas de anillos de 10 miembros a lo largo del cristal. Finalmente, interacciones π - π entre anillos permiten la estabilización del cristal.

- 6. La estructura del compuesto 77 en estado sólido muestra la forma zwitterión donde el átomo de nitrógeno presenta localizado al hidrógeno adquiriendo carga positiva, mientras que el oxígeno se muestra en su forma de fenolato. Interacciones por enlaces de hidrógeno forman estructuras macrocíclicas de 10 y 20 miembros, en tanto que interacciones por enlaces de halógeno entre el cloro y oxígeno del grupo nitro forman macrociclos de 30 miembros. Una interacción por enlace de halógeno vía agujero π , se muestra con un valor de distancia de 3.422 Å.
- 7. La evaluación biológica de derivados de 8-hidroxiquinolina 5,7-disustituidas, permitió establecer un análisis SAR de su actividad antibacterial. Se estableció que moléculas con un átomo de cloro en la posición 5 mostraron poca o nula actividad en la inhibición del crecimiento bacteriano en pruebas de susceptibilidad. En este sentido, los análogos de clioquinol demuestran ser poco efectivos.
- 8. Por otro lado, la incorporación de un grupo altamente electroatractor con un bajo perfil lipofílico (π) como el grupo nitro en la posición 5 del anillo de quinolina, promueve la inhibición bacteriana. Estos resultados demuestran que los análogos de nitroxolina son eficaces y representan compuestos con potencial actividad antibacteriana, según lo establecido por el diagrama de Craig.
- 9. La incorporación de un átomo de zinc como centro metálico en complejos de coordinación, permitió que moléculas con nula actividad, como en el caso del clioquinol, obtuvieran un mejor perfil de actividad. Se obtuvieron los valores de MIC para los nuevos compuestos de coordinación, demostrando la importancia de la actividad quelante de los derivados de 8HQ.

Como perspectivas, se deberá llevar a cabo la evaluación biológica de los derivados de 8HQ que presentaron actividad de inhibición bacteriana en las pruebas de susceptibilidad, para determinar los valores de MIC de cada uno. A partir de estos valores, se podrá generar un análisis SAR de las estructuras que puedan corroborar lo planteado en la discusión de resultados.

También se deberá terminar la caracterización espectroscópica y análisis biológico de los compuestos con zinc (89 a 91) para llevar a cabo una comparativa con respecto a la actividad mostrada por el complejo de coordinación de zinc con la nitroxolina (molécula 88). Esto podría permitir generar una tendencia asociado al uso de derivados de quinolinas con grupos nitro en su estructura.

Se deberá llevar a cabo un análisis de derivados de nitroxolina empleando sustituyentes con mayor carácter hidrofílico (como OH, NH₂ y OMe) mediante el uso del diagrama de Craig, para obtener valores predichos por el modelo QSPR de la Ecuación 18 y su posterior síntesis química y evaluación biológica.

4.6 Referencias

- 1. Oliveri, V.; Vecchio, G., 8-Hydroxyquinolines in medicinal chemistry: A structural perspective. *European Journal of Medicinal Chemistry* **2016**, *120*, 252-274.
- Yang, X.; Cai, P.; Liu, Q.; Wu, J.; Yin, Y.; Wang, X.; Kong, L., Novel 8-hydroxyquinoline derivatives targeting β-amyloid aggregation, metal chelation and oxidative stress against Alzheimer's disease. *Bioorganic & Medicinal Chemistry* **2018**, *26* (12), 3191-3201.
- Chan, S. H.; Chui, C. H.; Chan, S. W.; Kok, S. H. L.; Chan, D.; Tsoi, M. Y. T.; Leung, P. H. M.; Lam, A. K. Y.; Chan, A. S. C.; Lam, K. H.; Tang, J. C. O., Synthesis of 8-Hydroxyquinoline Derivatives as Novel Antitumor Agents. *ACS Medicinal Chemistry Letters* 2013, *4*(2), 170-174.
- 4. Bissani Gasparin, C.; Pilger, D. A., 8-Hydroxyquinoline, Derivatives and Metal-Complexes: A Review of Antileukemia Activities. *ChemistrySelect* **2023**, *8*(9), e202204219.
- 5. Chen, C.; Yang, X.; Fang, H.; Hou, X., Design, synthesis and preliminary bioactivity evaluations of 8-hydroxyquinoline derivatives as matrix metalloproteinase (MMP) inhibitors. *European Journal of Medicinal Chemistry* **2019**, *181*, 111563.
- 6. Seo, H.; Jackl, M. K.; Kalaj, M.; Cohen, S. M., Developing Metal-Binding Isosteres of 8-Hydroxyquinoline as Metalloenzyme Inhibitor Scaffolds. *Inorganic Chemistry* **2022**, *61* (19), 7631-7641.
- 7. Olaleye, O. A.; Kaur, M.; Onyenaka, C.; Adebusuyi, T., Discovery of Clioquinol and analogues as novel inhibitors of Severe Acute Respiratory Syndrome Coronavirus 2 infection, ACE2 and ACE2 Spike protein interaction in vitro. *Heliyon* **2021**, *7*(3), e06426.
- 8. Li, L.; Wu, H.; Wang, J.; Ji, Z.; Fang, T.; Lu, H.; Yan, L.; Shen, F.; Zhang, D.; Jiang, Y.; Ni, T., Discovery of Novel 8-Hydroxyquinoline Derivatives with Potent In Vitro and In Vivo Antifungal Activity. *Journal of Medicinal Chemistry* **2023**, *66* (23), 16364-16376.
- 9. Joaquim, A. R.; Gionbelli, M. P.; Gosmann, G.; Fuentefria, A. M.; Lopes, M. S.; Fernandes de Andrade, S., Novel Antimicrobial 8-Hydroxyquinoline-Based Agents: Current Development, Structure–Activity Relationships, and Perspectives. *Journal of Medicinal Chemistry* **2021**, *64* (22), 16349-16379.
- Rahman, M. M.; Haque, T. M. A.; Sourav, N. S.; Rahman, S.; Yesmin, S.; Mia, R.; Al Noman, A.; Begum, K., Synthesis and investigation of dyeing properties of 8-hydroxyquinolinebased azo dyes. *Journal of the Iranian Chemical Society* **2021**, *18* (4), 817-826.
- Ahmad, A. A.; Aljarrah, I. A.; Al-Bataineh, Q. M.; Ababneh, R.; Telfah, A., Photoluminescence, Optical, and Electrical Properties of Bis(8-Hydroxyquinoline) Zinc and Tris-(8-Hydroxyquinoline) Aluminum Organometallics and Their Films. *Journal of Electronic Materials* 2024, *53* (1), 338-346.
- Khade, C. S.; Kalyani, N. T.; Dhoble, S. J., 14 Multifacets of organometallic quinoline complexes. In *Functional Materials from Carbon, Inorganic, and Organic Sources*, Dhoble, S. J.; Nande, A.; Kalyani, N. T.; Tiwari, A.; Arof, A. K., Eds. Woodhead Publishing: 2023; pp 453-475.
- Chan, D. C. K.; Guo, I.; Burrows, L. L., Forging New Antibiotic Combinations under Iron-Limiting Conditions. *Antimicrobial Agents and Chemotherapy* 2020, 64 (3), 10.1128/aac.01909-19.
- Magallon, J.; Chiem, K.; Tran, T.; Ramirez, M. S.; Jimenez, V.; Tolmasky, M. E., Restoration of susceptibility to amikacin by 8-hydroxyquinoline analogs complexed to zinc. *PLOS ONE* 2019, 14 (5), e0217602.

- 15. Drago, L.; Mattina, R.; Vecchi, E. d.; Toscano, M., Phenotypic and genotypic antibiotic resistance in some probiotics proposed for medical use. **2013**.
- Abouelhassan, Y.; Yang, Q.; Yousaf, H.; Nguyen, M. T.; Rolfe, M.; Schultz, G. S.; Huigens, R. W., Nitroxoline: a broad-spectrum biofilm-eradicating agent against pathogenic bacteria. *International Journal of Antimicrobial Agents* 2017, *49*(2), 247-251.
- 17. Padwa, A.; Shefter, E.; Alexander, E., The correlation of the crystal and molecular structure with the nuclear magnetic resonance spectrum of a bicyclo[1.1.1]pentane derivative. *Journal of the American Chemical Society* **1968**, *90* (14), 3717-3721.
- Williamson, K. L.; Howell, T.; Spencer, T. A., Nuclear Magnetic Resonance Line Widths of Angular Methyl Groups in Decalins, Steroids, and N-Methylquinolizidinium Ions. Determination of Ring Fusion Stereochemistry. *Journal of the American Chemical Society* 1966, 88 (2), 325-334.
- 19. Mitra, A.; Assarpour, A.; Seaton, P. J.; Williamson, R. T., Synthesis of Quinolines and Their Characterization by 2-D NMR Spectroscopy. *Journal of Chemical Education* **2002**, *79* (1), 106.
- 20. Adhikari, M. V.; Samant, S. D., Sonochemical bromination of acetophenones using ptoluenesulfonic acid–N-bromosuccinimide. *Ultrasonics Sonochemistry* **2002**, *9* (2), 107-111.
- 21. Xue, H.; Tan, H.; Wei, D.; Wei, Y.; Lin, S.; Liang, F.; Zhao, B., N-Bromosuccinimidecarboxylic acid combination: mild and efficient access to dibromination of unsaturated carbonyl compounds. *RSC Advances* **2013**, *3* (16), 5382-5385.
- 22. Desiraju, G. R.; Ho, P. S.; Kloo, L.; Legon, A. C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K., Definition of the halogen bond (IUPAC Recommendations 2013). *Pure and Applied Chemistry* **2013**, *85* (8), 1711-1713.
- 23. Dumitrescu, D.; Shova, S.; Man, I. C.; Caira, M. R.; Popa, M. M.; Dumitrascu, F., 5-Iodo-1-Arylpyrazoles as Potential Benchmarks for Investigating the Tuning of the Halogen Bonding. *Crystals* **2020**, *10* (12), 1149.
- 24. Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G., The Halogen Bond. *Chemical Reviews* **2016**, *116* (4), 2478-2601.
- 25. Mertsalov, D. F.; Gomila, R. M.; Zaytsev, V. P.; Grigoriev, M. S.; Nikitina, E. V.; Zubkov, F. I.; Frontera, A., On the Importance of Halogen Bonding Interactions in Two X-ray Structures Containing All Four (F, Cl, Br, I) Halogen Atoms. *Crystals* **2021**, *11* (11), 1406.
- Shikhaliyev, N. G.; Maharramov, A. M.; Bagirova, K. N.; Suleymanova, G. T.; Tsyrenova, B. D.; Nenajdenko, V. G.; Novikov, A. S.; Khrustalev, V. N.; Tskhovrebov, A. G., Supramolecular organic frameworks derived from bromoaryl-substituted dichlorodiazabutadienes via Cl…Br halogen bonding. *Mendeleev Communications* 2021, *31* (2), 191-193.
- 27. Hughes, E. D.; Ingold, C. K.; Reed, R. I., Kinetics of Aromatic Nitration : the Nitronium Ion. *Nature* **1946**, *158* (4013), 448-449.
- 28. Benford, G. A.; Ingold, C. K., 177. Influence of directing groups on nuclear reactivity in oriented aromatic substitutions. Part V. A dilatometric investigation of the kinetics of aromatic nitration especially in nitromethane solution. *Journal of the Chemical Society (Resumed)* **1938**, (0), 929-955.
- 29. Andreozzi, R.; Canterino, M.; Caprio, V.; Di Somma, I.; Sanchirico, R., Salicylic Acid Nitration by Means of Nitric Acid/Acetic Acid System: Chemical and Kinetic Characterization. *Organic Process Research & Development* **2006**, *10*(6), 1199-1204.

- 30. Andreozzi, R.; Canterino, M.; Caprio, V.; Di Somma, I.; Sanchirico, R., Batch salicylic acid nitration by nitric acid/acetic acid mixture under isothermal, isoperibolic and adiabatic conditions. *Journal of Hazardous Materials* **2006**, *138*(3), 452-458.
- 31. Galmés B, Franconetti A, Frontera A. Nitropyridine-1-Oxides as Excellent π -Hole Donors: Interplay between σ -Hole (Halogen, Hydrogen, Triel, and Coordination Bonds) and π -Hole Interactions. *International Journal of Molecular Sciences*. **2019**; 20(14):3440
- 32. B. Galmés, D. Martínez, M. F. Infante-Carrió, A. Franconetti, A. Frontera, *ChemPhysChem* **2019**, 20, 1135.
- 33. Tai, H.-C., Zhao, Y., Farrer, N.J., Anastasi, A.E., Clarkson, G., Sadler, P.J. and Deeth, R.J., A Computational Approach to Tuning the Photochemistry of Platinum(IV) Anticancer Agents. *Chem. Eur. J.*, **2012**, 18: 10630-10642.
- (a) Hansch C., Leo A., Taft R.W., A survey of Hammett substituent constants and resonance and field parameters. *Chem. Rev.*, **1991**, 91, 165–195; (b) Hansch C, Leo A, Unger S.H., *et al*. Aromatic substituent constants for structure-activity correlations. *J. Med. Chem.*, **1973**, 16, 1207–1216
- 35. Santiago, P. H. O.; Santiago, M. B.; Martins, C. H. G.; Gatto, C. C., Copper(II) and zinc(II) complexes with Hydrazone: Synthesis, crystal structure, Hirshfeld surface and antibacterial activity. *Inorganica Chimica Acta* **2020**, *508*, 119632.
- 36. Kargar, H.; Ardakani, A. A.; Tahir, M. N.; Ashfaq, M.; Munawar, K. S., Synthesis, spectral characterization, crystal structure and antibacterial activity of nickel(II), copper(II) and zinc(II) complexes containing ONNO donor Schiff base ligands. *Journal of Molecular Structure* **2021**, *1233*, 130112.
- 37. Naureen, B.; Miana, G. A.; Shahid, K.; Asghar, M.; Tanveer, S.; Sarwar, A., Iron (III) and zinc (II) monodentate Schiff base metal complexes: Synthesis, characterisation and biological activities. *Journal of Molecular Structure* **2021**, *1231*, 129946.
- 38. Nasiri Sovari, S.; Zobi, F., Recent Studies on the Antimicrobial Activity of Transition Metal Complexes of Groups 6–12. *Chemistry* **2020**, *2*(2), 418-452.
- 39. Claudel, M.; Schwarte, J. V.; Fromm, K. M., New Antimicrobial Strategies Based on Metal Complexes. *Chemistry* **2020**, *2*(4), 849-899.
- 40. Riduan, S. N.; Zhang, Y., Recent Advances of Zinc-based Antimicrobial Materials. *Chem Asian* **J 2021**, *16* (18), 2588-2595.
- 41. Nandanwar, S. K.; Kim, H. J., Anticancer and Antibacterial Activity of Transition Metal Complexes. *ChemistrySelect* **2019**, *4*(5), 1706-1721.
- 42. Paprocka, R.; Wiese-Szadkowska, M.; Janciauskiene, S.; Kosmalski, T.; Kulik, M.; Helmin-Basa, A., Latest developments in metal complexes as anticancer agents. *Coordination Chemistry Reviews* **2022**, *452*, 214307.
- 43. Pellei, M.; Del Bello, F.; Porchia, M.; Santini, C., Zinc coordination complexes as anticancer agents. *Coordination Chemistry Reviews* **2021**, *445*, 214088.
- 44. Pandey, A.; Boros, E., Coordination Complexes to Combat Bacterial Infections: Recent Developments, Current Directions and Future Opportunities *Chem. Eur. J.* **2021**, 27, 7340.
- 45. Jianbo, H.; Tingting, Z.; Yongjing, C.; Yuanyuan, Z.; Weiqing, Y.; Menglin, M., Study on Relationship Between Fluorescence Properties and Structure of Substituted 8-Hydroxyquinoline Zinc Complexes. *Journal of Fluorescence* **2018**, *28* (5), 1121-1126.

CAPITULO 5 *MODELO QSAR DE DERIVADOS DE AZTREONAM*

Un grupo importante de moléculas con actividad antibacterial conocida es la de los betalactámicos. Éstos han sido objeto de estudio y optimización a lo largo de los años por diferentes grupos de investigación alrededor del mundo. Sin embargo, dentro de los betalactámicos, las denominadas monobactamas han sido poco explorados en cuanto al entendimiento de características estructurales y propiedades fisicoquímicas. Como se mencionó anteriormente, una de las estrategias del diseño de fármacos es la de la optimización de compuestos conocidos mediante diferentes técnicas tales como acoplamiento molecular o análisis QSAR/QSPR. Debido a que, durante la exploración de compuestos de la base de datos creada en el Capítulo 2 se detectó que un conjunto importante de moléculas pertenece a esta familia de fármacos, en particular al ser derivados de aztreonam, en el presente capítulo se procedió a realizar un estudio de relación cuantitativa estructura-actividad (OSAR). Se analizaron datos de propiedades fisicoquímicas de los compuestos, así como el uso de valores de desplazamiento químico de protón y carbono como descriptores asociados a la reactividad química de las monobactamas. Finalmente, se mostraron propuestas asociadas al cambio de grupo funcional sobre la estructura base del aztreonam el cual fue evaluado mediante el modelo QSPR creado en el capítulo 2.

5.1 Betalactámicos

De entre los compuestos con actividad antibacteriana más prescritos y usados se encuentran los denominados betalactámicos, cuya eficacia ha disminuido debido a la multirresistencia adquirida por su uso desmedido. En México, la red INVIFAR¹ reportó para bacterias gramnegativas, que la resistencia a cefalosporinas fue superior al 30%, en tanto que para carbapenémicos se mantuvo en un 2.8%. El aumento de resistencia se observó con mayor número de reportes en cepas de *Klebsiella pneumoniae* y *Acinetobacter baumannii*.

Estos datos, junto con reportes de otros fármacos antibacteriales, muestran el alarmante escenario respecto de la resistencia microbiana.² Sin embargo, a la presente fecha, siguen siendo de los compuestos más estudiados debido a su fácil manipulación química, con la introducción de grupos funcionales que pueden mejorar sus propiedades farmacocinéticas.³ Los fármacos betalactámicos son antibióticos que poseen en su estructura un anillo betalactámico (lactama de 4 miembros, formalmente 2-azetidinona) con ángulos internos de 90°, lo que hace que el anillo esté altamente tensionado y sea reactivo. Además, la betalactama se encuentra fusionada con otro anillo cuya variación tanto en los átomos como en el número de miembros que conforma al anillo le dan sus propiedades características, con excepción de las monobactamas⁴ que no poseen este segundo anillo (**Figura 70**).

Figura 70. Diferentes tipos de betalactámicos y su relación estructural con el fragmento D-Ala-D-Ala.

Los antibióticos betalactámicos ejercen su actividad biológica inhibiendo la acción de las transpeptidasas conocidas como proteínas de unión a penicilina (*Penicillin Binding Proteins*, PBP) que están implicadas en la última etapa de la formación de peptidoglicano (PG), vital para la generación de la pared celular⁵ (**Figura 71**). La similitud estructural que existe entre los betalactámicos y el sustrato dipeptídico D-alanina-D-alanina terminal existente en las subunidades peptídicas para la formación de PG permite el reconocimiento de los betalactámicos hacia las PBP.

Figura 71. Esquema simplificado de la disrupción en la formación de PG por parte de betalactámicos. Reproducción de imagen tomada de referencia [5].

El mecanismo de acción de los betalactámicos consiste en el ataque nucleofílico por parte del residuo de Ser catalíticamente activo hacia el carbono de carbonilo del anillo betalactámico, causando apertura del anillo y la formación de un complejo acilo-enzima covalente. Este complejo lleva a cabo hidrólisis lenta para la liberación del betalactámico hidrolizado y regeneración de la enzima.⁶ Sin embargo, este último paso es muy lento, lo que provoca en lo general la inactivación de la enzima, interrupción de la formación de PG, lisis celular y muerte de la bacteria. El mecanismo de reacción de este proceso se muestra en la **Figura 72**. La inhibición de la PBP por acción de un betalactámico se da en una serie de pasos: a) un equilibrio químico en la formación de un complejo no covalente entre la betalactama (BL) y el sitio catalítico lleve ataque nucleofílico al anillo de BL, mediante su apertura y formación de un complejo acilo-enzima. La velocidad de reacción dad por k_2 es rápida. Finalmente, en (c), la regeneración de la Ser catalítica a través de la hidrólisis mediada por H₂O permite la liberación de la BL-hidrolizada. Este paso dada por k_3 es muy lenta.

Figura 72. Inhibición de PBP por acción de betalactámico. (a) Formación del complejo covalente BL-PBP. (b) Regeneración de PBP mediante hidrólisis de complejo BL-PBP.

Las PBP representan un vasto grupo de proteínas que pueden clasificarse en dos grupos: PBP de alto y bajo peso molecular (*High/Low-Molecular Weigth PBP*; HMW-PBP y LMW-PBP), donde en general, las HMW-PBP se encargan de la síntesis de PG en las últimas fases, mientras que las LMW-PBPs están mayoritariamente involucradas en el mantenimiento, remodelación y reciclaje del PG.⁷ Por lo mismo, las HMW-PBPs son los blancos biológicos de los betalactámicos, aunque se ha observado que también inhiben a los LMW-PBP, en los que un efecto sinergístico se ha podido observar cuando se inhiben ambas clases de proteínas. Con excepción de bacterias que carecen de cantidades importantes de PG (como lo es el caso de Rickettsia) y algunos otros casos particulares, todas las bacterias poseen PBP. Estas son enzimas multidominio divididas

en tres clases A, B y C, basado en la organización y función de sus dominios. Por ejemplo, se sabe que las clases de PBP B2 y B3 son PBP de bacterias gramnegativas, que son activas durante la elongación y división.⁸ Los fármacos inhibidores de la mayoría de estas diferentes clases de PBP son derivados betalactámicos. De entre las diferentes clases de betalactámicos comercialmente disponibles, los de tipo monobactama han surgido como una alternativa respecto de sus análogos betalactámicos como las penicilinas, cefalosporinas o carbapenemas, los cuales tienen altas tasas de resistencia asociadas.

5.2 Derivados de aztreonam: las monobactamas

a. Propiedades fisicoquímicas de las monobactamas

Las monobactamas^{4,9} poseen un espectro reducido comparado con otros betalactámicos: en lo general, funcionan solo contra bacterias gramnegativas y no son efectivas contra bacterias grampositivas y anaerobias. Las monobactamas poseen mayor afinidad por PBP3 y poca interacción por PBP1, y tienen relativa estabilidad a la hidrólisis causada por betalactamasas. Debido a que el perfil toxicológico de estas sustancias es similar al observado para otros betalactámicos, se pueden usar en pacientes alérgicos a penicilinas y aquellos intolerantes a aminoglucósidos. Por lo mismo es que estos compuestos pueden ser administrados con seguridad, representando una excelente opción para el diseño de nuevos antibióticos con similar estructura química. Debido al creciente número de reportes sobre resistencia bacteriana por agentes gramnegativos, es que ha resurgido un interés por la búsqueda de nuevos fármacos tipo monobactamas. Diferentes aproximaciones se han realizado en la síntesis de monobactamas bioactivas, llevando a cabo modificaciones estructurales en la posición 4 del heterociclo, y manteniendo en general una estereoquímica *cis* entre los sustituyentes de las posiciones 3 y 4 (Figura 73). Asimismo, se ha observado que la variación del grupo unido al nitrógeno N1 proporciona la modulación de la reactividad del anillo betalactámico. Dependiendo del sustituyente se pueden tener diferentes compuestos: 1) monobactamas (R = SO_3H ; 2) monosulfactamas (R = OSO_3H); 3) oxamazinas (R = OCH_2COOH); 4) monofosfamas (R = -XP(0)OR), entre otros.¹⁰

Figura 73. Representación general de la estructura de las monobactamas. Las características más importantes se resaltan en recuadros, mostrando también la importancia de la disposición espacial de los grupos funcionales.

b. Actividad antibacterial del aztreonam y derivados

El aztreonam¹¹ (AZT) es el único fármaco monobactámico aprobado por la FDA (*Food and Drug Administration*) para el tratamiento por infección bacteriana grave, especialmente causado por *P. aeruginosa*. El aztreonam se administra vía intravenosa o intramuscular, debido a su poca absorción cuando es vía oral.¹² Asimismo, el AZT se considera fármaco de primera generación dada sus características químicas. A partir de la estructura base del aztreonam, se ha podido correlacionar la alta actividad biológica del compuesto (hacia bacterias gramnegativas) con el fragmento 1,3-tiazolil-2-amina (aminotiazol).

No obstante, reportes indican que la estructura no siempre es una garantía para una alta actividad bactericida y puede reemplazarla por otros grupos similares.¹³ De los reportes más recientes, el grupo de Song y colaboradores mostraron que la actividad de una serie de derivados de AZT están relacionados a la estructura base conteniendo el anillo 1,3-tiazolil-2amina, solo modificando los sustituyentes sobre el grupo oxima.¹⁴ Adicionalmente, interacciones observadas en estructuras cristalinas de la PBP3 de *P. aeruginosa (Pa*PBP3) revela enlaces de hidrógeno establecidos entre las diferentes moléculas conteniendo un anillo 1,3-tiazolil-2-amina y residuos de glutamato (Glu) y del oxígeno de carbonilo de la cadena principal unido a un residuo de arginina (Arg) como se observa en la **Figura 74**.¹⁵

c. Introducción a los sideróforos

El hierro es un elemento esencial que juega un papel vital en las reacciones celulares. Este elemento participa en procesos biológicos como el ciclo del ácido tricarboxílico (ciclo TCA), la cadena de transferencia de electrones, fosforilación oxidativa, fijación de nitrógeno y biosíntesis de compuestos aromáticos. En las bacterias, aparte de las necesidades básicas propias de las mismas para su supervivencia, estudios han demostrado que el hierro es esencial para la formación de biopelículas bacterianas, porque controla las actividades superficiales y estabiliza la matriz de polisacáridos.

Figura 74. Complejo AZT-*Pa*PBP3. La estructura del AZT se muestra en color magenta para los átomos de carbono. Se observa la importancia del anillo de tiazolina y sus interacciones. Reproducción de imagen tomada de referencia [12].

Se estableció que el hierro es un elemento necesario para algunas funciones vitales de las bacterias; y en ambientes restrictivos, las bacterias sintetizan estructuras complejas denominados sideróforos, que pueden captar Fe³⁺ del medio mediante la interacción de grupos quelantes. Estos compuestos son transportados al periplasma y citoplasma por varios sistemas captadores de hierro. Una vez dentro del citoplasma, enzimas sideróforo-reductasas degradan al complejo sideróforo- Fe³⁺ para liberar al metal y mediante una reducción posterior se obtiene al ion soluble Fe²⁺. ¹⁶ Algunos fármacos con acción bacteriostática generalmente usan moléculas capaces de coordinar metales (ej. Fe³⁺, Cu²⁺, Zn²⁺), como en el caso de la nitroxolina¹⁷ y, por tanto, al no haber suministro del nutriente a la bacteria se inhibe el crecimiento. En condiciones de deficiencia de hierro, la hidrofobicidad de la superficie microbiana disminuve y la composición de las proteínas de la superficie cambia, lo que lleva a una restricción en la formación de biopelículas. Cuando las bacterias absorben suficiente hierro del entorno extracelular, pueden almacenar hierro en proteínas de almacenamiento intracelulares (por ejemplo, bacterio-ferritinas, ferritinas y proteínas de unión a ADN "Dps") y utilizarlo cuando tienen deficiencia de hierro. Los sideróforos más comunes¹⁸ muestran cuatro tipos de estructura y se clasifican en: catecolato, hidroxamato, carboxilato y de tipo aminofenolato/mixto. los cuales se muestran en la Figura 75.

Figura 75. Estructuras químicas de algunos sideróforos conocidos en la naturaleza y su clasificación respecto de los grupos funcionales que incorporan. A la derecha, se muestra la estructura cristalina del complejo Yersiniabactina-Fe, la cual muestra los diferentes puntos de unión con el centro metálico y el sideróforo.

d. Aproximación por caballo de Troya: complejo sideróforo-monobactama

El uso de sideróforos conjugados a la estructura base de las monobactamas ha permitido el diseño de fármacos de segunda generación, las cuales usan la aproximación *Trojan Horse*.¹⁹ Estos compuestos tienen la capacidad de coordinar iones metálicos (principalmente Fe, Zn y Cu), lo que permite que el profármaco tenga la posibilidad de entrar del medio extracelular hacia el citoplasma o al periplasma (en bacterias gramnegativas) a través de la membrana celular de las bacterias utilizando diferentes vías de acceso, como se muestra en la **Figura 76**.

Una vez localizado el profármaco dentro de la bacteria, este es liberado mediante reacciones enzimáticas que generan los diferentes mecanismos asociados a la estructura. En el caso de betalactámicos conjugados a sideróforos, estos se liberan en el medio periplásmico, inhibiendo a las PBPs. Los primeros reportes de monobactámicos con grupos quelantes conjugados (**Figura 63**), como el Pirazmonam⁹ o el compuesto U-78608^{20, 21}, emplearon estructuras que integran al fragmento 3-hidroxi-4-piridona, isóstero del grupo catecolato, el cual actúa como agente quelante de hierro. Estos compuestos retienen la mayoría de las propiedades exhibidas por el aztreonam, pero con una mayor actividad hacia *P. aeruginosa* (300 veces más potente) y hacia *A. baumannii* (aprox. 64 veces), actividad asociada a la captación de hierro. Tomando en cuenta la importancia de los derivados monobactámicos como compuestos con actividad antibacterial hacia bacterias del grupo ESKAPE, y con énfasis en *A. baumannii*, se presenta a continuación la generación de un modelo QSAR descriptivo que relacione la bioactividad de las monobactamas con su estructura química usando descriptores experimentales.

Figura 76. Betalactámicos del grupo de monobactamas (específicamente monocarbamas) de segunda generación que poseen en su estructura al grupo 3-hidroxi-4-piridona como fragmento que mimetiza la acción quelante del grupo catecolato.

5.2 Modelo QSAR de moléculas con actividad hacia A. baumannii

e. Selección de moléculas y curación de estructuras

Para la generación del modelo QSAR, se realizó la búsqueda de moléculas derivados de aztreonam con valores de MIC reportados contra la bacteria *A. baumannii*, utilizando la base de datos de SciFinder.²² A partir de esta exploración, se identificaron un total de 70 moléculas iniciales, de las cuáles, 35 pertenecen a las reportadas por Song *et al.*¹⁴, que también se usaron para la generación del modelo QSPR (Capítulo 2) **Figura 77**, y el resto publicado en la patente con No. Internacional WO 2013/110643 A1²³, **Figura 78**.

Por ser derivados de AZT, todas las moléculas comparten el mismo andamio estructural, generando sólo variaciones a los grupos localizados sobre el carbono unido a la oxima (=N-O-CH₂R). Esto permite la simplificación del estudio al llevar un análisis centrado en la variación del fragmento y su importancia en la actividad biológica. En este sentido, las estructuras de los fragmentos de interés se dibujaron en Avogadro y se guardaron en archivos "mol2". Para llevar

a cabo un estudio más adecuado de las propiedades de las moléculas, se realizó la curación de la información obtenida bajo los siguientes criterios iniciales: (1) aromatización de carbociclos y heterociclos donde fuese necesario, (2) estandarización de los grupos carboxilo, nitro y sulfonilo, si estaban presentes, y (3) adición de enlaces faltantes cuando fuera necesario.

f. Cálculo de descriptores

Para el cálculo de los descriptores, se utilizó el paquete computacional Dragon, del cual se calcularon descriptores 0D, 1D y 2D. Los descriptores utilizados para la generación del modelo matemático se describen a continuación: 45 constitucionales, 33 de índices de conectividad, 92 de autocorrelación en 2D; 21 índices topológicos de carga, 93 de grupos funcionales, 88 de fragmentos centrados en átomos y 10 descriptores de propiedades moleculares. Adicionalmente, se utilizaron valores de desplazamiento químico asociados a ¹H y ¹³C del andamio en común de las monobactamas, el cual se muestra en la **Figura 79**, teniendo un total de 16 descriptores. Esto último debido a que se conoce que el mecanismo de los betalactámicos procede vía ruptura del anillo de betalactama, generando así la formación del enlace entre molécula y proteína, por lo tanto, importantes para la actividad biológica.

Figura 77 Estructuras de las primeras 35 monobactamas de estudio, en conjunto con el aztreonam (L69). Se puede observar una mayor diversidad estructural, desde anillos aromáticos hasta cadenas alifáticas, entre otros.

Figura 78. Estructuras finales de las monobactamas de estudio en las cuáles se observan al grupo amidina presente en la mayoría de las moléculas, así como también grupos guanidinio para otras.

Figura 79. Andamio estructural común para las monobactamas de estudio. Del lado izquierdo se muestran los protones analizados. Del lado derecho se enumeran los carbonos cuyos desplazamientos químicos fueron utilizados.

g. Generación de modelo QSAR

Los modelos de regresión lineal fueron construidos utilizando el programa Mobydigs, utilizando la técnica de algoritmos genéticos. La variable dependiente (*Y*) se asignó como a la concentración mínima inhibitoria (MIC) dado en valores de μ g/mL. Diferentes transformaciones matemáticas se probaron para el análisis por algoritmos genéticos, con el fin de encontrar la que asegura una mayor correlación. Esto debido a que, al tener pesos moleculares muy similares dado por tener una estructura base idéntica, las correlaciones generan dispersiones con poca homocedasticidad, es decir, que exista una varianza constante a lo largo de las observaciones. La transformación encontrada para *p*MIC se consiguió a través del cociente del valor del MIC entre un descriptor que permitiera una mejor dispersión de los

datos. Entre estos, los descriptores topológicos permiten un mejor entendimiento de parámetros como lo es el tamaño, grado de ramificación, simetría y ciclización. El índice tipo Wiener de la matriz de distancias ponderadas por volumen de van der Waals fue el descriptor que mejor se adecua a los datos, y donde la normalización de estos viene dada por la siguiente ecuación:

$$p\text{MIC} = -\log_{10}[\text{MIC/Whetv}]$$
(22)

La selección del mejor modelo se basó en valores de parámetros como el coeficiente de determinación (R^2), así como en otros parámetros estadísticos previamente discutidos. La lista de descriptores y sus valores calculados, así como su valor de pMIC para cada molécula se encuentra en la **Tabla S6** de Anexos.

h. Resultados: modelo QSAR de 7 variables

Como una primera aproximación, se construyeron modelos de regresión utilizando algoritmos genéticos para seleccionar los descriptores más adecuados. Después de la selección de los descriptores, se realizó un análisis de regresión lineal múltiple para generar modelos que pudieran permitirnos categorizar la actividad biológica del conjunto de datos. El mejor modelo QSAR para la actividad antibacteriana contra *A. baumannii* consta de 7 descriptores tal como se muestra en la siguiente ecuación:

$$p \text{MIC} = (12.781 \pm 0.93) \text{JGI2} + (1.397 \pm 0.007) \text{N074} + (-0.037 \pm 0.000) \text{MLOGP2} + (0.377 \pm 0.116) \text{H2} + (-0.417 \pm 0.02) \text{H8} + (23) \\ (0.09 \pm 0.000) \text{C1} + (-0.015 \pm 0.000) \text{C10} - 13.355(\pm 2.521) \\ n = 68; R^2 = 86.988 (\pm 0.656); s = 0.377 (\pm 0.000); F = 45.052 (\pm 10.767); \\ Q^2{}_{LOO} = 81.796 (\pm 1.46); \delta K = 0.088 (0.000); \delta Q = -0.004 (-0.005); \\ R^P = 0.031 (0.100); R^N = -0.163 (-0.132) \end{cases}$$

Todos los parámetros estadísticos se obtuvieron como sus valores promedio. Para el procedimiento de validación externa, el 80% de todas las moléculas del conjunto de datos se seleccionaron aleatoriamente para el proceso de entrenamiento y el 20% restante se utilizó como conjunto de prueba. Este proceso se repitió cinco veces, para el cual en la **Figura 80** se muestran 4 de los 5 experimentos realizados. El dominio de aplicabilidad se representa gráficamente mediante los gráficos de Williams, tal como se muestra en la **Figura 81** para los cinco experimentos realizados por muestreo. En cuatro de los cinco gráficos, la molécula 123 se sale del dominio de aplicabilidad dictado por la regla de la palanca discutida en el capítulo 2. La molécula 123 muestra un grupo metilsulfuro el cual, pese a no ser el único, difiere en su estructura al no ser aromático como en sus análogos 124 y 125 que poseen anillos de benceno, ni poseer un grupo amino como parte de la cadena como en 112 a 115.

Figura 80. Gráficos de dispersión de datos de *p*MIC predicho frente a valores de *p*MIC experimentales. Los puntos azules representan moléculas del conjunto de entrenamiento (80%) y los diamantes amarillos representan moléculas utilizadas para el conjunto de prueba (20%). Para cada gráfico, se eligió aleatoriamente las moléculas utilizadas en los conjuntos de datos de entrenamiento y prueba

5.3 Interpretación de descriptores del modelo QSAR

i. Descriptores experimentales: RMN de ¹H y ¹³C{¹H}

En este estudio, se utilizaron los valores de desplazamiento químico que aparecen dentro del modelo QSAR para las monobactamas estudiadas. El descriptor H2 es asignado al desplazamiento químico del protón quiral ubicado en el anillo betalactámico adyacente al grupo carbonilo y a la amida. Mientras que, el valor de H8 hace referencia al desplazamiento del protón del anillo de tiazolina. El valor del coeficiente de H2 se observa que es positivo, indicativo que, al aumentar el valor del desplazamiento químico, este se asocia a incremento en la actividad. Esto se explica en función de la reactividad del anillo betalactámico, en donde al haber mayor efecto inductivo atractor proveniente de los grupos adyacentes al carbono quiral, genera que haya una menor protección, por tanto, su desplazamiento a campo bajo (efecto de desprotección del hidrógeno).

Figura 81. Gráficos de Williams de las monobactamas con actividad antibacteriana contra *A. baumannii*. La línea vertical punteada en rojo indica el límite indicado por la regla de la palanca ($h^* = 3p/n$, donde *n* es el número de moléculas y *p* es el número de descriptores en el modelo más uno). Las líneas horizontales punteadas superior/inferior en negro representan los límites para los cuales se utiliza el triple del valor de desviación estándar ($3 \times SDEC$). También se muestra la estructura química para la molécula cuya estructura se sale del dominio de aplicabilidad del modelo en 4 de 5 experimentos.

El desplazamiento químico de H8 posee un coeficiente negativo, indicando que a mayor valor de desplazamiento genera un efecto adverso en la actividad biológica, disminuyendo en sus valores. Esto implica que un efecto desprotector del hidrógeno en H8 aumentaría el valor del desplazamiento químico, afectando la bioactividad. Esto se explica en términos de efecto inductivo provocado por los sustituyentes ubicados sobre el grupo oxima: estructura de la tiazolina puede adquirir una conformación tal que genera traslape orbital causado por los dobles enlaces de la tiazolina y la oxima y, por tanto, afectar el desplazamiento químico del protón. Asimismo, la modificación de cualquier parte del anillo de aminotiazolina provocaría cambios importantes por lo que la señal puede darnos una idea sobre los efectos estéricos y electrónicos.

Por otro lado, los valores de C1 y C10 se refieren a los desplazamientos químicos de ¹³C del carbono de carbonilo de la betalactama, y del carbono que conecta al andamio común con los sustituyentes sobre el grupo oxima, respectivamente, Figura 79. El primero es esencial ya que es el carbono que sufre de adición nucleofílica por parte de la serina catalítica de las PBP; el segundo desplazamiento tiene un efecto importante debido al cambio de sustituyente de la monobactama. El valor del coeficiente del C1 es positivo, indicando que un aumento en el desplazamiento químico hacia campo bajo genera un aumento en la actividad biológica de las monobactamas. Como con H2, ya que se requiere activar el anillo betalactámico a través del carbono, una disminución de la densidad electrónica alrededor de este causaría desprotección, por ende, desplazamientos químicos altos. Esto implica que la presencia de grupos electroatractores es importante para generar reactividad química en dicho carbono. Por otro lado, C10 muestra un coeficiente negativo. Dada la cantidad de sustituyentes que se encuentran enlazados a este átomo, su desplazamiento implica cambios en la distribución electrónica y el volumen que le confieren dichos sustituyentes. Debido a su coeficiente negativo, valores de desplazamiento altos genera que haya una disminución de la actividad biológica. Por ejemplo, el AZT tiene dos grupos metilos unidos al C10, los cuáles son estructuras que donan densidad electrónica. Asimismo, posee un ácido carboxílico que, en medio acuoso, se transforma a carboxilato y que es una agente electroatractor fuerte. Debido a esto, su valor de desplazamiento químico se observa en 74 ppm. Moléculas que tienden desviarse de este comportamiento permiten tener valores de desplazamiento químico menores y, por tanto, un valor más grande de la bioactividad. El uso de descriptores basados en desplazamientos químicos ha sido empleado con éxito en otros trabajos, donde la actividad biológica ha mostrado correlación con estos parámetros.²⁴⁻²⁶

j. Descriptor de fragmento centrado en el átomo (ACF)

El único descriptor de fragmentos centrados en el átomo presente en la **Ecuación 23** es el N074, el cual corresponde a un nitrógeno doblemente enlazado a un grupo R, generalmente carbono, o triplemente enlazado (R#N; R=N-, donde # representa un triple enlace). En este sentido, las moléculas L35 a L68 presentan grupos amidina y guanidinio que poseen un enlace C=N. El valor del coeficiente es positivo, lo que indica que la presencia de este tipo de grupos funcionales conteniendo este ACF es benéfico para la actividad biológica. Esto se entiende en términos de la solubilidad de la molécula. El grupo amidina o guanidinio a pH fisiológico se protona, lo que genera que haya una mejora en la solubilidad del compuesto y por ende aumente su actividad.

k. Descriptor de índice topológico de carga

Los descriptores topológicos de carga se derivan de una matriz cuyos elementos se definen como:

$$CT_{ij} = \begin{cases} \delta_i & \text{si } i = j \\ m_{ij} - m_{ji} & \text{si } i \neq j \end{cases}$$
(24)

Donde δ_i es el grado del vértice del *iésimo*-átomo, y m_{ij} son elementos de la matriz obtenidos de multiplicar la matriz de adyacencia por la matriz de distancias cuadradas recíprocas.²⁷ Para cada camino de longitud k, un índice de carga topológica GGIk se define como la mitad de la suma de todos los términos de carga CT_{ii} (valores absolutos) correspondientes a un par de vértices con una distancia topológica igual a k. El número máximo de términos GGIk en una molécula es igual a la distancia topológica máxima en el grafo molecular correspondiente. Un índice de carga topológica promedio JGIk se obtiene dividiendo el índice de carga topológica correspondiente GGIk por el número total de términos de suma en GGIk. El descriptor JGI2 es el índice de carga topológica promedio de orden 2, donde el descriptor evalúa la carga global transferida entre pares de átomos dentro de la molécula a una distancia topológica de dos átomos. Entre los fragmentos observados con mayor valor de JGI2 está el del AZT (160) con 0.148, debido a la contribución de los dos átomos de oxígeno del grupo carboxilato. En la Figura 82 hay fragmentos cuyas estructuras poseen valores de [GI2 mayores a 0.12, y que contienen una contribución de grupos amida y por la cantidad de heteroátomos presentes en las moléculas. Por otro lado, se observa que el coeficiente del descriptor posee un valor positivo, indicativo que a medida que hay un aumento en el valor de JGI2, mayor actividad biológica se espera para el compuesto. Esto se puede observar directamente para las moléculas 160 (AZT) y 161, cuyas estructuras poseen valores de MIC de 4. Algunos trabajos como el reportado por Zanni²⁸ o por Sharma²⁹ y colaboradores utilizaron este descriptor para la interpretación de la actividad biológica en función de la contribución de las cargas en las moléculas de estudio.

Figura 82. Primeras cinco estructuras con sus respectivos valores de JGI2.

5.4 Propuesta de un complejo sideróforo-monobactama

El modelo QSAR descrito en la **Ecuación 23** proporciona información sobre aspectos estructurales importantes para la actividad farmacológica de las monobactamas de estudio. Por parte del andamio estructural en común, la capacidad de generar un anillo betalactámico reactivo para su apertura una vez dentro del sitio catalítico de las PBP (ataque nucleofílico por parte de la Ser) se puede relacionar directamente con los valores de desplazamiento químico
de ¹H y ¹³C del hidrógeno diastereotópico en H2 y el carbono de carbonilo de la betalactama, C1. Adicionalmente, los valores de H8 y C10 influenciados directamente por el cambio del sustituyente de la oxima permite que haya la búsqueda de fragmentos que tengan características particulares.

Como parte de la estrategia para la generación de nuevos betalactámicos utilizando la aproximación por "Caballo de Troya", se decidió buscar estructuras químicas que pudieran ser utilizadas como fragmentos para la creación de nuevos derivados de aztreonam. En este sentido, y en vista de la capacidad quelante que posee el fragmento 8-hidroxiquinolina mostrada en el Capítulo 4 hacia centros metálicos como es el caso del zinc, es que se considera la incorporación de la 8HQ a la estructura del AZT. La elección de la 8HQ con mejor perfil se destaca por poseer un amplio espectro de actividad frente a cepas bacterianas. Como se observó en el capítulo anterior, los derivados de la nitroxolina, en cuya estructura se incorporaba halógenos en la posición 7 del anillo, resultaron ser altamente activos. Aquellos análogos del clioquinol mostraron poca o nula actividad, excepto para el compuesto con el átomo de bromo en la posición 7. Por tanto, se decidió explorar la actividad de los nuevos compuestos mediante el análisis por los modelos QSPR (**Ecuación 18**) y QSAR (**Ecuación 23**), utilizando 8-hidroxiquinolinas con sustitución de halógenos en la posición 7, tal como se muestra en la **Figura 83**.

Figura 83. Estructura general de una monobactama con la incorporación de un grupo quelante como el fragmento 8-hidroxiquinolina conteniendo en la posición 7 del anillo de quinolina diferentes grupos halógeno como se observa para derivados de nitroxolina previamente discutidos.

I. Análisis retrosintético de compuesto sideróforo-monobactama

En el **Esquema 11** se muestra un análisis retrosintético para la obtención de las moléculas 161 a 165, donde para X, el cambio de un hidrógeno por halógenos permite un cambio no sólo en la parte estérica del fragmento sino también un cambio en las propiedades electrónicas del anillo de quinolina. En un primer análisis, la molécula (A) puede desconectarse a través del enlace amida que une el anillo betalactámico con el resto de la molécula y que generan los fragmentos (B) y (C). El fragmento en (B) es una molécula que puede ser adquirida comercialmente o bien, sintetizarse a partir de L-treonina para obtener la estereoquímica correcta sobre el carbono 3 del anillo betalactámico.³⁰ La molécula (C) puede desconectarse vía el enlace C-O que conecta al grupo oxima con el fragmento 8HQ generando así los compuestos (D) y (E). El compuesto en (D) puede ser fácilmente generado a partir de las quinolinas correspondientes (F) mediante una clorometilación de Blanc, utilizando formaldehído en medio ácido, catalizado por ZnCl₂.³¹ En tanto, el fragmento en (E) puede formarse a partir de la protección del grupo amino del precursor (G) el cual es comercialmente disponible.

Esquema 7. Análisis retrosintético para las monobactamas propuestas. Se muestran las dos desconexiones clave para la generación de la molécula, la primera a través de la ruptura del enlace amida, y la segunda a través del enlace C-O de la oxima con la quinolina.

m. Análisis de actividad usando los modelos QSPR y QSAR

En la **Tabla 12** se enlistan valores para los descriptores calculados para las estructuras anteriormente analizadas y que se usaron con el modelo de la **Ecuación 18**. Se observa que los valores no poseen diferencias significativas, porque el cambio sustancial es el efecto del halógeno sobre el anillo de quinolina. Se estima que el compuesto con hidrógeno en la posición 7 será el que mejor genere efecto antibacteriano sobre *A. baumannii*, en tanto que el compuesto con yodo será el que menos efecto posea. Se sabe que los halógenos tienden a generar compuestos químicos con mayor grado de hidrofobicidad debido al aumento en el tamaño del átomo. Esto podría explicar que la molécula 166 posea la menor actividad de todas. Al revisar los valores de MLOGP calculados para las moléculas, se observa un valor de 3.108 para el caso de 166; para 162 su valor calculado es de 2.267. No obstante, los valores predichos por el modelo de la **Ecuación 18** caen dentro del rango observado para otros betalactámicos.

MolID	MW	D/Dr06	GATS6m	nHDon	nHBonds	N075	TI2	<i>p</i> MIC	MICpred
162	506.57	207.708	0.876	5	2	2	5.568	3.959	55.630
163	524.56	213.628	0.875	5	2	2	5.655	3.965	56.816
164	541.01	213.628	0.884	5	2	2	5.655	3.961	59.132
165	585.46	213.628	0.85	5	2	2	5.655	3.976	61.834
166	632.46	213.628	0.835	5	2	2	5.655	3.983	65.795

 Tabla 12 – Valores predichos de *p*MIC de derivados de 8HQ mediante el modelo de la Ecuación 18.

El uso del modelo QSAR de la **Ecuación 23** para estimar la actividad biológica de estos derivados es imposibilitado porque el modelo incluye valores de desplazamientos químicos. Para ello es necesario contar con las moléculas sintetizadas y obtener sus valores para la incorporación de estos. Sin embargo, los descriptores JGI2, MLOGP2 y N074 son posibles de analizar en este contexto. En primera instancia, dado que no se encuentran fragmentos con átomos de carbono con triples enlaces o dobles a nitrógeno que no generen resonancia (ver contexto del descriptor N075 en el capítulo 2), el valor de este descriptor en todas las moléculas es de 0. Por otra parte, el valor de JGI2 no tiene gran variación, teniendo un valor de 0.099 para 162, y de 0.1 para el resto. Esto debido a que no hay gran contribución de la carga global entre pares de átomos por la lejanía de estos heteroátomos entre sí. Finalmente, dado que el valor de la molécula 166 de su MLOGP calculado es de 3.108, su valor al cuadrado, 9.658 se muestra como el más alto de entre los derivados.

5.5 Conclusiones y perspectivas

En el presente capítulo, se realizó un estudio QSAR de derivados de aztreonam, en donde se cumplieron los siguientes puntos:

- 1. A partir del análisis de las moléculas dentro de la base de datos, se detectó compuestos derivados de aztreonam que permitieron la generación de un modelo QSAR.
- 2. Se generó un modelo de variables que incluye, entre otros factores, aspectos de distribución electrónica a través de los desplazamientos químicos, del efecto estérico y de la solubilidad de los compuestos.
- 3. El uso de los desplazamientos químicos permite entender los cambios a nivel estructural por la incorporación de sustituyentes con gran capacidad donadora o electroatractora, además de corroborar el aspecto del mecanismo de acción de los betalactámicos al utilizar los desplazamientos químicos de los carbonos.
- 4. El descriptor de fragmento centrado en el átomo N074 nos permitió observar que la incorporación del grupo amidina y guanidino son importantes para potenciar la actividad de los compuestos. Esto debido a la capacidad de estos grupos de protonarse a pH fisiológico, permitiendo que la molécula sea más soluble en agua.

Como perspectivas del trabajo, se deberá realizar la síntesis de los derivados de aztreonam propuestos con la incorporación de la 8-hidroxiquinolina con el fin de explorar su actividad biológica contra *A. baumannii*.

5.6 Referencias

- Garza-Gonzalez, E.; Bocanegra-Ibarias, P.; Bobadilla-Del-Valle, M.; Ponce-de-Leon-Garduno, L. A.; Esteban-Kenel, V.; Silva-Sanchez, J.; Garza-Ramos, U.; Barrios-Camacho, H.; Lopez-Jacome, L. E.; *et al.*, Drug resistance phenotypes and genotypes in Mexico in representative gram-negative species: Results from the infivar network. *PLoS One* 2021, *16* (3), e0248614.
- 2. Sánchez-Álvarez, B. P.; Rincón-Zuno, J.; Mejía-Caballero, L.; Hernández-Castellanos, C. A.; Diaz-Conde, M.; Magaña-Matienzo, I.; Terrazas-Peraza, A. A., Estado actual de resistencia antimicrobiana en población pediátrica en un hospital de México. *Revista Médica del Instituto Mexicano del Seguro Social* **2022**, *60* (4), 371.
- 3. Lima, L. M.; Silva, B.; Barbosa, G.; Barreiro, E. J., beta-lactam antibiotics: An overview from a medicinal chemistry perspective. *Eur J Med Chem* **2020**, *208*, 112829.
- 4. El-Shorbagi, A. N.; Chaudhary, S., Monobactams: A unique natural scaffold of fourmembered ring skeleton, recent development to clinically overcome infections by multidrug-resistant microbes. *Letters in Drug Design & Discovery* **2019**, *16* (12), 1305-1320.
- 5. Walsh, C.; Wencewicz, T., *Antibiotics: challenges, mechanisms, opportunities*. John Wiley & Sons: 2020.
- 6. Shalaby, M.-A. W.; Dokla, E. M. E.; Serya, R. A. T.; Abouzid, K. A. M., Penicillin binding protein 2a: An overview and a medicinal chemistry perspective. *European Journal of Medicinal Chemistry* **2020**, *199*, 112312.
- 7. Vollmer, W.; Joris, B.; Charlier, P.; Foster, S., Bacterial peptidoglycan (murein) hydrolases. *FEMS Microbiology Reviews* **2008**, *32* (2), 259-286.
- 8. Sauvage, E.; Terrak, M., Glycosyltransferases and Transpeptidases/Penicillin-Binding Proteins: Valuable Targets for New Antibacterials. *Antibiotics* **2016**, *5*(1), 12.
- 9. Sykes, R. B.; Koster, W. H.; Bonner, D. P., The new monobactams: chemistry and biology. *J Clin Pharmacol* **1988**, *28*(2), 113-9.
- 10. Decuyper, L.; Jukic, M.; Sosic, I.; Zula, A.; D'Hooghe, M.; Gobec, S., Antibacterial and beta-Lactamase Inhibitory Activity of Monocyclic beta-Lactams. *Med Res Rev* **2018**, *38* (2), 426-503.
- 11. Sykes, R. B.; Bonner, D. P., Aztreonam: the first monobactam. *Am J Med* **1985**, *78* (2A), 2-10.
- 12. Ramsey, C.; MacGowan, A. P., A review of the pharmacokinetics and pharmacodynamics of aztreonam. *J Antimicrob Chemother* **2016**, *71* (10), 2704-12.
- Han, S.; Caspers, N.; Zaniewski, R. P.; Lacey, B. M.; Tomaras, A. P.; Feng, X.; Geoghegan, K. F.; Shanmugasundaram, V., Distinctive attributes of beta-lactam target proteins in Acinetobacter baumannii relevant to development of new antibiotics. *J Am Chem Soc* 2011, *133* (50), 20536-45.
- 14. Li, Z. W.; Lu, X.; Wang, Y. X.; Hu, X. X.; Fu, H. G.; Gao, L. M.; You, X. F.; Tang, S.; Song, D. Q., Synthesis and antibacterial evaluation against resistant Gram-negative bacteria of monobactams bearing various substituents on oxime residue. *Bioorg Chem* **2020**, *94*, 103487.
- 15. Han, S.; Zaniewski, R. P.; Marr, E. S.; Lacey, B. M.; Tomaras, A. P.; Evdokimov, A.; Miller, J. R.; Shanmugasundaram, V., Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa. *Proc Natl*

Acad Sci USA **2010**, *107*(51), 22002-7.

- 16. Hider, R. C.; Kong, X., Chemistry and biology of siderophores. *Nat Prod Rep* **2010**, *27*(5), 637-57.
- 17. Abouelhassan, Y.; Yang, Q.; Yousaf, H.; Nguyen, M. T.; Rolfe, M.; Schultz, G. S.; Huigens, R. W., 3rd, Nitroxoline: a broad-spectrum biofilm-eradicating agent against pathogenic bacteria. *Int J Antimicrob Agents* **2017**, *49* (2), 247-251.
- 18. Gumienna-Kontecka, E.; Carver, P. L., Building a Trojan Horse: Siderophore-Drug Conjugates for the Treatment of Infectious Diseases. *Met Ions Life Sci* **2019**, *19*, 331-358.
- 19. Mollmann, U.; Heinisch, L.; Bauernfeind, A.; Kohler, T.; Ankel-Fuchs, D., Siderophores as drug delivery agents: application of the "Trojan Horse" strategy. *Biometals* **2009**, *22* (4), 615-24.
- 20. Barbachyn, M. R.; Tuominen, T. C., Synthesis and structure-activity relationships of monocarbams leading to U-78608. *J Antibiot (Tokyo)* **1990**, *43* (9), 1199-203.
- 21. Zurenko, G. E.; Truesdell, S. E.; Yagi, B. H.; Mourey, R. J.; Laborde, A. L., In vitro antibacterial activity and interactions with beta-lactamases and penicillin-binding proteins of the new monocarbam antibiotic U-78608. *Antimicrob Agents Chemother* **1990**, *34* (5), 884-8.
- 22. Gabrielson, S. W., SciFinder. *Journal of the Medical Library Association: JMLA* 2018, *106* (4), 588.
- Klenke, B.; Wiegand, I.; Schiffer, G.; Broetz-Oesterhelt, H.; Maiti, S. N.; Khan, J.; Reddy, A.; Yang, Z.; Hena, M.; Jia, G. Amidine substituted β-lactam compounds, their preparation and use as antibacterial agents. 31 Ene. 2017, 2017.
- 24. Verma, R. P.; Hansch, C., Use of 13C NMR chemical shift as QSAR/QSPR descriptor. *Chem Rev* **2011**, *111* (4), 2865-99.
- 25. Matter, H.; Schudok, M.; Elshorst, B.; Jacobs, D. M.; Saxena, K.; Kogler, H., QSAR-by-NMR: quantitative insights into structural determinants for binding affinity by analysis of 1H/15N chemical shift differences in MMP-3 ligands. *Bioorg Med Chem Lett* **2005**, *15*(7), 1779-83.
- 26. Kiralj, R.; Ferreira, M. M., Simple quantitative structure-property relationship (QSPR) modeling of 170 carbonyl chemical shifts in substituted benzaldehydes compared to DFT and empirical approaches. *J Phys Chem A* **2008**, *112* (27), 6134-49.
- 27. Galvez, J.; Garcia, R.; Salabert, M. T.; Soler, R., Charge Indexes. New Topological Descriptors. *Journal of Chemical Information and Computer Sciences* **1994**, *34* (3), 520-525.
- Zanni, R.; Martínez-Cruz, J.; Gálvez-Llompart, M.; Fernández-Ortuño, D.; Romero, D.; García-Domènech, R.; Pérez-García, A.; Gálvez, J., Rational Design of Chitin Deacetylase Inhibitors for Sustainable Agricultural Use Based on Molecular Topology. *Journal of Agricultural and Food Chemistry* 2022, *70* (41), 13118-13131.
- 29. Sharma, B. K.; Pilania, P.; Singh, P.; Prabhakar, Y. S., A QSAR study on 2-(4methylpiperazin-1-yl)quinoxalines as human histamine H4 receptor ligands. *Journal of Enzyme Inhibition and Medicinal Chemistry* **2011**, *26*(3), 412-421.
- Floyd, D. M.; Fritz, A. W.; Pluscec, J.; Weaver, E. R.; Cimarusti, C. M., Monobactams. Preparation of (S)-3-amino-2-oxoazetidine-1-sulfonic acids from L-.alpha.-amino-.beta.hydroxy acids via their hydroxamic esters. *The Journal of Organic Chemistry* 1982, 47 (26), 5160-5167.
- 31. Xiao, M.; Wang, J.; Lin, Z.; Lu, Y.; Li, Z.; White, S. W.; Miller, D. D.; Li, W., Design, Synthesis

and Structure-Activity Relationship Studies of Novel Survivin Inhibitors with Potent Anti-Proliferative Properties. *PLOS ONE* **2015**, *10*(6), e0129807.

A.1 Condiciones generales

Todos los experimentos fueron realizados en atmósfera de nitrógeno o argón usando técnicas estándar Schlenk, a menos que se indique lo contrario. Los disolventes empleados fueron secados previamente según la metodología reportada para cada uno. [Armarego, W. L. (2017). Purification of laboratory chemicals, Butterworth-Heinemann] Los reactivos usados para la síntesis de precursores y complejos finales de Zn, fueron adquiridos en Sigma Aldrich (Merck) y usados sin mayor purificación. Los espectros de RMN fueron adquiridos en equipos propios del Centro de Investigaciones Químicas (CIQ): un Varian Mercury 200 MHz, y un equipo Bruker INOVA 500 MHz a temperatura ambiente. El análisis estructural por difracción de Rayos X se llevó a cabo en un equipo Agilent Technologies SuperNova en las instalaciones de la Universidad Autónoma del Estado de Hidalgo. Los espectros de Infrarrojo se realizaron en un equipo NICOLET 6700 utilizando ATR dentro de las instalaciones del CIQ (UAEM).

A.2 Síntesis del compuesto 7-bromo-5-cloro-8-hidroxiquinolina

En un matraz de 250 mL se pesaron 10g (56 mmol) del precursor 5-cloro-8-hidroxiquinolina y se disolvieron en 50 mL de THF seco. Tras 10 minutos de agitación, se agregó 1.1 equiv. (10.96g, 62 mmol) de *N*-bromosuccinimida (NBS) a la disolución bajo atmósfera inerte de argón. Posteriormente, cinco gotas de H₂SO₄ se añadieron al medio de reacción, a lo cual, tras cinco minutos de agitación se observó un aumento brusco de la temperatura (60°C). Tras dos horas de reacción a temperatura ambiente, se observó la formación de sólido café abundante. La suspensión se vertió en 300 mL de agua fría, del cual se generó un sólido amarillo pálido. El sólido se filtró y se purificó mediante recristalización en etanol (EtOH) caliente, de la cual se obtuvo un sólido blanco cristalino en forma de agujas (10.4g, 72% rendimiento).

RMN ¹**H** (500 MHz, DMSO-d₆): 8.99 (*dd*, CH arom, *J*_{HH} = 4.1, 1.6 Hz, 1H), 8.5 (*dd*, CH arom, *J*_{HH} = 8.5, 1.6 Hz, 1H), 7.9 (*s*, CH arom, 1H), 7.77 (*dd*, CH arom, *J*_{HH} = 8.5, 4.1 Hz, 1H); **RMN** ¹³C{¹H} (125.3 MHz, DMSO-d₆): 150.2, 149.8, 138.7, 133, 130.1, 125.2, 123.3, 119.1, 104.4. IR (ν_{max} ATR)/cm⁻¹: 3075 (br), 1973 (w), 1581, 1493, 1463, 1396, 1371, 1330, 1138, 1045, 954, 809, 784, 718, 651.

A.3 Síntesis del compuesto 5-cloro-8-hidroxi-7-nitroquinolina

En un matraz de 250 mL se pesaron 3g (16.7 mmol) del precursor 5-cloro-8-hidroxiquinolina y se disolvieron en 50 mL de AcOH glacial. Se disminuyó la temperatura a 0°C usando baño de hielo/acetona, y con vigorosa agitación, se añadió gota a gota 1.7 mL de HNO₃ concentrado (68-70% HNO₃). El sólido formado se filtró y lavó con 200 mL de H₂O fría. Se obtuvo un sólido naranja en forma de placas aterciopeladas (2.97g, 84% rendimiento).

RMN ¹**H** (500 MHz, DMSO-d₆): 9.09 (*dd*, CH arom, *J*_{HH} = 4.3, 1.5 Hz, 1H), 8.59 (*dd*, CH arom, *J*_{HH} = 8.5, 1.5 Hz, 1H), 8.19 (*s*, CH arom, 1H), 7.94 (*dd*, CH arom, *J*_{HH} = 8.5, 4.3 Hz, 1H); **RMN** ¹³C{¹H} (125.3 MHz, DMSO-d₆): 150.5, 150.1, 140, 133.7, 132.3, 128.5, 126, 122, 117.9. IR (ν_{max} ATR)/cm⁻¹: 3129, 3077, 2776 (br), 2031 (w), 1634, 1567, 1504, 1394, 1327, 1262, 1140, 1015, 892, 802, 753, 706, 652.

A.4 Síntesis del compuesto 7-cloro-8-hidroxi-5-nitroquinolina

En un matraz de 100 mL se pesaron 1g (5.3 mmol) del precursor 8-hidroxi-5-nitroquinolina y se disolvieron en 50 mL de en una solución acuosa de KOH 1.2M. Tras 10 minutos de vigorosa agitación, se agregó gota a gota una disolución de NaOCl 5% exceso (10 mL) durante 20 minutos. Tras dos horas de reacción, se observó la formación de sólido rojo abundante. Se agregaron 10 mL de AcOH donde se generó un sólido naranja. El sólido colectado se purificó mediante columna de cromatografía, usando AcOEt:acetona (1:9) como la fase móvil. El sólido naranja se recristalizó de solución saturada de acetona, obteniendo un sólido naranja brillante aterciopelado (2.97g, 84% rendimiento).

RMN ¹**H** (500 MHz, DMSO-d₆): 9.3 (*dd*, CH arom, *J*_{HH} = 8.9, 1.5 Hz, 1H), 8.97 (*dd*, CH arom, *J*_{HH} = 4.5, 1.5 Hz, 1H), 8.6 (*s*, CH arom, 1H), 7.95 (*dd*, CH arom, *J*_{HH} = 8.9, 4.5 Hz, 1H); **RMN** ¹³C{¹H} (125.3 MHz, DMSO-d₆): 150.5, 150.1, 140, 133.7, 132.3, 128.5, 126, 122, 117.9.

A.5 Síntesis del compuesto -7-bromo-8-hidroxi-5-nitroquinolina

En un matraz de 100 mL se pesaron 1.5g (7.9 mmol) del precursor 8-hidroxi-5-nitroquinolina y se disolvieron en 50 mL de THF seco. Tras 10 minutos de agitación, se agregó 1.1 equiv. (1.54g, 8.7 mmol) de *N*-bromosuccinimida (NBS) a la disolución bajo atmósfera inerte de argón. Posteriormente, cinco gotas de H_2SO_4 se añadieron al medio de reacción, a lo cual, tras cinco minutos de agitación se observó un aumento brusco de la temperatura (50°C). Tras dos horas de reacción a temperatura ambiente, se observó la formación de sólido café abundante. La suspensión se vertió en 300 mL de agua fría, del cual se generó un sólido rojo intenso. El sólido se filtró y purificó mediante recristalización en acetona caliente, de la cual se obtuvo un sólido naranja aterciopelado (1.63g, 76% rendimiento).

RMN ¹**H** (500 MHz, DMSO-d₆): 9.31 (*dd*, CH arom, *J*_{HH} = 8.9, 1.5 Hz, 1H), 8.97 (*dd*, CH arom, *J*_{HH} = 4.4, 1.5 Hz, 1H), 8.72 (*s*, CH arom, 1H), 7.97 (*dd*, CH arom, *J*_{HH} = 8.9, 4.4 Hz, 1H); **RMN** ¹³C{¹H} (125.3 MHz, DMSO-d₆): 159.8, 147.3, 135.5, 135.3, 132.3, 131.6, 125.5, 122.7, 104.4.

A.6 Síntesis del compuesto 8-hidroxi-5-nitro-7-yodoquinolina

En un matraz de 100 mL se pesaron 1.5g (7.9 mmol) del precursor 8-hidroxi-5-nitroquinolina y se disolvieron en 50 mL de THF seco. Tras 10 minutos de agitación, se agregó 1.1 equiv. (1.95g, 8.7 mmol) de *N*-bromosuccinimida (NBS) a la disolución bajo atmósfera inerte de argón. Posteriormente, cinco gotas de H₂SO₄ se añadieron al medio de reacción, a lo cual, tras cinco minutos de agitación se observó un aumento brusco de la temperatura (50°C). Tras dos horas de reacción a temperatura ambiente, se observó la formación de sólido café abundante. La suspensión se vertió en 300 mL de agua fría, del cual se generó un sólido rojo intenso. El sólido se filtró y se dejó durante un día a 80°C, obteniendo un sólido rojo (2.37g, 95% rendimiento).

RMN ¹**H** (500 MHz, THF-d₈/DMSO-d₆): 9.28 (*dd*, CH arom, *J*_{HH} = 8.9, 1.5 Hz, 1H), 9.00 (*dd*, CH arom, *J*_{HH} = 4.4, 1.5 Hz, 1H), 8.85 (*s*, CH arom, 1H), 7.96 (*dd*, CH arom, *J*_{HH} = 8.9, 4.4 Hz, 1H); **RMN** ¹³C{¹H} (125.3 MHz, THF-d₈/DMSO-d₆): 162, 148, 137.1, 134.6, 134.4, 133.6, 125.3, 122.7, 77.8.

Anexos - Figuras

Figura A4. Espectros parciales RMN HSQC/HMBC ¹H,¹³C{¹H}, DMSO-d₆, del compuesto **78**.

Figura A5. Espectros parciales RMN HSQC/HMBC ¹H,¹³C{¹H}, DMSO-d₆, del compuesto **79**.

Figura A6. Espectros parciales RMN HSQC/HMBC ¹H,¹³C{¹H}, DMSO-d₆, del compuesto **80**.

Figura A7. Espectros parciales RMN HSQC/HMBC ¹H,¹³C{¹H}, DMSO-d₆, del compuesto **84**.

Figura S1. Gráficos de dispersión de datos de *p*MIC predicho frente a valores de *p*MIC experimentales junto con los respectivos gráficos de Williams mostrando el dominio de aplicabilidad. Se realizaron 10 experimentos, para cada uno se realizó mediante el uso del 70% del conjunto de entrenamiento y el 30% de prueba.

Figura S2. Gráficos de dispersión de datos de *p*MIC experimentales vs valores de los descriptores moleculares utilizados en el modelo QSPR.

Figura S3. Estructuras químicas obtenidas de la base de datos ChEMBL que contienen el fragmento desoxiazúcar mostrado en la molécula 60 (resaltado en amarillo) y sus propiedades ADMET predichos para cada uno. Referencias de (a) en [1]; (b) en [2]; (c) en [3]; (d) en [4]; (e) en [5, 6]; y para (f) en [7].

Molecule 6			
# ⊕ ⊖ <i>Q</i>			Water Solubility
	LIPO	Log S (ESOL) 9	-5.85
		Solubility	8.21e-04 ma/ml : 1.42e-06 mol/l
	FLEX	Class 😣	Moderately soluble
		Log S (Ali) 🥹	-6.23
		Solubility	3.42e-04 mg/ml ; 5.91e-07 mol/l
Her XIX	≻-••	Class 📀	Poorly soluble
	INSATU	Log S (SILICOS-IT) 😣	-2.48
		Solubility	1.94e+00 mg/ml ; 3.35e-03 mol/l
		Class 🛞	Soluble
	INSOLU		Pharmacokinetics
0C1CCC2(C(C1)	C(OC10C(C)C(C(C10)0)0)CC1C2CCC2(C1CC1	GI absorption 📀	High
SMILES C2C(C)C2(O1)CC	CC(CO2)C)C)C	BBB permeant 🛞	No
Ph	hysicochemical Properties	P-gp substrate 🛞	Yes
Formula	C33H54O8	CYP1A2 inhibitor 📀	No
Molecular weight	578.78 g/mol	CYP2C19 inhibitor 🔞	No
Num. heavy atoms	41	CYP2C9 inhibitor 😣	No
Num. arom. heavy atoms	0	CYP2D6 inhibitor 🔞	No
Fraction Csp3	1.00	CYP3A4 inhibitor 📀	No
Num. rotatable bonds	2	Log K _p (skin permeation) 🤨	-6.96 cm/s
Num. H-bond acceptors	8		Druglikeness
Num. H-bond donors	4	Lipinski 🧐	Yes; 1 violation: MW>500
TPSA ⁽⁾	154.45 117.84 Ų	Ghose 😣	No; 3 violations: MW>480, MR>130, #atoms>70
	Lipophilicity	Veber 😣	Yes
Log P _{o/w} (iLOGP) 📀	4.43	Egan 😕	Yes
Log P _{o/w} (XLOGP3) 😣	4.05	Muegge 📀	Yes
Log P _{o/w} (WLOGP) 😣	3.62	Bioavailability Score 📀	0.55
Log P _{o/w} (MLOGP) 😣	2.56		Medicinal Chemistry
Log Peter (SILICOS-IT) 8	1.87	PAINS 🥹	0 alert
	0.04	Brenk 📀	1 alert: saponine_derivative 🥹
Consensus Log Poly	3.31	Leadlikeness 📀	No; 2 violations: MW>350, XLOGP3>3.5
		Synthetic accessibility 🧐	8.17

Molecule 7			
Ħ ⊕ \) 🖉			Water Solubility
	LIPO	Log S (ESOL) 🤨	-3.81
		Solubility	1.15e-01 mg/ml ; 1.56e-04 mol/l
ſ	" FLEX SIZE	Class 📀	Soluble
	ſ"	Log S (Ali) 🙆	-4 40
$-(XI) \gamma$		Solubility	2.96e-02.mg/ml : 4.02e-05.mol/l
	Ψ.	Class 🔞	Moderately soluble
$ \prec $	POLAR	Log S (SILICOS-IT) 😣	-0.43
<u>_</u> /		Solubility	2.72e+02 mg/ml ; 3.69e-01 mol/l
		Class 📀	Soluble
	INSOLU		Pharmacokinetics
OCC10C(OC(=0))C2CCC3C(C2)OC2(C43CO4)OCC(C(C2)OC(=O)/	GI absorption 📀	Low
SMILES C=C/c2cccc2)C)	C(C(C10)0)0Ć10C(C)C(C(C10)0)0	BBB permeant 📀	No
Ph	ysicochemical Properties	P-gp substrate 📀	Yes
Formula	C36H48O16	CYP1A2 inhibitor 📀	No
Molecular weight	736.76 g/mol	CYP2C19 inhibitor 📀	No
Num. heavy atoms	52	CYP2C9 inhibitor 📀	No
Num. arom. heavy atoms	6	CYP2D6 inhibitor 😣	No
Fraction Csp3	0.72	CYP3A4 inhibitor 📀	No
Num. rotatable bonds	10	Log K _p (skin permeation) 🥹	-10.82 cm/s
Num. H-bond acceptors	16		Druglikeness
Molar Refractivity	6 174.57	Lipinski 🛛	No; 3 violations: MW>500, NorO>10, NHorOH>5
TPSA 🕖	232.66 Å ² Lipophilicity	Ghose 📀	No; 4 violations: MW>480, WLOGP<-0.4, MR>130, #atoms>70
Log Poly (iLOGP) 📀	3.37	Veber 📀	No; 1 violation: TPSA>140
Log P-+ (XLOGP3) 😣	-0.04	Egan 😣	No; 1 violation: TPSA>131.6
Log P _{o/w} (WLOGP) 😔	-0.97	Muegge 🤨	No; 4 violations: MW>600, TPSA>150, H- acc>10, H-don>5
Log Poly (MLOGP) 😣	-1.50	Bioavailability Score 📀	0.17
Log Poly (SILICOS-IT) 😣	-0.56		Medicinal Chemistry
Consensus Log P-u 0	0.06	PAINS ()	0 alert
Concentrate Log F _{0/w}	0.00	Brenk 📀	3 alerts: Three-membered_heterocycle, michael_acceptor_1, more_than_2_esters 0
		Leadlikeness 📀	No; 2 violations: MW>350, Rotors>7
		Synthetic accessibility @	8.24

Molecule 8			
# ⊙ ⊖ <i></i>			Water Solubility
	LIPO	Log S (ESOL) 0	-3.00
		Solubility	5.36e-01 mg/ml ; 9.98e-04 mol/l
	FLEX SIZE	Class 0	Soluble
	o, L°	Log S (Ali) 😔 Solubility Class 🤨	-2.67 1.15e+00 mg/ml ; 2.15e-03 mol/l Soluble
N.C.		Log S (SILICOS-IT) 🔞	-1.90
NO	POLAR	Solubility	6.77e+00 mg/ml; 1.26e-02 mol/l
		Class 0	Soluble
	INSOLU		Pharmacokinetics
0=C10CC(=C1)	C1CCC2(C1(C)CCC1C2CCC2(C1(C)CCC(C2)OC1	GI absorption [®]	Low
SMILES OC(C)C(C(C10)	0)0)0	BBB permeant 📀	No
Pt	hysicochemical Properties	P-gp substrate 📀	Yes
Formula	C29H44O9	CYP1A2 inhibitor 📀	No
Molecular weight	536.65 g/mol	CYP2C19 inhibitor ⁽⁰⁾	No
Num. heavy atoms	38	CYP2C9 inhibitor 📀	No
Num. arom. heavy atoms	0	CYP2D6 inhibitor 📀	No
Fraction Csp3	0.90	CYP3A4 inhibitor 🐵	No
Num. rotatable bonds	3	Log K _p (skin permeation) 📀	-9.54 cm/s
Num. H-bond acceptors	9		Druglikeness
Num. H-bond donors	5	Lipinski 😣	Yes; 1 violation: MW>500
TPSA 8	145.91 Ų	Ghose 😣	No; 3 violations: MW>480, MR>130, #atoms>70
	Lipophilicity	Veber 📀	No; 1 violation: TPSA>140
Log P _{alw} (iLOGP) 😣	3.40	Egan 📀	No; 1 violation: TPSA>131.6
Log P _{o/w} (XLOGP3) 📀	0.05	Muegge 🔞	Yes
Log P _{o/w} (WLOGP) 📀	1.57	Bioavailability Score 📀	0.55
Log P _{o/w} (MLOGP) 🤨	1.18		Medicinal Chemistry
Log Poly (SILICOS-IT)	1 41	PAINS 😕	0 alert
	1.50	Brenk 📀	1 alert: saponine_derivative 🤨
Consensus LOg Poly	1.52	Leadlikeness 📀	No; 1 violation: MW>350
		Synthetic accessibility 📀	6.92

Molecule 9			
Ħ O \			Water Solubility
CH.	LIPO	Log S (ESOL) 🔞	-0.88
но		Solubility	4.57e+01 mg/ml; 1.32e-01 mol/l
" Y	FLEX SIZE	Class 📀	Very soluble
но		Log S (Ali) 🚱	-1 47
04.0		Solubility	1 18e+01 mg/ml : 3 41e-02 mol/l
	4,	Class @	Vory coluble
e 👔			
но	INSATU POLAR	Log S (SILICOS-IT)	0.79
		Solubility	2.15e+03 mg/ml ; 6.19e+00 mol/l
но	INSOLU	Class 🥑	Soluble
			Pharmacokinetics
SMILES OC/C(=C\CCC(OC	C1OC(C)C(C(C1O)O)O)(C=C)C)/C(=O)O	GI absorption	Hign
Ph	ysicochemical Properties	BBB permeant	No
Formula	C16H26O8	P-gp substrate	Yes
Molecular weight	346.37 g/mol	CYP1A2 Inhibitor	No
Num. heavy atoms	24	CYP2C19 Inhibitor	No
Num. arom. heavy atoms	0	CYP2C9 Inhibitor	No
Fraction Csp3	0.69	CYP2D6 inhibitor	No
Num. rotatable bonds	8		No
Num. H-bond acceptors	8	Log K _p (skin permeation)	-9.07 cm/s
Num. H-bond donors	5		Druglikeness
	84.59 406 60 Å2	Lipinski 🤨	Yes; 0 violation
IPSA 👽	IJ0.00 A*	Ghose 🧐	No; 1 violation: WLOGP<-0.4
	Lipoprinicity	Veber 🧐	Yes
LOG P _{o/w} (ILOGP)	1.38	Egan 🛞	No; 1 violation: TPSA>131.6
Log P _{o/w} (XLOGP3) 🥹	-0.92	Muegge 📀	Yes
Log P _{o/w} (WLOGP) 🧐	-0.44	Bioavailability Score 🧐	0.56
Log P _{olw} (MLOGP) 📀	-0.96		Medicinal Chemistry
Log P _{o/w} (SILICOS-IT) 📀	-0.12	PAINS 🕖	0 alert
Consensus Log P _{o/w} 🥹	-0.21	Brenk 📀	2 alerts: isolated_alkene, michael_acceptor_1
		Leadlikeness 📀	No; 1 violation: Rotors>7
		Synthetic accessibility 📀	5.17

Molecule 10			
Ħ ⊕ \] 🖌			Water Solubility
он	LIPO	Log S (ESOL) 🥹	-4.55
	FLEX SIZE	Class @	Moderately soluble
	CH ₁	Log S (Ali) 📀	-4.95
HA LL		Solubility	5.93e-03 mg/ml ; 1.13e-05 mol/l
		Class 🧐	Moderately soluble
	INSATU	Log S (SILICOS-IT) 📀	-4.95
		Solubility	5.92e-03 mg/ml; 1.12e-05 mol/l
\^°		Class Θ	Moderately soluble
	INSOLU		Pharmacokinetics
COc1cc2c(OC3O	C(C)C(C(C3O)O)O)c3COC(=O)c3c(c2cc1OC)c1cc	GI absorption 0	Low
c2c(c1)0C02		BBB permeant 📀	No
Ph	ysicochemical Properties	P-gp substrate 📀	No
Formula	C27H26O11	CYP1A2 inhibitor 📀	No
Volecular weight	526.49 g/mol	CYP2C19 inhibitor 📀	No
Num. heavy atoms	38	CYP2C9 inhibitor 📀	Yes
Num. arom. heavy atoms	16	CYP2D6 inhibitor 📀	Yes
Fraction Csp3	0.37	CYP3A4 inhibitor 📀	Yes
Num. rotatable bonds	5	Log K _p (skin permeation) 📀	-7.86 cm/s
Num. H-bond acceptors	11		Druglikeness
NUM. H-DONG CONORS	J 420.74	Lipinski 😢	No; 2 violations: MW>500, NorO>10
	100.74	Ghose 🛞	No; 2 violations: MW>480, MR>130
IF DA 🤝	142.37 A*	Veber 😣	No; 1 violation: TPSA>140
	2.00	Egan 📀	No; 1 violation: TPSA>131.6
	2.99	Muegge 📀	No; 1 violation: H-acc>10
Log P _{o/w} (XLOGP3) 🥹	2.32	Bioavailability Score 0	0.17
₋og P _{o/w} (WLOGP) 🧐	1.98		Medicinal Chemistry
Log P _{olw} (MLOGP) 😣	0.64	PAINS 🥹	0 alert
Log Poly (SILICOS-IT) 😣	2.62	Brenk 😣	0 alert
Consensus Log Poly 0	2 11	Leadlikeness 📀	No; 1 violation: MW>350
-9 - 0/W		Synthetic accessibility 0	5.49

Molecule 11			
# ⊙ ⊘ <i>⊘</i>			Water Solubility
	LIPO	Log S (ESOL) 😣	-3.67
		Solubility	1.17e-01 mg/ml ; 2.16e-04 mol/l
a,a,	FLEX SIZE	Class 😣	Soluble
H.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Log S (Ali) 😣	-3.78
	-°,	Solubility	8.92e-02 mg/ml ; 1.64e-04 mol/l
		Class 🛞	Soluble
×~ **	INSATU POLAR	Log S (SILICOS-IT) 😣	-5.83
		Solubility	8.10e-04 mg/ml ; 1.49e-06 mol/l
		Class 😣	Moderately soluble
	INSOLU		Pharmacokinetics
	200(C)C(C(C20)0)0)cc2c1c1ccc(c(=0)cc1C(CC2	GI absorption ⁶⁹	Low
SMILES)CNC(=O)C)CC	(-)-(-((BBB permeant 🔞	No
PI	hysicochemical Properties	P-gp substrate 📀	Yes
Formula	C29H37NO9	CYP1A2 inhibitor 📀	No
Molecular weight	543.61 g/mol	CYP2C19 inhibitor 🔞	No
Num. heavy atoms	39	CYP2C9 inhibitor 📀	No
Num. arom. heavy atoms	13	CYP2D6 inhibitor 📀	No
Fraction Csp3	0.52	CYP3A4 inhibitor 📀	Yes
Num. rotatable bonds	8	Log K _p (skin permeation) 🥹	-8.79 cm/s
Num. H-bond acceptors	9		Druglikeness
Num. H-bond donors	4	Lipinski 🥹	Yes: 1 violation: MW>500
Molar Refractivity	143.94 143.78 Ų	Ghose 😕	No; 3 violations: MW>480, MR>130,
	Lipophilicity	Veber	#atoms>ru No: 1 violation: TPSA>140
Log P _{o/w} (iLOGP) 🤨	3.42	Egan 🕘	No: 1 violation: TPSA>131.6
Log P _{o/w} (XLOGP3) 🥹	1.17	Muegge 📀	Yes
Log P _{o/w} (WLOGP) 📀	1.67	Bioavailability Score 📀	0.55
Log P _{o/w} (MLOGP) 🥹	0.25		Medicinal Chemistry
Log Poly (SILICOS-IT)	3.18	PAINS 🐵	0 alert
	1.04	Brenk 📀	0 alert
Consensus Log Poly	1.94	Leadlikeness 📀	No; 2 violations: MW>350, Rotors>7
l .		Synthetic accessibility 0	5.92

** • • • •			
¶ ⊕ \) /	LIPO		Water Solubility
		Log S (ESOL) 🥹	-1.80
		Solubility	5.28e+00 mg/ml ; 1.58e-02 mol/l
но	FLEX SIZE	Class 🛞	Very soluble
ОН		Log S (Ali) 😣	-2.90
н,с		Solubility	4.22e-01 mg/ml ; 1.26e-03 mol/l
î		Class 0	Soluble
\bigwedge			0.07
н,с	POLAR	Log S (SILICOS-IT)	-0.87
	•	Solubility	4.48e+01 mg/ml; 1.34e-01 mol/l
	INFOLI	Class 🥹	Soluble
	INSOLU		Pharmacokinetics
SMILES CCCC(OC1OC(C)C(C(C10)0)O)CCCCCC(=0)O	GI absorption 🥹	High
Pt	sicochemical Properties	BBB permeant 🥹	No
Formula	C16H30O7	P-gp substrate 🤨	Yes
Molecular weight	334.41 g/mol	CYP1A2 inhibitor 📀	No
Num. heavy atoms	23	CYP2C19 inhibitor 📀	No
Num. arom. heavy atoms	0	CYP2C9 inhibitor 📀	No
Fraction Csp3	0.94	CYP2D6 inhibitor 🛞	No
Num. rotatable bonds	10	CYP3A4 inhibitor 😣	No
Num. H-bond acceptors	7	Log K. (skin permeation) 😣	-7 72 cm/s
Num H-bond donors	4	Log rp (skin permeation)	Develigence
Molar Refractivity	84.34		Druglikeness Maa Quidelation
TPSA ()	116 45 Ų		Yes; U violation
11 5A -	Lipophilicity	Ghose 🥹	Yes
	cipoprinicity	Veber 🧐	Yes
LOG P _{o/w} (ILOGP)	2.22	Egan 📀	Yes
Log P _{o/w} (XLOGP3) 📀	0.87	Muegge 😣	Yes
Log P _{o/w} (WLOGP) 😣	1.03	Bioavailability Score 📀	0.56
Log Poly (MLOGP) 🥹	0.03		Medicinal Chemistry
	0.05	PAINS 😣	0 alert
Log P _{0/W} (SILICO3-IT)	0.95	Brenk 📀	0 alert
Consensus Log P _{o/w} 🥹	1.02	Leadlikeness 📀	No; 1 violation: Rotors>7
		Synthetic accessibility 0	5.16
Molecule 2			
₩ @ () 			Water Solubility
	LIPO	Log S (ESOL) 🥹	-1.39
		Solubility	1 37e+01 mg/ml - 4 11e-02 mg/l
0H	FLEX SIZE	Class (9)	Very soluble
THE SHA		01035	tory colubio
1 F			0.05
Her		Log S (Ali) 😣	-2.30
H,c		Log S (Ali) 🥺 Solubility	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l
Hach		Log S (Ali) 🥹 Solubility Class 🤨	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble
H, C C		Log S (Ali) Solubility Class Log S (SILICOS-IT)	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble -1 09
H, c , h, c	POLAR	Log S (Ali) Solubility Class Log S (SILICOS-IT) Solubility	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml : 8.13e.02 mol/l
H, C , H, C	Polar	Log S (Ali) Solubility Class Log S (SILICOS-IT) Solubility	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml ; 8.13e-02 mol/l
H, C A	POLAR INSOLU	Log S (Ali) Solubility Class Log S (SILICOS-IT) Solubility Class	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml ; 8.13e-02 mol/l Soluble
H, C	POLAR INSOLU	Log S (Alli) Solubility Class Class	-2.35 1.50e-00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml ; 8.13e-02 mol/l Soluble Pharmacokinetics
Het Smiles cccc(oc1oc(c	POLAR NISOLU INSOLU	Log S (Ali) Solubility Class Log S (SILICOS-IT) Solubility Class Gl absorption	-2.35 1.50e-00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml ; 8.13e-02 mol/l Soluble Pharmacokinetics High
Heed de la constant d	POLAR INSATU INSOLU POLAR INSOLU POLAR INSOLU	Log S (Ali) Solubility Class Log S (SILICOS-IT) Solubility Class GI absorption BBB permeant	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml ; 8.13e-02 mol/l Soluble Pharmacokinetics High No
sMILES CCCC(OC1OC(C	POLAR INSOLU INSOLU ICC(C10)00)CCCCCC(=0)N ysicochemical Properties C16H31NO6	Log S (Ali) Solubility Class Log S (SILICOS-IT) Solubility Class Gl absorption BBB permeant P-gp substrate Solubility	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml ; 8.13e-02 mol/l Soluble Pharmacokinetics High No Yes
Here CCCC(OC1OC(C Ph Formula Molecular weight	POLAR PO	Log S (Ali) S Solubility Class S Solubility Class S Gl absorption B BBB permeant P -gg substrate C CYP1A2 inhibitor S	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml ; 8.13e-02 mol/l Soluble Pharmacokinetics High No Yes No
H, cf of f H, cf of f	POLAR PO	Log S (Ali) Solubility Class Solubility Class Gl absorption BBB permeant P-gp substrate CYP1A2 inhibitor CYP2C19 inhibitor	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml ; 8.13e-02 mol/l Soluble Pharmacokinetics High No Yes No
He C CCC(OC10C(C Ph Formula Molecular weight Num. heavy atoms Num. arom. heavy atoms	POLAR PO	Log S (Ali) Solubility Class Log S (SILICOS-IT) Solubility Class Class Gl absorption BBB permeant P-gp substrate CYP1A2 inhibitor CYP2C19 inhibitor CYP2C9 inhibitor	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml ; 8.13e-02 mol/l Soluble Pharmacokinetics High No Yes No No
He CCCC(OC1OC(C Ph Formula Molecular weight Num. heavy atoms Num. arom. heavy atoms Fraction Csp3	POLAR NSATU NSOLU POLAR PO	Log S (Ali) S Solubility Class S Solubility Class S Solubility Class S Gl absorption S BBB permeant P-gp substrate C CYP1A2 inhibitor C CYP2C19 inhibitor C CYP2C9 inhibitor C	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml ; 8.13e-02 mol/l Soluble Pharmacokinetics High No Yes No No No No No
He CCCC (OC1OC(C Ph Formula Molecular weight Num. heavy atoms Fraction Csp3 Num. rotatable bonds	POLAR PO	Log S (Ali) S Solubility Class S Solubility Class S Gl absorption S BBB permeant P-gs substrate CYP1A2 inhibitor CYP2C19 inhibitor CYP2C19 inhibitor CYP2C9 inhibitor CYP2C9 inhibitor CYP2C9 inhibitor CYP2C9 inhibitor CYP2C9 inhibitor CYP3C4 inh	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml ; 8.13e-02 mol/l Soluble Pharmacokinetics High No Yes No No No No No No No No No No
He CCCC (OC1OC(C MILES CCCC (OC1OC(C Ph Formula Molecular weight Num. heavy atoms Num. arom. heavy atoms Fraction Csp3 Num. rotatable bonds Num. Hoond acceptors	POLAR NISATU INCOCCCCC(=0)N VSICOChemical Properties C16H31NO6 333.42 g/mol 23 0 0.94 10 6	Log S (Ali) S Solubility Class S Solubility Class S Gl absorption S BBB permeant S P-gp substrate CYP1A2 inhibitor CYP1A2 inhibitor CYP2C19 inhibitor CYP2C19 inhibitor CYP2D6 inhibitor CYP2D6 inhibitor CYP2D6 inhibitor CYP3A4 inhibitor CYP3A44 inhibitor CYP3A44 inhibitor CYP3A44 inhibitor CYP3A44 inhibitor CYP3A44 inhibitor CYP3A444 inhibitor CYP3A4444 inhibitor CYP3A44444 inhibitor CYP3A444444444444444444444444444444444444	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml ; 8.13e-02 mol/l Soluble Pharmacokinetics High No Yes No No No No No No No No No
He CCCC(OC1OC(C Ph Formula Molecular weight Num. heavy atoms Num. arom. heavy atoms Fraction Csp3 Num. rotatable bonds Num. H-bond acceptors Num. H-bond donors	POLAR PO	Log S (Ali) Solubility Class	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml ; 8.13e-02 mol/l Soluble Pharmacokinetics High No Yes No No No No No No No No No No
Hereford Hereford Hereford SMILES CCCC(OC1OC(C Ph Formula Molecular weight Num. heavy atoms Num. arom. heavy atoms Fraction Csp3 Num. rotatable bonds Num. H-bond acceptors Num. H-bond acceptors Num. H-bond acceptors Num. H-bond acceptors Num. H-bond acceptors	Polar Po	Log S (Ali) S Solubility Class S Solubility Class S Gl absorption S BBB permeant B P-gs substrate C CYP1A2 inhibitor C CYP2C19 inhibitor C CYP2C9 inhibitor C CYP2A4 inhibitor C	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml ; 8.13e-02 mol/l Soluble Pharmacokinetics High No Yes No Yes No No No No No No No No No No
Hereford Control Contr	POLAR PO	Log S (Ali) S Solubility Class S Solubility Class S Gl absorption G BBB permeant P-gs substrate G CYP1A2 inhibitor CYP2C19 inhibitor CYP2C9 inhibitor CYP2C9 inhibitor CYP2C9 inhibitor CYP2C9 inhibitor CYP2C9 inhibitor CYP2C6 inhibitor CYP3A4 inhibitor CYP3A6 inhibitor CYP3A4 in	-2.35 1.50e+00 mg/ml ; 4.50e-03 mol/l Soluble -1.09 2.71e+01 mg/ml ; 8.13e-02 mol/l Soluble Pharmacokinetics High No Yes No No No No No No No No No Soluble Pharmacokinetics High No Yes No No No No No No No No No No

Figura S4. Predicción de parámetros ADMET usando SwissADME para derivados de la molécula 60.

Ghose 📀

Veber 📀

Egan 📀

PAINS 8

Brenk 🔞

Leadlikeness 📀

Muegge 📀

Bioavailability Score 📀

Synthetic accessibility 📀

Yes

Yes

Yes

Yes

0.55 Medicinal Chemistry

0 alert

0 alert

4.96

No; 1 violation: Rotors>7

Log P_{o/w} (iLOGP) 🥹

Log P_{o/w} (XLOGP3) 😣

Log P_{o/w} (WLOGP) 🥹

Log P_{o/w} (MLOGP) 😣

Log P_{o/w} (SILICOS-IT) 📀

Consensus Log P_{o/w} 📀

Lipophilicity

2.61

0.22

0.44

-0.37

0.71

0.72

Molecule 3				ً
₩ ⊕ \			Water Solubility	
	LIPO	Log S (ESOL) 😣	-3.38	1
		Solubility	1.89e-01 mg/ml ; 4.16e-04 mol/l	
	FLEX SIZE	Class 🔞	Soluble	
**		Log S (Ali) 😣	-4.93	
		Solubility	5 40e-03 mg/ml : 1 19e-05 mol/l	
		Class ⁽²⁾	Moderately soluble	
			2.09	
H,C	NO INSATU POLAR	Log 3 (SILICOS-IT)	-2.30	
		Class 9	Soluble	
	INSOLU	01833 -	Pharmacokinetics	
0.0000000000000000000000000000000000000		GLabsorption 😗	low	1
SMILES CCCC(OCTOC(C)C(C(C10)0)0)CCCCCC(=0)0c1ccccc1C(=0)0	BBB permeant @	No	
Formula	capulation	P-on substrate @	Yes	
Formula Molocular weight	454 51 a/mal	CYP1A2 inhibitor @	No	
Num beauv atoms	454.51 g/moi	CYP2C19 inhibitor @	No	
Num arom heavy atoms	6	CYP2C9 inhibitor @	No	
Fraction Csn3	0.65	CYP2D6 inhibitor @	No	
Num rotatable bonds	13	CYP3A4 inhibitor @	Ves	
Num. H-bond acceptors	9	Log K. (skin permeation) @	-7 45 cm/s	
Num. H-bond donors	4	Log rip (star pornodatori) -	Druglikeness	
Molar Refractivity	115.74	Lininski 🖗	Ves: 0 violation	
TPSA 😣	142.75 Ų	Ghose 9	Ver	
	Lipophilicity	Veber 🖗	No: 2 violations: Rotors>10 TPSA>140	
Log P _{o/w} (iLOGP) 🤨	2.83	Fgan ()	No: 1 violation: TPSA>131.6	
Log Poly (XLOGP3)	2 29	Lyan C	Ves	
	2.25	Bioavailability Score 🖗	0.56	
	2.25	bioavanability Score -	Medicinal Chemistry	
Log P _{o/w} (MLOGP)	1.03	PAINS 😣	0 alert	
Log P _{o/w} (SILICOS-IT)	2.21	Brenk 🔞	1 alert: phenol. ester 🖗	
Consensus Log P _{olw} 📀	2.12	Leadlikeness 📀	No: 2 violations: MW>350 Rotors>7	
		Synthetic accessibility 0	5.25	
				P
				9
ff 😌 🖓 🏈			Water Solubility	
	uro	Log S (ESOL) 😣	-2.19	
		Solubility	2.16e+00 mg/ml ; 6.47e-03 mol/l	
он	FLEX	Class 🤨	Soluble	

	LIPO	Log S (ESOL)	-2.19
		Solubility	2 16e+00 mg/ml · 6 47e-03 mol/l
011	FLEX	Class ()	Soluble
но дом		01035	Collabio
ΎΥ		Log S (Ali) 🥹	-3.06
H, CO		Solubility	2.93e-01 mg/ml ; 8.77e-04 mol/l
	~~~	Class 🥹	Soluble
N.5	INSATU	Log S (SILICOS-IT) 📀	-2.03
		Solubility	3.11e+00 mg/ml ; 9.29e-03 mol/l
		Class 😣	Soluble
	INSOLU		Pharmacokinetics
SMILES CCCC(OC1OC(C)	C(C(C10)0)0)CCCCCCCC	GI absorption (9)	High
Phy	sicochemical Properties	BBB permeant 📀	No
Formula	C17H34O6	P-gp substrate 📀	Yes
Molecular weight	334.45 g/mol	CYP1A2 inhibitor 📀	No
Num. heavy atoms	23	CYP2C19 inhibitor 😣	No
Num. arom. heavy atoms	0	CYP2C9 inhibitor 📀	No
Fraction Csp3	1.00	CYP2D6 inhibitor 😣	No
Num. rotatable bonds	11	CYP3A4 inhibitor 📀	No
Num. H-bond acceptors	6	Log K _p (skin permeation) 📀	-7.21 cm/s
Num. H-bond donors	3	r	Druglikeness
Molar Refractivity	88.46	Lipinski 🤨	Yes: 0 violation
TPSA 🔞	88.38 Ų	Ghose 📀	Yes
	Lipophilicity	Veber 😣	No: 1 violation: Rotors>10
Log P _{o/w} (iLOGP) 😣	2.45	Foan 😗	Yes
Log P _{o/w} (XLOGP3) 😣	1.59	Muegge 0	Yes
Log P _{o/w} (WLOGP) 📀	1.60	Bioavailability Score 0	0.55
Log P _{o/w} (MLOGP) 🥹	0.41		Medicinal Chemistry
Log Palm (SILICOS-IT)	1.94	PAINS 🧐	0 alert
	1.60	Brenk 😣	0 alert
Consensus LOg Po/w	1.00	Leadlikeness 🛞	No; 1 violation: Rotors>7
		Synthetic accessibility 📀	5.52

Molecule 5			
<b># ⊕ ⊖</b> <i>Q</i>			Water Solubility
	LIPO	Log S (ESOL) 0	-3.11
		Solubility	3.05e-01 mg/ml ; 7.81e-04 mol/l
~ ^{a.}	FLEX	Class 🔞	Soluble
и, с • , • си,		Log S (Ali) 🤨	-3.99
		Solubility	4.01e-02 mg/ml ; 1.03e-04 mol/l
	an,	Class 😣	Soluble
и, с	INSATU	Log S (SILICOS-IT) 🔞	-3.64
		Solubility	8.88e-02 mg/ml ; 2.28e-04 mol/l
		Class 📀	Soluble
	INSOLU		Pharmacokinetics
SMILES CCCC(OC1OC(C	C(C(C1OC)OC)OC)CCCCCC(=0)OC	GI absorption 📀	High
Ph	hysicochemical Properties	BBB permeant 🛞	Yes
Formula	C20H38O7	P-gp substrate 📀	No
Molecular weight	390.51 g/mol	CYP1A2 inhibitor 📀	No
Num. heavy atoms	27	CYP2C19 inhibitor 📀	No
Num. arom. heavy atoms	0	CYP2C9 inhibitor 📀	No
Fraction Csp3	0.95	CYP2D6 inhibitor 😣	Yes
Num. rotatable bonds	14	CYP3A4 inhibitor 📀	No
Num. H-bond acceptors	7	Log K _p (skin permeation) 0	-6.69 cm/s
Num. H-bond donors	0		Druglikeness
Molar Refractivity	102.85	Lipinski 🔞	Yes; 0 violation
TPSA 🤨	72.45 Ų	Ghose 🔞	Yes
	Lipophilicity	Veber 😣	No; 1 violation: Rotors>10
Log P _{o/w} (iLOGP) 😣	4.23	Egan 😣	Yes
Log P _{o/w} (XLOGP3) 🥹	2.81	Muegge 😢	Yes
Log P _{o/w} (WLOGP) 📀	3.09	Bioavailability Score 🥹	0.55
Log P _{o/w} (MLOGP) 😣	0.98		Medicinal Chemistry
Log Poly (SILICOS-IT) 0	3 20	PAINS 🔫	0 alert
	2.96	Brenk 📀	0 alert
Conscisus Log F _{0/W}	2.00	Leadlikeness 📀	No; 2 violations: MW>350, Rotors>7
		Synthetic accessibility 📀	5.61

Molecule 12			
<b># ⊙</b> ◯ <i>ଢ</i>			Water Solubility
	LIPO	Log S (ESOL) 😣	-2.88
		Solubility	4.98e-01 mg/ml; 1.32e-03 mol/l
о_сн,	FLEX	Class 📀	Soluble
HC- Co		Log S (Ali) 😑	-3.88
нс		Solubility	5.00e-02 mg/ml ; 1.33e-04 mol/l
ſ		Class 🛞	Soluble
5		Log S (SILICOS-IT) 😣	-2.95
HjC	он	Solubility	4.21e-01 mg/ml; 1.12e-03 mol/l
		Class 🔞	Soluble
	INSOLU		Pharmacokinetics
SMILES CCCC(OC1OC(C	000000000000000000000000000000000000000	GI absorption ⁽³⁾	High
Pr	vsicochemical Properties	BBB permeant 📀	No
Formula	C19H36O7	P-gp substrate 😣	No
Molecular weight	376.48 g/mol	CYP1A2 inhibitor 📀	No
Num. heavy atoms	26	CYP2C19 inhibitor ⁽⁹⁾	No
Num. arom. heavy atoms	0	CYP2C9 inhibitor 📀	No
Fraction Csp3	0.95	CYP2D6 inhibitor 😣	No
Num. rotatable bonds	13	CYP3A4 inhibitor 📀	No
Num. H-bond acceptors	7	Log K _p (skin permeation) 📀	-6.84 cm/s
Num. H-bond donors	1		Druglikeness
Molar Refractivity	98.53	Lipinski 🔞	Yes; 0 violation
TPSA 📀	83.45 Ų	Ghose 🔞	Yes
	Lipophilicity	Veber 🔞	No; 1 violation: Rotors>10
Log P _{o/w} (iLOGP) 📀	3.27	Egan 😣	Yes
Log P _{o/w} (XLOGP3) 📀	2.48	Muegge 🔞	Yes
Log P _{o/w} (WLOGP) 🥹	3.00	Bioavailability Score 😣	0.56
Log P _{o/w} (MLOGP) 📀	0.75		Medicinal Chemistry
Log Poly (SILICOS-IT) 😣	2.64	PAINS 😣	0 alert
Consensus Log Poly 8	2.43	Brenk 😣	0 alert
	2.10	Leadlikeness 📀	No; 2 violations: MW>350, Rotors>7
		Synthetic accessibility 🧐	5.51

# **{** 166 **}**

Molecule 13			
# <b>⊙</b> ⊘ <i>⊘</i>			Water Solubility
он	LIPO FLEX SIZE	Log S (ESOL) 🚱 Solubility Class 📀	-2.16 2.40e+00 mg/ml ; 6.88e-03 mol/l Soluble
ңс-0		Log S (Ali) 😣 Solubility Class 😣	-3.23 2.06e-01 mg/ml ; 5.90e-04 mol/l Soluble
не	OH INSATU POLAR	Log S (SILICOS-IT) [©] Solubility Class [©]	-1.57 9.44e+00 mg/ml ; 2.71e-02 mol/l Soluble
	INSOLU		Pharmacokinetics
SMILES CCCC(OC1OC(C	C(C(C10)0)0C)CCCCCC(=0)0	GI absorption 📀	High
Pr	hysicochemical Properties	BBB permeant 📀	No
Formula	C17H32O7	P-gp substrate 📀	Yes
Molecular weight	348.43 g/mol	CYP1A2 inhibitor 😣	No
Num. heavy atoms	24	CYP2C19 inhibitor 🥹	No
Num. arom. heavy atoms	0	CYP2C9 inhibitor 📀	No
Fraction Csp3	0.94	CYP2D6 inhibitor 🔞	No
Num. rotatable bonds	11	CYP3A4 inhibitor 📀	No
Num. H-bond acceptors	7	Log K _p (skin permeation) 📀	-7.42 cm/s
Num. H-bond donors	3		Druglikeness
Molar Refractivity	89.07	Lipinski 🔞	Yes; 0 violation
TPSA 🤨	105.45 Ų	Ghose 🔞	Yes
	Lipophilicity	Veber 😣	No; 1 violation: Rotors>10
Log P _{olw} (iLOGP) 😣	2.41	Egan 😟	Yes
Log P _{o/w} (XLOGP3) 😣	1.41	- Muegge 📀	Yes
Log P _{o/w} (WLOGP) 📀	1.69	Bioavailability Score 0	0.56
Log P _{olw} (MLOGP) 😣	0.28		Medicinal Chemistry
Log Poly (SILICOS-IT)	1 51	PAINS 😣	0 alert
Conconsus Log D . 0	4.40	Brenk 😣	0 alert
Consensus Log Poly	1.40	Leadlikeness 📀	No; 1 violation: Rotors>7
		Synthetic accessibility	5.32

Molecule 14			
<b># ⊕ ⊖</b> <i>Q</i>			Water Solubility
	LIPO	Log S (ESOL) 🥹	-2.52
		Solubility	1.09e+00 mg/ml; 2.99e-03 mol/l
осн,	FLEX SIZE	Class 0	Soluble
ңс он		Log S (Ali) 🤨	-3.56
HC 0		Solubility	1.00e-01 mg/ml ; 2.77e-04 mol/l
		Class 😣	Soluble
	J INSATU POLAR	Log S (SILICOS-IT) 😣	-2.26
1192	ОН	Solubility	2.00e+00 mg/ml ; 5.51e-03 mol/l
		Class 🐵	Soluble
	INSOLU		Pharmacokinetics
SMILES CCCC(OC1OC(C	C)C(C(C10)OC)OC)CCCCCC(=0)O	GI absorption 📀	High
P	hysicochemical Properties	BBB permeant 😣	No
Formula	C18H34O7	P-gp substrate 🔞	No
Molecular weight	362.46 g/mol	CYP1A2 inhibitor 📀	No
Num. heavy atoms	25	CYP2C19 inhibitor 📀	No
Num. arom. heavy atoms	0	CYP2C9 inhibitor 📀	No
Fraction Csp3	0.94	CYP2D6 inhibitor 😣	No
Num. rotatable bonds	12	CYP3A4 inhibitor 📀	No
Num. H-bond acceptors	7	Log K _p (skin permeation) 📀	-7.13 cm/s
Num. H-bond donors	2		Druglikeness
Molar Refractivity	93.80	Lipinski 🔫	Yes: 0 violation
TPSA 😕	94.45 Ų	Ghose 🖲	Yes
	Lipophilicity	Veber 🔞	No: 1 violation: Rotors>10
Log P _{o/w} (iLOGP) 📀	3.46	Egan 📀	Yes
Log P _{o/w} (XLOGP3) 📀	1.95	Muegge 📀	Yes
Log P _{olw} (WLOGP) 😣	2.34	Bioavailability Score 🧐	0.56
Log P _{o/w} (MLOGP) 📀	0.52		Medicinal Chemistry
Log Poly (SILICOS-IT) 😣	2.07	PAINS 0	0 alert
Consensus Log Poly 0	2.07	Brenk 🧐	0 alert
0 0/1		Leadlikeness 🧐	No; 2 violations: MW>350, Rotors>7
		Synthetic accessibility 📀	5.39

Molecule 15			
Ħ ⊕ 🗘 🔗			Water Solubility
	LIPO	Log S (ESOL) 🔞	-2.39
		Solubility	1.47e+00 mg/ml ; 4.06e-03 mol/l
он	FLEX SIZE	Class 🔞	Soluble
N, C ° 1 0H		Log S (Ali) 🥹	-3.34
H.C.		Solubility	1.66e-01 mg/ml ; 4.57e-04 mol/l
$\rightarrow$	м _о -а.	Class 📵	Soluble
н, с	INSATU	Log S (SILICOS-IT) 📀	-2.26
		Solubility	2.00e+00 mg/ml ; 5.51e-03 mol/l
		Class 😣	Soluble
	INSOLU		Pharmacokinetics
SMILES CCCC(OC1OC(C	000000000000000000000000000000000000000	GI absorption ⁶	High
Pr	hysicochemical Properties	BBB permeant 📀	No
Formula	C18H34O7	P-gp substrate 📀	Yes
Molecular weight	362.46 g/mol	CYP1A2 inhibitor 📀	No
Num. heavy atoms	25	CYP2C19 inhibitor 😣	No
Num. arom. heavy atoms	0	CYP2C9 inhibitor 📀	No
Fraction Csp3	0.94	CYP2D6 inhibitor 😣	No
Num. rotatable bonds	12	CYP3A4 inhibitor 📀	No
Num. H-bond acceptors	7	Log K _p (skin permeation) 📀	-7.28 cm/s
Num. H-bond donors	2		Druglikeness
Molar Refractivity	93.39	Lipinski 🛞	Yes; 0 violation
TPSA 😣	94.45 Ų	Ghose 🔞	Yes
	Lipophilicity	Veber 🔞	No; 1 violation: Rotors>10
Log P _{o/w} (iLOGP) 📀	3.84	Egan 📀	Yes
Log P _{o/w} (XLOGP3) 📀	1.74	Muegge 📀	Yes
Log P _{o/w} (WLOGP) 😣	1.78	Bioavailability Score 📀	0.55
Log P _{o/w} (MLOGP) 📀	0.52		Medicinal Chemistry
Log Poly (SILICOS-IT)	2.07	PAINS 😣	0 alert
	1.00	Brenk 📀	0 alert
Conscious Log F _{0/W}	1.00	Leadlikeness 📀	No; 2 violations: MW>350, Rotors>7
		Synthetic accessibility 0	5.42

#### Anexos - Tablas

No.	MolID	pMIC	D/Dr06	GATS6m	nArCOOH	nRCONH2	nROR	nImidazoles	nHDon	nHBonds	C-018	C-029	C-032	H-051	N-075	N-079	TI2
1	L014	4.062	149.672	0.89	0	0	0	0	2	1	0	0	0	0	0	0	3.967
2	L015	4.018	133.662	0.838	0	0	0	0	4	1	0	0	0	0	0	0	3.992
3	L017	4.481	199.93	0.701	0	0	0	0	2	2	0	0	0	0	0	0	4.745
4	L036	4.699	318.348	0.381	1	0	0	0	2	0	0	0	0	0	1	0	4.44
5	L037	5.018	318.348	0.368	1	0	0	0	2	0	0	0	0	0	1	0	4.44
6	L038	4.761	318.348	0.389	1	0	0	0	2	0	0	0	0	0	1	0	4.44
7	L039	4.224	328.184	0.641	1	0	0	0	2	0	0	0	0	0	1	0	3.912
8	L040	4.543	338.772	0.619	1	0	0	0	2	1	0	0	0	0	1	0	4.16
9	L041	4.844	339.89	0.619	1	0	0	0	2	0	0	0	0	0	1	0	4.201
10	L042	4.844	341.154	0.559	1	0	0	0	2	0	0	0	0	0	1	0	4.215
11	L043	4.561	350.478	0.613	1	0	0	0	2	1	0	0	0	0	1	0	4.407
12	L044	4.591	351.741	0.432	1	0	0	0	2	0	0	0	0	0	1	0	4.422
13	L045	5.504	341.154	0.385	1	0	0	0	2	0	0	0	0	0	1	0	4.215
14	L046	4.826	329.403	0.779	1	0	0	0	2	0	0	0	0	0	1	0	3.915
15	L047	4.844	339.99	0.723	1	0	0	0	2	1	0	0	0	0	1	0	4.164
16	L048	4.844	341.109	0.723	1	0	0	0	2	0	0	0	0	0	1	0	4.205
17	L049	4.844	342.372	0.664	1	0	0	0	2	0	0	0	0	0	1	0	4.22
18	L050	4.862	351.696	0.697	1	0	0	0	2	1	0	0	0	0	1	0	4.412
19	L051	5.193	382.75	0.567	1	0	0	0	2	0	0	0	0	0	1	0	5.086
20	L052	5.463	342.372	0.431	1	0	0	0	2	0	0	0	0	0	1	0	4.22
21	L053	5.193	352.959	0.439	1	0	0	0	2	0	0	0	0	0	1	0	4.428
22	L054	5.805	342.372	0.38	1	0	0	0	2	0	0	0	0	0	1	0	4.22
23	L060	5.603	521.705	1.114	0	0	2	0	7	0	0	0	0	3	0	1	14.471
24	L064	5.026	0	0.949	0	0	1	0	0	0	0	0	0	0	0	0	1.929

**Tabla S1**. Lista de moléculas para la generación del modelo QSPR: descriptores moleculares calculados y valor experimental de MIC (expresado como *p*MIC) se muestra a continuación.

25	L065	4.954	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1.151
26	L066	4.866	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.903
27	L068	3.860	174.064	1.024	0	0	0	0	6	0	0	0	0	1	0	1	6.104
28	L069	4.161	103.491	1.083	0	0	0	0	7	0	0	0	0	0	0	1	6.652
29	L071	4.161	103.491	1.083	0	0	0	0	7	0	0	0	0	0	0	1	6.652
30	L072	3.860	174.064	1.024	0	0	0	0	6	0	0	0	0	1	0	1	6.104
31	L073	4.161	103.491	1.083	0	0	0	0	7	0	0	0	0	0	0	1	6.652
32	L075	4.602	192.468	0.583	0	0	0	0	2	1	0	0	0	0	0	0	5.375
33	L078	4.602	134.267	0.768	0	0	0	1	2	0	0	0	0	0	1	0	5.196
34	L079	4.886	184.526	0.478	0	0	0	0	1	0	0	0	0	0	0	0	5.538
35	L080	4.001	172.414	0.434	0	0	0	0	1	0	0	0	0	0	0	0	4.911
36	L081	4.601	172.414	0.415	0	0	0	0	1	0	0	0	0	0	0	0	4.911
37	L085	4.301	194.887	0.532	0	0	0	1	1	0	0	0	0	0	1	0	6.026
38	L086	4.301	147.072	0.7	0	0	0	0	1	0	0	0	0	0	0	0	5.196
39	L087	4.301	161.596	0.554	0	0	0	0	1	0	0	0	0	0	0	0	5.275
40	L088	4.601	300.32	0.517	0	0	0	0	1	0	0	0	0	0	0	0	5.946
41	L089	4.602	200.544	0.471	0	0	0	0	1	0	0	0	0	0	0	0	5.771
42	L090	4.888	200.015	0.455	0	0	0	0	1	0	0	0	0	0	0	0	5.731
43	L091	4.889	180.977	0.478	0	0	0	0	1	0	0	0	0	0	0	0	5.538
44	L092	4.302	300.32	0.519	0	0	0	0	1	0	0	0	0	0	0	0	5.946
45	L094	4.001	283.527	0.476	0	0	0	0	1	0	0	0	0	2	1	0	5.652
46	L095	4.000	374.177	0.459	0	0	0	0	1	0	0	0	0	0	0	0	6.794
47	L099	4.297	315.792	0.497	0	0	0	0	1	0	0	0	0	0	1	0	5.797
48	L100	4.000	184.811	0.422	0	0	0	0	1	0	0	0	0	6	1	0	5.457
49	L103	5.404	703.965	1.071	0	0	1	0	3	1	0	1	0	0	2	0	5.401
50	L104	5.417	703.965	0.499	0	0	1	0	3	1	0	1	0	0	2	0	5.401
51	L105	4.817	722.498	1.212	0	0	1	0	3	2	0	1	0	0	2	0	5.462
52	L106	5.432	722.498	1.375	0	0	1	0	3	1	0	1	0	0	2	0	5.462
53	L107	5.114	722.498	1.014	0	0	1	0	3	1	0	1	0	0	2	0	5.462

54	L108	5.728	742.503	0.993	0	0	1	0	3	1	0	1	0	0	2	0	5.527
55	L109	4.212	722.498	1.061	0	0	1	0	5	1	0	1	0	0	2	0	5.462
56	L110	4.213	722.498	1.121	0	0	1	0	4	2	0	1	0	0	2	0	5.462
57	L111	4.292	1025.798	1.001	0	0	1	0	3	2	0	1	0	0	2	0	6.193
58	L112	4.512	731.017	1.054	0	0	1	0	3	2	0	1	0	0	2	0	5.344
59	L113	4.199	703.965	1.034	0	0	1	0	3	1	0	0	0	0	2	0	5.401
60	L114	4.200	703.965	1.023	0	0	1	0	3	2	0	1	0	0	3	0	5.401
61	L115	4.801	703.965	1.084	0	0	1	0	3	1	0	0	0	0	1	0	5.401
62	L116	4.790	677.622	1.03	0	0	1	0	2	1	0	0	0	0	2	0	5.215
63	L117	4.501	704.487	1.031	0	0	1	0	2	1	0	0	0	0	2	0	5.403
64	L119	4.200	703.965	1.023	0	0	1	0	2	1	0	0	0	0	2	0	5.401
65	L121	4.210	714.564	0.998	0	0	1	0	2	1	0	0	0	0	2	0	5.405
66	L122	4.218	695.315	1.097	0	0	1	0	2	1	0	0	0	0	2	0	5.309
67	L123	5.105	677.622	0.537	0	0	1	0	2	1	0	0	0	0	2	0	5.215
68	L124	5.406	677.622	0.489	0	0	1	0	2	1	0	0	0	0	2	0	5.215
69	L125	4.229	722.767	0.538	0	0	1	0	2	1	0	0	0	0	2	0	5.537
70	L126	4.229	724.099	0.508	0	0	1	0	2	1	0	0	0	0	2	0	5.549
71	L127	4.188	677.622	1.03	0	0	1	0	2	1	0	1	0	0	2	0	5.215
72	L128	4.189	677.622	1.067	0	0	1	0	2	1	0	1	0	0	3	0	5.215
73	L129	4.189	677.622	1.018	0	0	1	0	2	2	0	1	0	0	3	0	5.215
74	L130	5.090	677.622	1.045	0	0	1	0	2	1	0	0	0	0	1	0	5.215
75	L131	4.805	696.155	1.189	0	0	1	0	2	1	0	0	0	0	1	0	5.301
76	L132	4.819	696.155	1.373	0	0	1	0	2	1	0	0	0	0	1	0	5.301
77	L133	4.217	695.315	1.095	0	0	1	0	2	1	0	0	0	0	1	0	5.309
78	L134	4.244	713.848	1.245	0	0	1	0	2	1	0	0	0	0	1	0	5.379
79	L135	4.244	716.145	0.95	0	0	1	0	2	1	0	0	0	0	1	0	5.408
80	L136	4.244	715.304	0.795	0	0	1	0	2	1	0	0	0	0	1	0	5.412
81	L137	4.789	677.622	1.072	0	0	1	0	3	1	0	1	0	0	2	0	5.215
82	L138	4.187	677.622	1.099	0	0	1	0	3	1	0	1	0	0	2	0	5.215

L140 L141 L142 L143 L144 L144 L146 L147 L149	<ul> <li>4.200</li> <li>4.501</li> <li>4.211</li> <li>5.078</li> <li>4.283</li> <li>5.090</li> <li>5.395</li> <li>4.175</li> </ul>	700.195 700.861 723.433 555.523 749.397 677.622 637.769	1.087 1.1 1.171 1.043 0.998 1.064	0 0 0 0	0 0 0 0	1 1 1 1	0 0 0	2 2 2	1 1 1	0 0	1 1	0 0	0 0	2 2	0 0	5.384 5.39
L141 L142 L143 L144 L144 L146 L147 L149	4.501 4.211 5.078 4.283 5.090 5.395 4.175	700.861 723.433 555.523 749.397 677.622 637.769	1.1 1.171 1.043 0.998 1.064	0 0 0 0	0 0 0	1 1 1	0 0 0	2 2	1 1	0	1	0	0	2	0	5.39
L142 L143 L144 L146 L146 L147 L149	4.211 5.078 4.283 5.090 5.395 4.175	723.433 555.523 749.397 677.622 637.769	1.171 1.043 0.998 1.064	0 0 0	0 0 0	1 1	0	2	1	0					0	
L143 L144 L146 L147 L149	5.078 4.283 5.090 5.395 4.175	555.523 749.397 677.622 637.769	1.043 0.998 1.064	0	0	1	0			0	1	0	0	2	0	5.535
L144 L146 L147 L149	<ul><li>4.283</li><li>5.090</li><li>5.395</li><li>4.175</li></ul>	749.397 677.622 637.769	0.998 1.064	0	0			2	1	0	0	0	0	1	0	5.021
L146 L147 L149	5.090 5.395 4.175	677.622 637.769	1.064			1	0	2	1	0	0	0	0	1	0	6.278
L147 L149	5.395 4.175	637.769		0	0	1	0	2	1	0	0	0	0	2	0	5.215
L149	4.175		0.802	0	0	1	0	2	1	0	0	0	0	1	0	5.854
L150		622.7	1.016	0	0	1	0	2	1	0	0	0	0	1	0	5.662
L130	4.507	666.439	0.932	0	0	1	0	2	1	0	0	0	0	1	0	5.861
L151	4.507	666.439	0.932	0	0	1	0	2	1	0	0	0	0	1	0	5.861
L152	5.061	595.049	1.235	0	0	1	0	2	1	0	0	0	0	1	0	5.35
L153	4.159	595.049	1.238	0	0	1	0	2	1	0	0	0	0	2	0	5.35
L154	5.397	640.699	0.857	0	0	1	0	2	1	0	0	0	0	1	0	5.883
L155	5.085	606.39	0.814	0	0	1	0	2	1	0	0	0	0	1	0	5.313
L156	4.501	497.268	0.513	0	0	1	0	2	1	0	0	0	0	2	0	5.391
L157	4.197	703.965	1.141	0	0	1	0	3	1	0	1	0	0	2	0	5.401
L158	4.524	750.968	1.229	0	0	1	0	2	2	0	1	0	0	3	0	5.632
L159	3.906	716.145	1.265	0	0	1	0	2	2	0	0	0	0	1	0	5.408
L160	3.924	741.966	0.898	0	0	1	0	3	3	0	0	0	0	1	0	5.578
L161	3.885	109.938	0.035	0	0	0	0	0	0	0	1	0	0	2	0	2.553
L162	3.523	93.176	0.032	0	0	0	0	0	0	0	1	0	0	2	0	2.88
L164	4.703	62.572	1.217	0	0	0	0	3	0	0	0	0	0	0	0	5.895
L166	3.792	49.53	1.279	0	0	0	0	3	0	0	0	0	0	0	0	4.242
L167	4.701	67.103	1.2	0	0	0	0	3	0	0	0	0	0	0	0	6.44
L168	4.090	76.386	1.172	0	0	0	0	3	0	0	0	0	0	0	0	7.512
L171	4.386	66.294	1.037	0	0	0	0	3	0	0	0	0	0	0	0	5.715
L172	4.700	180.275	1.16	0	0	0	0	3	0	0	0	0	0	0	0	7.544
L174	3.518	58.069	0.746	0	0	0	0	1	0	0	0	0	0	0	0	6.351
	L160 L161 L162 L164 L166 L167 L168 L171 L172 L172	L1603.924L1613.885L1623.523L1644.703L1663.792L1674.701L1684.090L1714.386L1724.700L1743.518	L1603.924741.966L1613.885109.938L1623.52393.176L1644.70362.572L1663.79249.53L1674.70167.103L1684.09076.386L1714.38666.294L1724.700180.275L1743.51858.069	L1603.924741.9660.898L1613.885109.9380.035L1623.52393.1760.032L1644.70362.5721.217L1663.79249.531.279L1674.70167.1031.2L1684.09076.3861.172L1714.38666.2941.037L1724.700180.2751.16L1743.51858.0690.746	L1603.924741.9660.8980L1613.885109.9380.0350L1623.52393.1760.0320L1644.70362.5721.2170L1663.79249.531.2790L1674.70167.1031.20L1684.09076.3861.1720L1714.38666.2941.0370L1724.700180.2751.160L1743.51858.0690.7460	L1603.924741.9660.89800L1613.885109.9380.03500L1623.52393.1760.03200L1644.70362.5721.21700L1663.79249.531.27900L1674.70167.1031.200L1684.09076.3861.17200L1714.38666.2941.03700L1724.700180.2751.1600L1743.51858.0690.74600	L1603.924741.9660.898001L1613.885109.9380.035000L1623.52393.1760.032000L1644.70362.5721.217000L1663.79249.531.279000L1674.70167.1031.2000L1684.09076.3861.172000L1714.38666.2941.037000L1724.700180.2751.16000L1743.51858.0690.746000	L1603.924741.9660.8980010L1613.885109.9380.0350000L1623.52393.1760.0320000L1644.70362.5721.2170000L1663.79249.531.2790000L1674.70167.1031.20000L1684.09076.3861.1720000L1714.38666.2941.0370000L1724.700180.2751.160000L1743.51858.0690.7460000	L1603.924741.9660.89800103L1613.885109.9380.03500000L1623.52393.1760.032000000L1644.70362.5721.21700003L1663.79249.531.27900003L1674.70167.1031.200003L1684.09076.3861.17200003L1714.38666.2941.03700003L1724.700180.2751.1600001	L1603.924741.9660.898001033L1613.885109.9380.035000000L1623.52393.1760.032000000L1644.70362.5721.217000030L1663.79249.531.279000030L1674.70167.1031.2000030L1684.09076.3861.172000030L1714.38666.2941.037000030L1724.700180.2751.16000010L1743.51858.0690.746000010	L1603.924741.9660.8980010330L1613.885109.9380.0350000000L1623.52393.1760.03200000000L1644.70362.5721.21700003000L1643.79249.531.27900003000L1674.70167.1031.200003000L1684.09076.3861.17200003000L1714.38666.2941.03700003000L1724.700180.2751.160000100L1743.51858.0690.7460000100	L1603.924741.9660.89800103300L1613.885109.9380.0350000001L1623.52393.1760.0320000001L1644.70362.5721.21700003000L1663.79249.531.27900003000L1674.70167.1031.200003000L1684.09076.3861.17200003000L1714.38666.2941.03700003000L1724.700180.2751.1600001000L1743.51858.0690.74600001000	L1603.924741.9660.898001033000L1613.885109.9380.035000000010L1623.52393.1760.032000000010L1644.70362.5721.217000030000L1663.79249.531.279000030000L1674.70167.1031.2000030000L1684.09076.3861.172000030000L1714.38666.2941.037000030000L1724.700180.2751.16000010000L1743.51858.0690.746000010000	L1603.924741.9660.8980010330000L1613.885109.9380.0350000000100L1623.52393.1760.0320000000100L1644.70362.5721.2170000300000L1663.79249.531.2790000300000L1674.70167.1031.20000300000L1684.09076.3861.17200003000000L1714.38666.2941.03700003000000L1724.700180.2751.1600001000000L1743.51858.0690.746000010000000	L1603.924741.9660.89800103300001L1613.885109.9380.0350000000102L1623.52393.1760.032000000002L1644.70362.5721.21700003000000L1663.79249.531.279000030000000L1674.70167.1031.20000300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000	L1603.924741.9660.898001033000010L1613.885109.9380.03500000001020L1623.52393.1760.03200000001020L1644.70362.5721.217000030000000L1663.79249.531.2790000300000000L1674.70167.1031.20000300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

112	L175	3.840	77.821	1.161	0	0	0	0	1	0	0	0	0	0	0	1	6.666
113	L176	4.719	79.167	0.834	0	0	0	0	2	0	0	0	0	0	0	0	6.457
114	L177	4.719	79.167	1.342	0	0	0	0	2	0	0	0	0	0	0	0	6.508
115	L178	4.448	74.738	0.765	0	0	0	0	2	0	0	0	0	0	0	0	6.346
116	L185	4.529	406.03	1.113	0	0	3	0	3	1	0	0	0	3	2	0	6.139
117	L186	4.249	432.486	1.097	0	0	3	0	2	1	0	0	0	6	2	0	6.976
118	L187	4.529	406.396	1.118	0	0	3	0	3	1	0	0	0	3	2	0	6.143
119	L188	4.537	415.378	1.092	0	0	3	0	1	1	0	0	0	3	2	0	6.425
120	L189	4.537	426.945	1.09	0	0	3	0	1	1	0	0	0	3	2	0	6.641
121	L190	4.552	431.534	1.027	0	0	3	0	2	1	0	0	0	3	2	0	6.912
122	L191	4.258	440.162	1.047	0	0	3	0	1	1	0	0	0	3	2	0	7.138
123	L192	5.109	186.625	0.514	0	0	3	0	1	1	0	0	0	3	2	0	5.588
124	L193	4.843	186.625	0.514	0	0	3	0	1	1	0	0	0	3	2	0	5.588
125	L194	4.232	191.164	0.519	0	0	3	0	3	1	0	0	0	3	3	0	5.869
126	L195	4.262	154.739	0.817	0	0	1	0	3	1	0	0	0	2	0	0	4.816
127	L196	4.115	55.757	1.507	0	0	1	0	2	1	0	0	0	2	0	0	4.425
128	L197	4.226	107.909	1.116	0	0	0	0	2	0	0	0	0	0	0	0	3.001
129	L198	3.483	107.157	0.666	0	0	0	0	2	1	0	0	0	2	0	0	6.514
130	L199	3.499	113.473	0.632	0	0	0	0	2	1	0	0	0	2	0	0	7.099
131	L200	3.514	119.723	0.652	0	0	0	0	2	1	0	0	0	2	0	0	7.677
132	L201	3.542	225.73	1.22	0	0	0	0	2	1	0	0	0	5	0	0	6.6
133	L202	3.555	237.366	1.199	0	0	0	0	2	1	0	0	0	5	0	0	7.182
134	L203	3.568	248.958	1.217	0	0	0	0	2	1	0	0	0	5	0	0	7.761
135	L204	4.059	267.805	0.738	0	0	1	0	1	1	0	0	0	0	0	0	4.737
136	L205	4.718	279.953	0.753	0	0	1	0	1	1	0	0	0	0	0	0	4.892
137	L206	5.060	450.988	0.628	0	0	1	0	1	1	0	0	0	0	0	0	4.528
138	L207	4.652	175.041	0.769	0	0	1	0	1	1	0	0	0	0	0	0	4.452
139	L208	5.030	262.407	1.333	0	0	1	0	2	1	0	0	0	0	0	0	4.145
140	L209	5.053	311.634	0.953	0	0	1	0	2	1	0	0	0	0	0	0	4.572

141	L211	4.305	76.231	1.381	0	0	0	0	3	2	0	0	0	0	0	0	3.792
142	L212	5.219	182.617	1.529	0	0	0	0	2	1	1	0	0	0	0	0	2.378
143	L213	5.517	210.135	1.385	0	0	0	0	1	1	1	0	0	0	0	0	2.27
144	L214	3.093	142.717	1.238	0	0	0	0	1	0	0	0	0	0	2	0	3.463
145	L215	3.833	340.198	1.204	0	0	0	0	1	0	0	0	0	0	2	0	5.859
146	L216	3.002	354.102	0.974	0	0	0	0	1	0	0	0	0	0	2	0	6.1
147	L217	3.815	285.728	1.116	0	0	0	0	0	0	0	0	0	0	2	0	4.525
148	L218	3.890	298.258	0.933	0	0	0	0	0	0	0	0	0	0	2	0	4.664
149	L219	3.138	151.456	1.306	0	0	0	0	1	0	0	0	0	0	2	0	3.604
150	L220	3.866	354.088	1.192	0	0	0	0	1	0	0	0	0	0	2	0	5.972
151	L221	3.933	367.993	0.965	0	0	0	0	1	0	0	0	0	0	2	0	6.215
152	L222	2.946	299.029	1.112	0	0	0	0	0	0	0	0	0	0	2	0	4.685
153	L223	3.618	311.558	0.926	0	0	0	0	0	0	0	0	0	0	2	0	4.824
154	L224	3.792	151.456	1.567	0	0	0	0	1	0	0	0	0	0	2	0	3.604
155	L225	3.905	354.088	1.308	0	0	0	0	1	0	0	0	0	0	2	0	5.972
156	L226	3.967	367.993	1.131	0	0	0	0	1	0	0	0	0	0	2	0	6.215
157	L227	3.890	299.029	1.226	0	0	0	0	0	0	0	0	0	0	2	0	4.685
158	L228	3.954	311.558	1.076	0	0	0	0	0	0	0	0	0	0	2	0	4.824
159	L229	4.483	56.336	1.378	0	0	0	0	1	0	0	0	0	0	1	0	1.473
160	L230	3.889	406.023	1.203	0	0	0	0	3	1	0	0	0	0	0	0	7.246
161	L231	3.953	420.152	1.366	0	0	0	0	3	1	0	0	0	0	0	0	7.369
162	L232	4.195	413.757	1.398	0	0	0	0	3	1	0	0	0	0	0	0	7.049
163	L233	4.259	427.886	1.296	0	0	0	0	3	1	0	0	0	0	0	0	7.19
164	L234	4.174	330.649	1.101	0	0	0	0	1	0	0	0	0	0	0	0	4.91
165	L235	4.240	343.795	1.228	0	0	0	0	1	0	0	0	0	0	0	0	5.064
166	L236	4.179	336.059	1.14	0	0	0	0	1	0	0	0	0	0	0	0	4.645
167	L237	4.245	349.205	1.034	0	0	0	0	1	0	0	0	0	0	0	0	4.82
168	L238	4.174	362.733	0.565	0	0	0	0	1	0	0	0	0	0	2	0	5.935
169	L239	4.240	376.535	1.264	0	0	0	0	1	0	0	0	0	0	2	0	6.066

170	L240	4.179	369.692	0.773	0	0	0	0	1	0	0	0	0	0	2	0	5.689
171	L241	4.245	383.494	1.199	0	0	0	0	1	0	0	0	0	0	2	0	5.841
172	L242	3.755	547.623	0.964	0	0	1	0	2	1	0	0	0	4	0	0	7.935
173	L268	4.044	213.872	0.784	0	0	0	0	6	0	0	0	0	0	0	0	8.098
174	L269	4.801	306.104	0.572	0	0	0	0	10	2	0	0	0	0	0	0	10.882
175	L270	3.835	0	1.207	0	0	0	0	8	1	0	0	0	0	0	2	8.574
176	L271	4.150	0	1.264	0	0	0	0	8	1	0	0	0	0	0	2	9.075
177	L272	4.150	0	1.264	0	0	0	0	8	1	0	0	0	0	0	2	8.987
178	L274	3.821	0	1.209	0	0	0	0	8	1	0	0	0	0	0	2	8.137
179	L275	3.204	0	1.268	0	0	0	0	8	1	0	0	0	0	0	2	7.458
180	L276	3.204	0	1.212	0	0	0	0	8	1	0	0	0	0	0	2	7.419
181	L277	3.176	0	1.219	0	0	0	0	8	1	0	0	0	0	0	2	6.511
182	L278	3.187	0	1.215	0	0	0	0	8	1	0	0	0	0	0	2	6.985
183	L279	3.219	0	1.321	0	0	0	0	8	1	0	0	0	0	0	2	7.897
184	L280	3.398	51.312	1.178	0	0	0	1	4	0	0	0	0	2	1	0	4.534
185	L281	4.602	64.642	1.098	0	0	0	1	4	0	0	0	0	2	1	0	6.099
186	L282	4.600	73.924	1.06	0	0	0	1	4	0	0	0	0	2	1	0	7.145
187	L283	3.398	103.107	0.983	0	0	0	1	4	0	0	0	0	2	1	0	10.186
188	L284	4.605	151.176	0.883	0	0	0	1	4	0	0	0	0	0	1	0	4.839
189	L285	4.302	141.889	0.931	0	0	0	1	4	0	0	0	0	0	1	0	4.526
190	L286	4.302	51.312	1.178	0	0	0	1	4	0	0	0	0	2	1	0	4.534
191	L287	4.302	170.301	0.871	0	0	0	1	4	0	0	0	0	0	1	0	5.596
192	L288	3.998	140.921	0.975	0	0	0	1	4	0	0	0	0	0	1	0	4.357
193	L289	3.399	238.501	0.913	0	0	0	1	4	0	0	0	0	0	1	0	4.707
194	L296	6.113	142.555	1.424	0	0	0	0	3	1	1	2	0	1	1	0	3.079
195	L305	4.566	155.512	0.463	0	0	0	0	2	0	0	0	0	0	0	0	5.396
196	L311	4.288	166.142	0.854	0	0	0	0	3	0	0	0	0	0	0	0	5.563
197	L312	3.209	44.591	1.431	0	0	0	0	2	1	0	0	0	0	0	0	2.068
198	L313	2.937	48.458	1.311	0	0	0	0	2	1	0	0	0	0	0	0	2.247

199	L315	4.142	210.846	1.023	0	0	1	0	1	0	0	0	0	0	0	0	2.192
200	L320	4.881	39.61	0.198	0	0	0	0	3	0	0	0	0	0	0	0	2.468
201	L321	4.981	35.743	0.171	0	0	0	0	3	0	0	0	0	0	0	0	2.425
202	L322	4.904	44.91	1.119	0	0	0	0	3	0	0	0	0	0	0	0	2.839
203	L323	4.529	58.329	0.113	0	0	0	0	3	0	0	1	0	3	1	0	3.229
204	L324	4.629	141.282	0.699	0	0	0	0	3	1	0	0	0	1	0	0	2.348
205	L325	4.629	132.316	1.677	0	0	0	0	2	2	0	0	0	0	0	0	1.096
206	L326	5.181	194.277	1.165	0	0	1	0	1	0	0	0	0	1	0	0	3.985
207	L329	4.898	0	0.36	0	0	0	0	5	0	0	0	0	0	0	0	2.225
208	L330	4.237	30.514	0	1	0	0	0	1	0	0	0	0	0	1	0	1.686
209	L331	4.884	34.943	1.239	0	0	0	0	4	1	0	0	0	0	0	0	2.041
210	L333	4.582	88.45	1.029	0	0	0	0	2	0	0	0	0	2	0	0	6.496
211	L334	4.577	165.599	0.917	0	0	0	0	5	2	0	0	0	0	0	0	2.559
212	L335	5.131	147.779	0.8	0	0	0	0	3	0	0	0	0	0	0	0	2.547
213	L336	4.529	147.133	0.985	0	0	0	0	3	0	1	0	0	0	0	0	2.52
214	L337	5.463	625.259	0.868	0	0	3	0	8	5	0	0	0	2	0	0	5.083
215	L338	4.930	38.248	0	1	0	0	0	4	2	0	0	0	0	0	0	1.623
216	L339	4.780	461.434	0.915	0	0	0	0	5	2	0	0	0	0	0	0	4.105
217	L340	4.780	461.434	0.915	0	0	0	0	5	2	0	0	0	0	0	0	4.105
218	L344	4.527	441.818	0.592	0	0	0	0	4	1	0	0	0	3	0	0	3.984
219	L345	3.604	250.551	0.889	0	0	0	0	1	0	0	0	0	2	0	0	4.325
220	L353	4.831	282.146	1.074	0	1	0	0	7	4	0	0	0	0	0	0	2.822
221	L354	5.433	282.146	1.074	0	1	0	0	7	4	0	0	0	0	0	0	2.822
222	L355	5.445	292.393	1.137	0	1	0	0	7	4	0	0	0	0	0	0	2.919
223	L358	4.900	354.021	0.814	0	1	0	0	8	5	0	0	0	0	0	0	3.905
224	L362	4.842	292.671	1.08	0	1	0	0	7	4	0	0	0	0	0	0	2.885
225	L363	4.563	313.976	1.108	0	1	0	0	7	4	0	0	0	0	0	0	3.076
226	L364	5.784	317.407	1.28	0	1	0	0	7	4	0	0	0	0	0	0	2.821
227	L365	5.794	328.041	1.276	0	1	0	0	7	4	0	0	0	0	0	0	2.861

228	L366	5.511	386.895	1.252	0	1	0	0	7	4	0	0	0	0	0	0	2.959
229	L368	4.853	332.538	1.198	0	1	0	0	7	4	0	0	0	1	0	0	3.86
230	L369	5.387	506.892	0.565	0	0	1	0	2	1	0	2	0	0	4	0	6.425
231	L371	4.764	510.762	1.016	0	0	1	0	4	1	0	2	0	0	3	0	6.658
232	L372	5.968	510.896	0.968	0	0	1	0	4	0	0	2	0	0	3	0	6.602
233	L373	6.286	525.458	1	0	0	1	0	4	0	0	2	0	0	3	0	6.603
234	L374	6.269	510.896	0.968	0	0	1	0	4	0	0	2	0	0	3	0	6.602
235	L375	6.587	525.458	1	0	0	1	0	4	0	0	2	0	0	3	0	6.603
236	L377	5.683	525.458	0.987	0	0	1	0	4	0	0	2	0	0	2	0	6.603
237	L379	5.972	506.892	0.971	0	0	1	0	2	1	0	2	0	0	2	0	6.425
238	L380	5.986	506.892	0.521	0	0	1	0	2	1	0	2	0	0	2	0	6.425
239	L384	5.080	525.457	0.989	0	0	1	0	4	1	0	1	0	0	2	0	6.603
240	L385	5.380	525.457	0.995	0	0	1	0	4	1	0	1	0	0	1	0	6.603
241	L386	5.381	525.457	1.008	0	0	1	0	4	1	0	1	0	0	1	0	6.603
242	L389	4.442	45.91	0.856	0	0	0	0	2	0	0	0	0	0	0	0	2.252
243	L391	4.414	41.697	1.031	0	0	0	0	2	0	0	0	0	0	0	0	2.154
244	L392	4.469	50.123	0.745	0	0	0	0	2	0	0	0	0	0	0	0	2.348
245	L398	4.469	50.123	0.745	0	0	0	0	2	0	0	0	0	0	0	0	2.291
246	L399	3.892	54.337	0.668	0	0	0	0	2	0	0	0	0	0	0	0	2.339
247	L403	4.168	50.289	1.483	0	0	0	0	2	0	0	0	0	0	0	0	2.447
248	L405	3.892	54.502	1.329	0	0	0	0	2	0	0	0	0	0	0	0	2.412
249	L407	3.916	58.88	1.708	0	0	0	0	2	0	0	0	0	0	0	0	2.44
250	L408	3.539	46.28	1.704	0	0	0	0	2	0	0	0	0	0	0	0	2.517
251	L410	3.601	111.773	1.828	0	0	0	0	2	0	0	0	0	0	0	0	2.87
252	L412	4.465	47.066	0.745	0	0	0	0	2	0	0	0	0	0	0	0	2.291
253	L413	4.490	99.575	1.329	0	0	0	0	2	0	0	0	0	0	0	0	2.365
254	L414	3.290	56.64	1.246	0	0	0	0	2	0	0	0	0	0	0	0	2.99
255	L416	3.567	50.123	0.765	0	0	0	0	2	0	0	1	0	0	1	0	2.291
256	L417	5.130	53.99	1.063	0	0	0	0	2	0	0	0	0	0	0	0	2.466

257	L418	4.895	53.99	1.278	0	0	0	0	2	0	0	0	0	0	0	0	2.466
258	L419	4.655	53.99	1.303	0	0	0	0	2	0	0	0	0	0	0	0	2.466
259	L420	4.802	53.99	0.741	0	0	0	0	2	0	0	0	0	0	0	0	2.466
260	L421	3.899	53.99	0.777	0	0	0	0	2	1	0	0	0	0	0	0	2.35
261	L422	4.501	53.99	0.932	0	0	0	0	2	0	0	0	0	0	0	0	2.434
262	L423	3.324	53.99	1.13	0	0	0	0	2	0	0	0	0	0	0	0	2.35
263	L424	4.528	53.99	0.995	0	0	0	0	2	0	0	0	0	0	0	0	2.434
264	L425	3.954	57.857	0.954	0	0	0	0	2	0	0	0	0	0	0	0	2.553
265	L432	5.082	45.564	1.375	0	0	0	0	2	0	0	0	0	0	0	0	2.316
266	L437	3.904	252.108	0.863	0	0	0	0	8	2	0	0	0	0	0	0	8.523
267	L438	4.354	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0.944
268	L439	4.078	54.963	0.863	0	0	0	0	0	0	0	0	0	0	0	0	3.403
269	L440	4.176	58.829	0.777	0	0	0	0	0	0	0	0	0	0	0	0	3.562
270	L441	4.257	58.829	0.617	0	0	0	0	0	0	0	0	0	0	0	0	3.562
271	L442	4.352	63.02	0.95	0	0	0	0	0	0	0	0	0	0	0	0	3.566
272	L443	4.352	58.829	0.087	0	0	0	0	0	0	0	0	0	0	0	0	3.538
273	L444	4.530	0	0	0	0	0	0	2	1	0	0	0	0	0	0	1.045
274	L445	4.530	0	1	0	0	0	0	2	1	0	0	0	1	0	0	2.101
275	L446	5.376	347.287	0.923	0	0	4	0	11	3	0	0	0	0	0	0	4.22
276	L447	5.980	347.287	0.923	0	0	4	0	11	4	0	0	0	0	0	0	4.22
277	L448	5.697	168.463	1.14	0	0	0	0	2	0	0	1	1	0	2	0	3.642
278	L449	5.220	168.346	1.353	0	0	0	0	2	0	0	1	1	0	2	0	3.638
279	L450	5.691	179.497	1.275	0	0	0	0	2	0	0	1	1	0	2	0	3.668
280	L451	5.691	168.463	1.118	0	0	0	0	2	0	0	1	1	0	2	0	3.642
281	L452	5.667	168.463	0.975	0	0	0	0	2	0	0	1	1	0	2	0	3.642
282	L453	5.235	168.346	1.5	0	0	0	0	2	0	0	1	1	0	2	0	3.638
283	L454	4.926	168.346	1.39	0	0	0	0	2	0	0	1	1	0	2	0	3.638
284	L456	5.396	162.172	0.981	0	0	0	0	2	0	0	1	1	0	2	0	3.461
285	L457	5.691	162.172	0.965	0	0	0	0	2	0	0	1	1	0	2	0	3.461

286	L458	5.214	162.172	0.702	0	0	0	0	2	0	0	1	1	0	2	0	3.461
287	L459	5.214	172.42	1.056	0	0	0	0	2	0	0	1	1	0	2	0	3.46
288	L460	5.396	162.33	1.173	0	0	0	0	2	0	0	1	1	0	2	0	3.47
289	L461	5.389	162.33	1.304	0	0	0	0	2	0	0	1	1	0	2	0	3.47
290	L462	4.926	162.33	1.074	0	0	0	0	2	0	0	1	1	0	2	0	3.47
291	L463	4.926	174.094	1.272	0	0	0	0	2	0	0	1	1	0	2	0	4.311
292	L464	5.717	184.508	1.196	0	0	0	0	2	0	0	1	1	0	2	0	4.306
293	L465	5.410	195.632	1.399	0	0	0	0	2	0	0	1	1	0	2	0	4.322
294	L466	5.708	184.508	1.171	0	0	0	0	2	0	0	1	1	0	2	0	4.306
295	L467	5.688	184.508	1.182	0	0	0	0	2	0	0	1	1	0	2	0	4.306
296	L468	6.572	259.735	1.129	0	0	0	0	4	2	1	2	0	0	1	0	3.231
297	L469	5.685	179.497	1.313	0	0	0	0	2	0	0	1	1	0	2	0	3.668
298	L470	5.688	179.497	1.313	0	0	0	0	2	0	0	1	1	0	2	0	3.668
299	L471	5.705	190.531	1.598	0	0	0	0	2	0	0	1	1	0	2	0	3.703
300	L472	4.600	190.531	1.598	0	0	0	0	2	0	0	1	1	0	2	0	3.703
301	L473	5.677	215.803	1.148	0	0	0	0	2	0	0	1	1	0	2	0	4.061
302	L474	5.679	215.803	1.148	0	0	0	0	2	0	0	1	1	0	2	0	4.061
303	L475	5.674	206.31	1.478	0	0	0	0	2	0	0	1	1	0	2	0	3.832
304	L476	5.692	297.345	1.43	0	0	0	0	2	0	0	1	1	0	2	0	3.914
305	L477	5.695	297.345	1.43	0	0	0	0	2	0	0	1	1	0	2	0	3.914
306	L478	5.001	297.345	1.43	0	0	0	0	2	0	0	1	1	0	2	0	3.914
307	L480	4.776	397.711	0.665	0	0	0	0	3	0	0	0	0	0	0	0	5.181
308	L481	3.905	367.903	1.684	0	0	0	0	1	0	0	0	0	1	0	0	3.296
309	L483	3.630	393.025	1.689	0	0	0	0	1	0	0	0	0	1	0	0	3.846
310	L484	3.934	380.201	0.987	0	0	0	0	1	0	0	0	0	1	0	0	3.567
311	L486	4.729	421.699	1.16	0	0	0	0	2	1	0	0	0	0	0	0	3.69
312	L487	5.073	477.062	1.17	0	0	0	0	2	1	0	0	0	0	0	0	4.582
313	L488	4.858	149.672	0.89	0	0	0	0	2	1	0	0	0	0	0	0	3.967
314	L489	4.921	177.213	0.701	0	0	0	0	2	1	0	0	0	0	0	0	4.69

315	L490	5.184	161.203	0.673	0	0	0	0	4	1	0	0	0	0	0	0	4.636
316	L491	3.713	98.826	1.35	0	0	0	0	1	1	0	0	0	0	0	0	6.931
317	L492	3.672	90.769	1.544	0	0	0	0	1	0	0	0	0	0	0	0	6.714
318	L493	4.728	0	0	0	0	0	0	1	0	0	0	0	2	0	0	1.437
319	L494	4.501	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1.344
320	L498	4.371	160.015	1.004	0	0	0	0	2	2	0	0	0	0	0	0	2.23
321	L499	4.667	136.154	1.637	0	0	0	0	1	0	1	0	0	0	2	0	3.206
322	L500	4.397	151.708	1.614	0	0	0	0	1	0	1	0	0	0	2	0	3.774
323	L501	4.427	167.777	1.539	0	0	0	0	1	0	1	0	0	0	2	0	4.282
324	L502	4.696	147.882	1.614	0	0	0	0	1	0	1	0	0	0	2	0	3.774
325	L503	4.711	254.68	1.592	0	0	0	0	1	0	1	0	0	0	2	0	4.037
326	L504	4.412	254.68	1.521	0	0	1	0	1	0	1	0	0	0	2	0	4.037
327	L505	4.110	254.68	1.592	0	0	0	0	2	0	1	0	0	0	2	0	4.037
328	L506	4.382	144.225	1.615	0	0	0	0	2	0	1	0	0	0	2	0	3.6
329	L507	4.079	143.192	1.615	0	0	0	0	2	0	1	0	0	0	2	0	3.6
330	L508	4.410	156.578	1.571	0	0	0	0	2	0	1	0	0	0	2	0	4.259
331	L509	4.726	271.47	1.573	0	0	0	0	2	0	1	0	0	0	2	0	4.56
332	L510	4.439	169.167	1.575	0	0	0	0	2	0	1	0	0	0	2	0	4.839
333	L511	5.623	271.47	1.573	0	0	0	0	2	0	1	0	0	0	2	0	4.56
334	L512	5.340	283.801	1.27	0	0	0	0	2	0	1	0	0	0	2	0	4.85
335	L513	5.958	283.801	0.564	0	0	0	0	2	0	1	0	0	0	2	0	4.85
336	L514	4.750	296.637	1.512	0	0	0	0	2	0	1	0	0	0	2	0	5.141
337	L515	4.734	283.801	1.575	0	0	0	0	2	0	1	0	0	0	2	0	4.85
338	L516	4.734	288.136	1.58	0	0	0	0	2	0	1	0	0	0	2	0	5.107
339	L517	4.752	300.648	1.21	0	0	0	0	2	0	1	0	0	0	2	0	5.425
340	L518	3.885	158.99	0.417	0	0	0	0	5	1	0	0	0	2	0	0	3.058
341	L519	4.212	185.127	0.877	0	0	0	0	5	1	0	0	0	2	0	0	3.82
342	L520	4.215	170.087	0.424	0	0	0	0	3	1	0	0	0	2	0	0	3.538
343	L521	3.896	170.087	0.744	0	0	0	0	3	1	0	0	0	2	0	0	3.538
344	L522	6.293	327.163	1.095	0	1	0	0	6	3	0	0	0	0	0	0	2.228
-----	------	-------	---------	-------	---	---	---	---	---	---	---	---	---	---	---	---	-------
345	L523	4.800	341.264	1.09	0	1	0	0	6	3	0	0	0	0	0	0	2.322
346	L524	5.420	351.557	1.096	0	1	0	0	6	3	0	0	0	0	0	0	2.4
347	L525	4.764	272.85	1.144	0	1	0	0	6	3	0	0	0	0	0	0	2.482
348	L526	5.439	352.22	1.086	0	1	0	0	7	3	0	0	0	0	0	0	3.53
349	L527	6.028	336.637	1.096	0	1	0	0	7	3	0	0	0	0	0	0	3.301
350	L543	3.657	87.51	1.537	0	0	0	0	3	1	0	0	0	0	3	0	3.576
351	L544	3.856	401.627	0.909	0	0	0	0	1	0	0	0	0	4	0	0	7.489
352	L545	3.856	401.627	0.909	0	0	0	0	1	0	0	0	0	4	0	0	7.489
353	L546	4.064	102.989	0.652	0	0	0	0	2	2	0	1	0	0	1	0	3.469
354	L547	3.805	120.83	0.918	0	0	0	0	3	2	0	1	0	2	1	0	4.284
355	L548	4.158	381.441	0.393	0	0	0	0	4	1	0	0	0	2	0	0	5.344
356	L549	3.857	381.441	0.393	0	0	0	0	4	0	0	0	0	2	0	0	5.344
357	L550	3.765	58.186	1.3	0	0	0	0	4	0	0	0	0	0	1	0	2.131
358	L551	3.440	28.346	1.238	0	0	0	0	5	0	0	0	0	0	2	0	2.308
359	L555	4.779	525.457	1.072	0	0	1	0	3	0	0	0	0	0	1	0	6.603
360	L556	5.727	334.46	1.096	0	1	0	0	6	3	0	0	0	0	0	0	3.245
361	L557	6.043	342.352	1.07	0	1	0	0	6	3	0	0	0	0	0	0	3.189
362	L558	5.453	342.352	0.897	0	1	0	0	6	3	0	0	0	0	0	0	3.189
363	L559	5.751	351.318	1.126	0	1	0	0	6	3	0	0	0	0	0	0	3.14
364	L560	5.772	372.085	1.046	0	1	0	0	6	3	0	0	0	0	0	0	3.068
365	L561	5.471	371.198	1.035	0	1	0	0	6	3	0	0	0	0	0	0	3.063
366	L562	5.182	383.722	1.093	0	1	1	0	6	3	0	0	0	0	0	0	3.056
367	L567	5.771	372.085	1.051	0	1	0	0	7	3	0	0	0	0	0	0	3.068
368	L568	4.597	401.817	1.014	0	1	0	0	6	3	0	0	0	0	0	0	2.991
369	L569	4.890	395.359	1.065	0	1	0	0	6	3	0	0	0	0	0	0	3.069
370	L574	5.103	310.146	1.119	0	1	0	0	7	3	0	0	0	0	0	0	2.875
371	L575	5.729	338.877	1.096	0	1	0	0	7	3	0	0	0	0	0	0	3.333
372	L576	6.041	353.583	1.086	0	1	0	0	7	3	0	0	0	0	0	0	3.608

373	L577	5.742	354.209	1.09	0	1	1	0	7	3	0	0	0	0	0	0	3.641
374	L578	5.416	323.425	1.107	0	1	0	0	6	3	0	0	0	0	0	0	3.049
375	L579	5.428	337.45	1.096	0	1	0	0	6	3	0	0	0	0	0	0	3.255
376	L581	5.739	345.772	1.086	0	1	0	0	6	3	0	0	0	0	0	0	3.452
377	L582	5.749	473.185	1.077	0	1	0	0	6	3	0	0	0	0	0	0	3.663
378	L583	5.138	349.166	1.075	0	1	0	0	7	4	0	0	0	0	0	0	3.46
379	L584	5.450	364.498	1.079	0	1	1	0	6	3	0	0	0	0	0	0	3.7
380	L585	5.159	379.83	1.111	0	1	0	0	6	3	0	0	0	0	0	0	3.944
381	L586	4.567	396.315	1.062	0	1	0	0	7	3	0	0	0	3	0	0	4.245
382	L587	4.844	364.498	1.095	0	1	0	0	6	3	0	0	0	1	0	0	3.7
383	L588	5.742	349.166	0.986	0	1	0	0	6	3	0	0	0	0	0	0	3.46
384	L591	5.732	332.063	1.08	0	1	0	0	7	3	0	0	0	0	0	0	3.034
385	L592	6.344	344.528	1.07	0	1	0	0	7	3	0	0	0	0	0	0	3.242
386	L593	6.356	360.112	1.06	0	1	0	0	7	3	0	0	0	0	0	0	3.458
387	L594	6.033	331.317	1.08	0	1	0	0	6	3	0	0	0	0	0	0	3.007
388	L595	5.756	357.058	0.998	0	1	0	0	6	3	0	0	0	0	0	0	3.392
389	L596	6.365	483.003	1.052	0	1	0	0	6	3	0	0	0	0	0	0	3.586
390	L597	5.753	355.735	1.126	0	1	0	0	7	3	0	0	0	0	0	0	3.216
391	L598	6.353	353.495	1.126	0	1	0	0	7	3	0	0	0	0	0	0	3.188
392	L599	6.365	370.441	1.117	0	1	0	0	7	3	0	0	0	0	0	0	3.462
393	L600	5.462	369.078	1.117	0	1	0	0	7	3	0	0	0	0	0	0	3.392
394	L601	5.742	340.283	1.136	0	1	0	0	6	3	0	0	0	0	0	0	2.972
395	L602	6.367	366.024	1.012	0	1	0	0	6	3	0	0	0	0	0	0	3.33
396	L603	5.762	362.63	1.117	0	1	0	0	6	3	0	0	0	0	0	0	3.322
397	L604	5.440	335.97	1.178	0	1	0	0	7	3	0	0	0	0	0	0	2.815
398	L605	5.473	380.033	1.143	0	1	1	0	7	3	0	0	0	0	0	0	3.425
399	L606	4.548	349.249	1.17	0	1	0	0	6	3	0	0	0	0	0	0	2.942
400	L607	4.567	371.596	1.154	0	1	0	0	6	3	0	0	0	0	0	0	3.264
401	L608	5.081	284.407	1.027	0	1	0	0	6	3	0	0	0	0	0	0	2.588

402	L610	5.710	301.264	1.034	0	1	0	0	6	3	0	0	0	0	0	0	2.605
403	L611	4.517	310.231	1.087	0	1	0	0	6	3	0	0	0	0	0	0	2.625
404	L612	5.125	328.746	1.052	0	1	0	0	7	3	0	0	0	0	0	0	3.178
405	L613	4.513	316.857	1.076	0	1	0	0	6	3	0	0	0	0	0	0	2.956
406	L615	4.778	282.694	1.151	0	1	0	0	8	3	0	0	0	0	0	0	2.569
407	L617	4.501	304.304	1.181	0	1	0	0	6	3	0	0	0	0	0	0	2.784
408	L621	2.959	187.03	1.261	0	0	0	1	0	0	0	0	0	3	1	0	4.498
409	L622	2.955	187.746	1.392	0	0	0	1	1	0	0	0	0	3	1	0	4.494
410	L624	2.943	215.641	0.899	0	0	0	1	1	0	0	0	0	3	1	0	4.597
411	L626	2.959	316.191	0.879	0	0	0	1	1	0	0	0	0	3	1	0	4.643
412	L628	2.959	316.191	0.922	0	0	1	1	1	0	0	0	0	3	1	0	4.643
413	L630	3.260	316.191	0.912	0	0	0	1	2	0	0	0	0	3	1	0	4.643
414	L632	3.585	344.643	0.89	0	0	0	1	1	0	0	0	0	3	1	0	4.778
415	L634	3.602	375.827	0.889	0	0	0	1	1	0	0	0	0	3	1	0	5.013
416	L636	3.328	408.996	0.89	0	0	0	1	1	0	0	0	0	3	1	0	5.4
417	L642	4.292	516.572	0.891	0	0	0	1	1	0	0	0	0	3	1	0	7.6
418	L644	3.301	359.95	0.815	0	0	0	1	2	0	0	0	0	3	1	0	4.879
419	L646	2.996	359.95	0.907	0	0	0	1	1	0	0	0	0	3	1	0	4.879
420	L648	2.991	359.95	0.907	0	0	0	1	1	0	0	0	0	3	1	0	4.879
421	L650	2.991	359.95	0.884	0	0	0	1	1	0	0	0	0	3	1	0	4.879
422	L652	5.038	227.224	1.562	0	0	0	0	1	0	1	0	0	0	0	0	2.536
423	L666	3.337	93.411	1.036	0	0	0	0	3	2	0	0	0	2	0	0	2.341
424	L667	3.033	93.411	1.036	0	0	0	0	2	1	0	0	0	0	0	0	2.341
425	L668	3.537	47.105	1.379	0	0	0	0	3	0	0	0	0	0	0	0	2.083
426	L673	3.835	389.431	0.829	0	0	1	0	4	2	0	0	0	0	0	0	6.81
427	L674	4.036	183.244	1.037	0	0	0	0	2	2	0	0	0	0	0	0	4.548
428	L677	4.033	0	1.273	0	0	0	0	0	0	0	0	0	5	0	0	4.679
429	L678	3.932	0	1.143	0	0	0	0	1	0	0	0	0	0	0	0	5.07
430	L679	3.654	344.671	0.923	0	0	0	0	3	0	0	0	0	0	1	0	8.848

431	L681	4.256	345.574	0.904	0	0	0	0	3	0	0	0	0	0	1	0	8.856
432	L683	4.271	344.671	0.827	0	0	0	0	3	0	0	0	0	0	1	0	8.848
433	L685	4.572	345.574	0.547	0	0	0	0	3	0	0	0	0	0	1	0	8.856
434	L687	4.302	383.209	0.796	0	0	0	0	3	0	0	0	0	0	1	0	9.544
435	L689	4.302	386.72	0.576	0	0	0	0	3	0	0	0	0	0	1	0	9.578
436	L691	6.291	131.457	1.641	0	0	0	0	3	0	1	0	0	0	0	0	2.609
437	L692	5.999	125.869	1.573	0	0	0	0	3	0	1	0	0	0	0	0	2.464
438	L694	6.307	201.575	1.51	0	0	0	0	2	0	1	0	0	0	0	0	2.797
439	L695	6.266	140.552	1.474	0	0	0	0	3	0	1	0	0	0	0	0	2.964
440	L696	3.472	0	0.525	0	0	0	0	1	0	0	0	0	0	0	0	6.873
441	L697	3.630	221.611	0.674	0	0	0	0	1	0	0	0	0	0	0	0	2.212
442	L698	3.329	223.217	0.66	0	0	0	0	1	0	0	0	0	0	0	0	2.246
443	L699	3.317	167.372	0.769	0	0	0	0	1	0	0	0	0	0	0	0	4.08
444	L700	3.673	196.364	0.716	0	0	0	0	0	0	0	0	0	3	0	0	4.132
445	L702	4.507	509.969	1.671	0	0	0	0	2	1	0	0	0	2	0	0	3.517
446	L703	4.133	451.398	0.699	0	0	0	0	0	0	0	0	0	2	0	0	3.943
447	L704	4.222	519.152	1.243	0	0	0	0	0	0	0	0	0	2	0	0	3.52
448	L705	4.355	264.316	0.86	0	0	0	0	1	0	0	0	0	2	0	0	4.739
449	L706	4.256	126.16	0.735	1	0	0	0	2	1	0	0	0	2	0	0	3.366
450	L707	3.532	161.844	1.474	0	0	0	0	1	1	0	0	0	0	1	0	3.331
451	L708	3.740	87.007	1.577	0	0	0	0	1	1	0	0	0	0	2	0	2.539
452	L709	3.542	144.168	1.169	0	0	0	0	0	0	0	0	0	0	1	0	2.286
453	L710	3.516	186.368	1.536	0	0	0	0	2	1	0	0	0	0	0	0	3.542
454	L712	3.465	144.168	1.175	0	0	0	0	1	0	0	0	0	0	0	0	2.286
455	L713	3.468	101.97	1.358	0	0	0	0	2	1	0	0	0	0	0	0	3.797
456	L714	3.401	77.655	1.373	0	0	0	0	2	1	0	0	0	0	0	0	2.129
457	L715	3.480	160.762	1.51	0	0	0	0	1	1	0	0	0	0	0	0	3.007
458	L716	3.459	95.851	1.454	0	0	0	0	1	1	0	0	0	0	0	0	3.194
459	L718	3.424	85.472	1.457	0	0	0	0	2	1	0	0	0	0	0	0	2.667

460	L721	3.454	148.777	1.555	0	0	0	0	1	1	0	0	0	0	1	0	2.777
461	L722	3.413	78.317	0.792	0	0	0	1	0	0	0	0	0	0	1	0	1.89
462	L724	3.539	104.851	1.258	0	0	0	1	2	1	0	0	0	2	1	0	3.84
463	L726	3.544	110.577	1.328	0	0	0	0	1	1	0	0	0	0	0	0	4.371
464	L727	3.489	85.472	1.405	0	0	0	0	1	1	0	0	0	0	0	0	2.667
465	L728	3.527	101.97	1.35	0	0	0	0	1	1	0	0	0	0	0	0	3.797
466	L729	3.546	110.349	1.338	0	0	0	0	2	1	0	0	0	5	0	0	4.277
467	L730	3.489	84.281	0.707	0	0	0	0	1	1	0	0	0	0	0	0	2.19
468	L731	3.489	83.777	0.764	0	0	0	0	0	0	0	0	0	0	0	0	1.89
469	L732	4.601	95.544	1.251	0	0	0	0	4	0	0	0	0	0	0	0	7.18
470	L733	4.036	106.353	1.227	0	0	0	0	4	0	0	0	0	0	0	0	8.178
471	L734	4.303	95.544	1.251	0	0	0	0	4	0	0	0	0	0	0	0	7.18
472	L735	3.784	120.475	1.161	0	0	0	0	3	0	0	0	0	3	0	0	7.765
473	L736	3.754	109.666	1.163	0	0	0	0	3	0	0	0	0	3	0	0	6.68
474	L737	3.752	109.666	1.163	0	0	0	0	3	0	0	0	0	3	0	0	6.68
475	L738	3.815	131.391	1.16	0	0	0	0	3	0	0	0	0	3	0	0	8.837
476	L739	3.977	91.677	1.685	0	0	0	0	3	0	0	0	0	0	0	0	7.069
477	L740	3.735	105.8	1.393	0	0	0	0	2	0	0	0	0	3	0	0	6.65
478	L741	3.732	105.8	1.393	0	0	0	0	2	0	0	0	0	3	0	0	6.65
479	L742	3.899	195.107	0.915	0	0	0	0	2	1	0	0	0	0	0	0	1.995
480	L747	4.077	161.708	0.802	0	0	0	0	0	0	0	0	0	0	0	0	4.552
481	L753	3.412	140.238	0.713	0	0	0	0	3	0	0	0	0	0	0	0	2.645
482	L760	4.002	261.892	1.226	0	0	0	0	3	1	0	0	0	0	0	0	2.465
483	L761	3.796	138.477	1.163	0	0	0	0	3	1	0	0	0	0	0	0	2.628
484	L762	3.990	93.102	1.009	0	0	0	0	3	1	0	0	0	0	0	0	1.603
485	L763	4.017	99.614	1.096	0	0	0	0	4	3	0	0	0	0	0	0	1.636
486	L764	5.344	785.333	1.103	0	0	0	0	9	3	0	0	0	0	0	0	9.005
487	L765	5.304	694.174	1.239	0	0	0	0	8	1	0	0	0	2	2	0	8.477
488	L766	5.304	686.837	1.208	0	0	0	0	8	1	0	0	0	2	2	0	8.436

489	L767	5.312	711.274	1.232	0	0	0	0	8	1	0	0	0	2	2	0	8.646
490	L768	5.017	962.13	1.252	0	0	0	0	8	1	0	0	0	2	2	0	8.742
491	L769	5.004	676.968	0.674	0	0	0	0	8	1	0	1	0	0	2	0	8.315
492	L770	5.007	935.338	1.23	0	0	0	0	8	1	0	0	0	0	2	0	8.564
493	L771	5.308	901.408	1.211	0	0	0	0	8	1	0	0	0	0	2	0	8.513
494	L772	5.021	988.667	1.259	0	0	0	0	8	1	0	0	0	2	2	0	8.942
495	L773	5.327	745.414	1.135	0	0	1	0	8	1	0	0	0	0	2	0	9.021
496	L774	5.029	1015.035	1.141	0	0	1	0	8	1	0	0	0	0	2	0	9.163
497	L775	5.346	1256.719	1.167	0	0	0	0	8	1	0	0	0	0	2	0	8.962
498	L776	5.069	952.21	0.792	0	0	0	0	8	1	0	0	0	0	2	0	8.63
499	L777	3.758	114.094	1.05	0	0	0	0	3	1	0	0	0	0	0	0	1.689
500	L778	4.338	105.488	1.064	0	0	0	0	4	1	0	0	0	0	0	0	1.542
501	L779	4.071	478.258	1.007	0	0	0	0	9	5	0	0	0	0	0	0	3.402
502	L780	4.035	435.848	0.972	0	0	0	0	8	2	0	0	0	0	0	0	3.235
503	L781	4.059	465.311	0.993	0	0	0	0	8	4	0	0	0	0	0	0	3.36
504	L782	4.046	452.364	0.98	0	0	0	0	7	2	0	0	0	0	0	0	3.313
505	L785	4.302	44.111	1.074	0	0	1	0	1	0	0	0	0	0	0	0	1.649
506	L787	4.841	245.174	1.014	0	0	0	0	5	2	0	0	0	0	1	0	5.351
507	L791	2.699	0	1.494	0	0	0	0	1	0	0	1	0	3	2	0	4.243
508	L793	2.699	56.913	1.723	0	0	0	1	2	0	0	1	0	3	3	0	4.786
509	L798	5.231	2187.71	1.141	0	0	0	0	16	6	0	0	0	0	0	0	3.734
510	L799	4.262	420.766	0.982	0	0	0	0	12	4	0	0	0	0	0	0	3.712
511	L800	4.704	565.688	0.962	0	0	0	0	20	7	0	0	0	0	0	0	4.697
512	L801	3.698	191.923	1.366	0	0	0	1	5	0	0	0	0	0	1	0	5.556
513	L802	4.304	171.163	0.688	0	0	0	1	5	0	0	0	0	0	1	0	4.987
514	L803	3.700	182.079	1.431	0	0	0	1	5	0	0	0	0	0	1	0	5.293
515	L804	4.300	170.25	0.9	0	0	0	1	5	0	0	0	0	0	1	0	4.965
516	L806	3.701	171.163	1.652	0	0	0	1	5	0	0	0	0	0	1	0	4.987
517	L807	4.004	199.158	1.31	0	0	0	1	5	0	0	0	0	0	1	0	5.518

1910     4.820     12.12     1.21     0     0     1     4     0     0     0     0     1     0     5.20       121     1.410     4.300     1.94.47     0.17     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <th>518</th> <th>L808</th> <th>3.699</th> <th>196.559</th> <th>0.833</th> <th>0</th> <th>0</th> <th>0</th> <th>1</th> <th>5</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>1</th> <th>0</th> <th>5.41</th>	518	L808	3.699	196.559	0.833	0	0	0	1	5	0	0	0	0	0	1	0	5.41
121     1411     1401     16447     0,17     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0	519	L810	4.824	217.207	1.218	0	0	0	1	4	0	0	0	0	0	1	0	5.909
121     1612     369     207.363     1.261     0     0     1     4     0     0     0     0     1     0     5.33       122     1613     369     195.34     0.816     0     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <td>520</td> <td>L811</td> <td>4.301</td> <td>196.447</td> <td>0.617</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>4</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>5.328</td>	520	L811	4.301	196.447	0.617	0	0	0	1	4	0	0	0	0	0	1	0	5.328
522     1813     3.699     195.34     0.816     0     0     1     4     0     0     0     0     1     0     533       523     1816     3.699     124.42     1.18     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <td>521</td> <td>L812</td> <td>3.699</td> <td>207.363</td> <td>1.261</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>4</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>5.638</td>	521	L812	3.699	207.363	1.261	0	0	0	1	4	0	0	0	0	0	1	0	5.638
523     1814     3.699     224.381     0.824     0     0     1     4     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0	522	L813	3.699	195.534	0.816	0	0	0	1	4	0	0	0	0	0	1	0	5.309
524     1815     3.699     196.447     1.488     0     0     1     4     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0	523	L814	3.699	224.381	0.824	0	0	0	1	4	0	0	0	0	0	1	0	5.863
525     1816     3.699     224.42     1.18     0     0     1     4     0     0     0     0     0     1     0     528       526     1817     3.699     224.32     0.74     0     0     1     4     0     0     0     0     0     0     1     0     5283       527     1818     3.699     223.611     0.479     0     0     1     4     0     0     0     0     1     0     5383       528     1819     3.699     223.611     0.479     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0	524	L815	3.699	196.447	1.458	0	0	0	1	4	0	0	0	0	0	1	0	5.328
526     1817     3.699     221.843     0.741     0     0     1     4     0     0     0     0     1     0     5828       527     1818     3.699     223.611     0.479     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0	525	L816	3.699	224.442	1.18	0	0	0	1	4	0	0	0	0	0	1	0	5.914
527     1818     3.699     246.326     0.6     0     0     1     4     0     0     0     0     1     0     5.786       528     1820     3.699     223.611     0.479     0     0     0     1     4     0     0     0     0     0     1     0     5.788       529     1820     3.699     204.52     0.505     0     0     0     23     7     0     0     0     0     7     7     0     0     0     0     8.789       531     1822     5.165     0     0.933     0     0     0     0     23     7     0     0     0     0     8.879       532     1822     5.79     871.89     0.99     0     0     0     0     23     7     0     0     0     0     9.883       533     1822     5.79     871.89     0.99     0     0     0     23     7     0     0     0     0     9.833     0     0     0     0	526	L817	3.699	221.843	0.741	0	0	0	1	4	0	0	0	0	0	1	0	5.823
528     1819     3.699     223.611     0.479     0     0     1     4     0     0     0     0     1     0     5.78       529     1820     3.699     204.452     0.505     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0	527	L818	3.699	246.326	0.6	0	0	0	1	4	0	0	0	0	0	1	0	5.966
529     1820     3.699     20.4.52     0.505     0     0     1     4     0     0     0     0     1     0     5.77       530     1821     5.17     26.166     0.964     0     0     0     23     7     0     0     0     2     0     0     8.78       531     1822     5.165     0     0.33     0     0     0     0     23     7     0     0     0     0     8.73       532     1826     5.77     87.1895     0.999     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0	528	L819	3.699	223.611	0.479	0	0	0	1	4	0	0	0	0	0	1	0	5.818
530     L821     5.17     261.66     0.964     0     0     0     23     7     0     0     0     2     0     0     8.88       531     L822     5.165     0     0.933     0     0     0     23     7     0     0     0     2     0     0     8.89       532     L824     5.473     25.839     0.969     0     0     0     23     8     0     0     0     0     0     9.873       533     L825     5.779     871.895     0.999     0     0     0     0     0     0     0     0     0     0     9.873       534     L826     5.789     95.982     0.985     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0	529	L820	3.699	204.452	0.505	0	0	0	1	4	0	0	0	0	0	1	0	5.47
531     1822     5.165     0     0.933     0     0     0     23     7     0     0     0     2     0     0     88.9       532     1824     5.473     258.39     0.969     0     0     0     23     8     0     0     0     2     0     0     88.73       533     1825     5.779     871.895     0.999     0     0     0     23     7     0     0     0     0     9.73       534     1826     5.789     959.82     0.985     0     0     0     0     23     7     0     0     0     0     9.638       535     1827     5.493     982.76     0.982     0     0     0     23     7     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <t< td=""><td>530</td><td>L821</td><td>5.177</td><td>261.66</td><td>0.964</td><td>0</td><td>0</td><td>0</td><td>0</td><td>23</td><td>7</td><td>0</td><td>0</td><td>0</td><td>2</td><td>0</td><td>0</td><td>8.788</td></t<>	530	L821	5.177	261.66	0.964	0	0	0	0	23	7	0	0	0	2	0	0	8.788
53218245.473258.390.96900002380002008.87353318255.779871.8950.999000237000009.17353418265.789959.820.9850000237000009.68353518275.493982.760.9820000247000009.06753618296.09993.8580.9770000237000009.70253718305.7951013.2680.9230000237000009.70253818316.0991014.930.9720000237000009.70253918326.400981.3971.0050002370000010.06754318335.799981.3971.0050002370000010.06754418335.498982.72100002370000010.0754418345	531	L822	5.165	0	0.933	0	0	0	0	23	7	0	0	0	2	0	0	8.89
533     L825     5.779     871.895     0.999     0     0     0     23     7     0     0     0     0     9.173       534     L826     5.789     959.82     0.985     0     0     0     23     7     0     0     0     0     0     9.683       535     L827     5.493     982.76     0.982     0     0     0     24     7     0     0     0     0     0     9.693       536     L829     6.09     993.858     0.977     0     0     0     0     0     0     0     0     9.702       537     L830     5.795     1013.268     0.923     0     0     0     23     7     0     0     0     0     9.988       538     L831     6.09     1014.933     0.972     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <td< td=""><td>532</td><td>L824</td><td>5.473</td><td>258.39</td><td>0.969</td><td>0</td><td>0</td><td>0</td><td>0</td><td>23</td><td>8</td><td>0</td><td>0</td><td>0</td><td>2</td><td>0</td><td>0</td><td>8.873</td></td<>	532	L824	5.473	258.39	0.969	0	0	0	0	23	8	0	0	0	2	0	0	8.873
534L8265.789959.820.985000023700000096.83535L8275.493982.760.98200024700000010.067536L8296.090993.8580.9770000237000097.02537L8305.7951013.2680.923000023701009.988538L8316.0991014.9330.9720000237000009.988538L8316.0991014.9330.97200002370000010.099539L8326.400981.3971.0050002370000010.085544L8335.799981.3970.9500002370000010.049544L8345.498984.5371.00100002370000010.049544L8355.498984.5371.00100002370000009.885544 </td <td>533</td> <td>L825</td> <td>5.779</td> <td>871.895</td> <td>0.999</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>23</td> <td>7</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>9.173</td>	533	L825	5.779	871.895	0.999	0	0	0	0	23	7	0	0	0	0	0	0	9.173
538L8275.493982.760.982000024700000010.067536L8296.090993.8580.9770000237000009.702537L8305.7951013.2680.9230000237010009.988538L8316.0991014.9330.9720000237000009.988538L8326.400981.3971.00500002370000010.099539L8326.400981.3971.00500002370000010.099549L8325.799981.3971.00500002370000010.099541L8345.498982.726100002370000010.099543L8355.498984.5371.0010000237000000000000000000000000000 <td>534</td> <td>L826</td> <td>5.789</td> <td>959.82</td> <td>0.985</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>23</td> <td>7</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>9.683</td>	534	L826	5.789	959.82	0.985	0	0	0	0	23	7	0	0	0	0	0	0	9.683
53818296.090993.8580.9770000000097.0253718305.7951013.2680.923000237010009.98853818316.0991014.9330.97200002370000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 </td <td>535</td> <td>L827</td> <td>5.493</td> <td>982.76</td> <td>0.982</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>24</td> <td>7</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>10.067</td>	535	L827	5.493	982.76	0.982	0	0	0	0	24	7	0	0	0	0	0	0	10.067
537     1830     5.795     1013.268     0.923     0     0     23     7     0     1     0     0     9.988       538     1831     6.099     1014.933     0.972     0     0     0     23     7     0     0     0     0     10.099       539     1832     6.400     981.397     1.005     0     0     0     0     23     7     0     0     0     0     0     10.099       549     1.832     5.799     981.397     0.95     0     0     0     0     23     7     0     0     0     0     10.085       541     1.833     5.799     981.397     0.95     0     0     0     23     7     0     0     0     0     10.085       541     1.833     5.498     982.726     1     0     0     0     23     7     0     0     0     0     10.09     10.09     10.09     10.09     10.09     10.09     10.09     10.09     10.09     10.09     10.09 <td< td=""><td>536</td><td>L829</td><td>6.090</td><td>993.858</td><td>0.977</td><td>0</td><td>0</td><td>0</td><td>0</td><td>23</td><td>7</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>9.702</td></td<>	536	L829	6.090	993.858	0.977	0	0	0	0	23	7	0	0	0	0	0	0	9.702
538     L831     6.099     1014.933     0.972     0     0     0     23     7     0     0     0     0     10.099       539     L832     6.400     981.397     1.005     0     0     0     23     7     0     0     0     0     0     10.099       549     L832     5.799     981.397     0.95     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <td>537</td> <td>L830</td> <td>5.795</td> <td>1013.268</td> <td>0.923</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>23</td> <td>7</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>9.988</td>	537	L830	5.795	1013.268	0.923	0	0	0	0	23	7	0	1	0	0	1	0	9.988
539     L832     6.400     981.397     1.005     0     0     0     23     7     0     0     0     0     0     10.085       540     L833     5.799     981.397     0.95     0     0     0     0     0     0     0     0     10.085       541     L834     5.498     982.726     1     0     0     0     23     7     0     0     0     0     0     10.085       542     L835     5.498     982.726     1     0     0     0     23     7     0     0     0     0     10.07       542     L835     5.498     984.537     1.001     0     0     0     23     7     0     0     0     0     10.049       543     L836     6.102     970.27     0.741     0     0     0     23     7     0     0     0     0     9.885       544     L837     5.508     970.27     0.737     0     0     0     0     0     0     10.351	538	L831	6.099	1014.933	0.972	0	0	0	0	23	7	0	0	0	0	0	0	10.099
540     L833     5.799     981.397     0.95     0     0     0     23     7     0     0     0     0     0     10.085       541     L834     5.498     982.726     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     10.07       542     L835     5.498     984.537     1.001     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0	539	L832	6.400	981.397	1.005	0	0	0	0	23	7	0	0	0	0	0	0	10.085
541     L834     5.498     982.726     1     0     0     0     23     7     0     0     0     0     0     0     10.07       542     L835     5.498     984.537     1.001     0     0     0     0     0     0     0     0     10.07       543     L836     6.102     970.27     0.741     0     0     0     0     0     0     0     9.885       544     L837     5.500     970.27     0.737     0     0     0     0     0     9.885       545     L838     5.508     995.873     0.745     0     0     0     0     0     0     9.885       545     L838     5.508     995.873     0.745     0     0     0     0     0     0     0     0     9.885       545     L839     6.090     95.82     0.989     0     0     0     0     0     0     0     0     0     0     0     0     0     0     9.683	540	L833	5.799	981.397	0.95	0	0	0	0	23	7	0	0	0	0	0	0	10.085
542     L835     5.498     984.537     1.001     0     0     0     23     7     0     0     0     0     0     10.049       543     L836     6.102     970.27     0.741     0     0     0     0     0     0     0     9.885       544     L837     5.500     970.27     0.737     0     0     0     0     0     0     9.885       544     L837     5.508     995.873     0.745     0     0     0     0     23     7     0     0     0     0     9.885       545     L838     5.508     995.873     0.745     0     0     0     0     0     0     9.885       546     L839     6.090     95.82     0.989     0     0     0     23     7     0     0     0     0     9.683       546     L839     6.090     95.82     0.989     0     0     0     23     7     0     0     0     0     1     0     9.683	541	L834	5.498	982.726	1	0	0	0	0	23	7	0	0	0	0	0	0	10.07
543     L836     6.102     970.27     0.741     0     0     0     23     8     0     0     0     0     9.885       544     L837     5.500     970.27     0.737     0     0     0     23     7     0     0     0     1     0     9.885       545     L838     5.508     995.873     0.745     0     0     0     23     7     0     0     0     0     9.885       545     L838     5.508     995.873     0.745     0     0     0     23     7     0     0     0     0     9.885       546     L839     6.090     95.82     0.989     0     0     0     23     7     0     0     0     0     10.351       546     L839     6.090     95.82     0.989     0     0     0     23     7     0     0     0     0     9.683	542	L835	5.498	984.537	1.001	0	0	0	0	23	7	0	0	0	0	0	0	10.049
544     L837     5.500     970.27     0.737     0     0     0     23     7     0     0     0     1     0     9.885       545     L838     5.508     995.873     0.745     0     0     0     23     7     0     0     0     0     0     1     0     9.885       546     L838     5.508     995.873     0.745     0     0     0     23     7     0     0     0     0     10     10.351       546     L839     6.090     959.82     0.989     0     0     0     23     7     0     0     0     0     9.683	543	L836	6.102	970.27	0.741	0	0	0	0	23	8	0	0	0	0	0	0	9.885
545     L838     5.508     995.873     0.745     0     0     0     23     7     0     0     0     0     10.351       546     L839     6.090     959.82     0.989     0     0     0     0     0     0     0     0     9.683	544	L837	5.500	970.27	0.737	0	0	0	0	23	7	0	0	0	0	1	0	9.885
546       L839       6.090       959.82       0.989       0       0       0       23       7       0       0       0       1       0       9.683	545	L838	5.508	995.873	0.745	0	0	0	0	23	7	0	0	0	0	0	0	10.351
	546	L839	6.090	959.82	0.989	0	0	0	0	23	7	0	0	0	0	1	0	9.683

547	L840	5.488	959.82	0.999	0	0	0	0	23	7	0	0	0	0	1	0	9.683
548	L841	5.800	985.422	0.97	0	0	0	0	23	7	0	0	0	0	1	0	10.169
549	L842	5.499	982.726	1.005	0	0	0	0	23	7	0	1	0	0	1	0	10.07
550	L843	5.789	959.82	1.004	0	0	0	0	23	7	0	0	0	0	2	0	9.683
551	L844	6.102	969.788	0.649	0	0	0	0	23	7	0	0	0	0	1	0	9.918
552	L845	6.403	970.952	0.649	0	0	0	0	23	7	0	0	0	0	1	0	9.924
553	L846	6.102	972.377	0.618	0	0	0	0	23	7	0	0	0	0	1	0	9.926
554	L848	4.402	422.252	0.957	0	0	0	0	8	1	0	0	0	0	3	0	8.058
555	L865	4.703	0	0.888	0	0	0	0	4	2	0	0	0	0	1	0	4.211
556	L867	4.701	0	0.888	0	0	0	0	4	2	0	0	0	0	1	0	4.211
557	L868	3.877	0	0.512	0	0	0	0	4	2	0	0	0	0	1	0	4.414
558	L884	4.320	80.865	0.655	0	0	0	0	2	0	0	0	0	2	0	0	4.128
559	L887	5.854	194.915	1.031	0	0	0	0	9	3	1	0	0	0	1	0	7.674
560	L888	4.051	0	0.888	0	0	0	0	5	2	0	0	0	0	1	0	4.184
561	L889	5.087	131.613	0.895	0	0	0	0	6	1	1	0	0	0	1	0	5.291
562	L890	6.438	197.426	0.837	0	0	0	0	8	3	1	0	0	0	1	0	8.301
563	L893	4.622	176.894	0.978	0	0	0	0	8	2	1	0	0	0	2	0	7.072
564	L894	5.199	175.043	0.969	0	0	0	0	9	2	1	0	0	0	1	0	6.911
565	L895	6.016	141.376	0.729	0	0	0	0	6	2	1	0	0	0	1	0	5.499
566	L896	4.478	0	0.749	0	0	0	0	5	2	0	0	0	3	1	0	5.159
567	L897	5.099	137.51	0.711	0	0	0	0	5	2	1	0	0	0	1	0	5.369
568	L898	4.547	154.742	0.868	0	0	0	0	5	2	1	0	0	0	1	0	6.638
569	L899	4.822	148.14	0.75	0	0	0	0	5	2	1	0	0	0	1	0	6.054
570	L900	6.027	145.567	0.684	0	0	0	0	6	2	1	0	0	0	1	0	5.479
571	L902	5.738	149.995	0.65	0	0	0	0	6	2	1	0	0	0	1	0	5.466
572	L904	5.749	154.424	0.622	0	0	0	0	6	2	1	0	0	0	1	0	5.455
573	L906	5.747	153.059	0.622	0	0	0	0	6	2	1	0	0	0	1	0	5.455
574	L908	5.435	149.995	0.65	0	0	0	0	6	2	1	0	0	0	1	0	5.466
575	L910	5.774	325.241	0.564	0	0	0	0	6	2	1	0	0	0	1	0	5.461

576	L912	5.779	159.371	0.825	0	0	0	0	6	2	1	0	0	0	1	0	5.453
577	L914	5.779	159.371	0.831	0	0	0	0	6	2	1	0	0	0	2	0	5.453
578	L916	6.051	154.424	0.657	0	0	0	0	7	2	1	0	0	0	1	0	5.455
579	L918	5.761	159.035	0.631	0	0	0	0	6	2	1	0	0	0	1	0	5.454
580	L920	6.061	159.035	0.619	0	0	0	0	7	2	1	0	0	0	1	0	5.454
581	L922	6.040	149.995	0.669	0	0	0	0	7	2	1	0	0	0	1	0	5.466
582	L924	6.051	154.606	0.639	0	0	1	0	6	2	1	0	0	0	1	0	5.464
583	L926	5.470	164.118	0.605	0	0	1	0	6	2	1	0	0	0	1	0	5.503
584	L928	6.063	154.606	0.901	0	0	0	0	6	2	1	0	0	0	1	0	5.464
585	L930	5.783	164.118	0.848	0	0	0	0	6	2	1	0	0	0	1	0	5.503
586	L932	5.485	163.829	0.856	0	0	0	0	6	2	1	0	0	0	1	0	5.478
587	L934	5.754	149.388	0.768	0	0	0	0	6	2	1	0	0	0	1	0	5.327
588	L936	5.426	145.567	0.698	0	0	0	0	6	2	1	0	0	0	2	0	5.479
589	L938	6.076	158.246	0.695	0	0	0	0	6	2	1	0	0	0	1	0	5.312
590	L939	5.448	154.424	0.634	0	0	0	0	6	2	1	0	0	0	2	0	5.455
591	L942	5.275	380.395	0.823	0	0	0	0	8	2	0	0	0	0	1	0	7.476
592	L944	4.570	108.754	0.753	0	0	0	0	1	0	0	0	0	2	0	0	3.426

	Variable	Exp1	Exp2	Exp3	Exp4	Exp5	Exp6	Exp7	Exp8	Exp9	Exp10	Promedio	Desv. Est.
	Intercept	4.328	4.134	4.336	4.338	4.358	4.299	4.256	4.239	4.286	4.342	4.292	0.005
1	D/Dr06	0.000	0.001	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000
2	GATS6m	-0.479	-0.380	-0.487	-0.455	-0.426	-0.404	-0.317	-0.511	-0.405	-0.513	-0.438	0.004
3	nArCOOH	0.480	0.509	0.514	0.475	0.506	0.624	0.649	0.521	0.475	0.537	0.529	0.004
4	nRCONH2	1.147	1.267	1.320	1.267	1.185	1.198	1.183	1.311	1.355	1.252	1.249	0.005
5	nROR	0.300	0.401	0.381	0.341	0.334	0.326	0.303	0.298	0.305	0.347	0.334	0.001
6	nImidazoles	-0.430	-0.261	-0.493	-0.405	-0.464	-0.470	-0.447	-0.437	-0.533	-0.353	-0.429	0.006
7	nHDon	0.094	0.117	0.126	0.111	0.119	0.121	0.132	0.111	0.108	0.110	0.115	0.000
8	nHBonds	-0.144	-0.209	-0.231	-0.203	-0.213	-0.219	-0.232	-0.202	-0.188	-0.195	-0.204	0.001
9	C-018	1.245	1.322	1.267	1.274	1.258	1.405	1.213	1.188	1.156	1.242	1.257	0.005
10	C-029	0.414	0.480	0.523	0.469	0.451	0.516	0.480	0.464	0.456	0.506	0.476	0.001
11	C-032	1.109	1.186	1.116	1.085	1.116	1.086	1.138	1.194	1.152	1.304	1.149	0.004
12	H-051	-0.128	-0.090	-0.099	-0.144	-0.102	-0.101	-0.089	-0.088	-0.086	-0.126	-0.105	0.000
13	N-075	-0.133	-0.212	-0.200	-0.184	-0.206	-0.187	-0.193	-0.168	-0.168	-0.212	-0.186	0.001
14	N-079	-0.512	-0.589	-0.558	-0.581	-0.536	-0.543	-0.614	-0.525	-0.545	-0.544	-0.555	0.001
15	TI2	0.037	0.030	0.030	0.022	0.013	0.009	0.004	0.047	0.024	0.035	0.025	0.000

**Tabla S2**. Valores promedios calculados para cada descriptor molecular usado en los diferentes experimentos de validación interna y externa.

_____

Exp.	$Q^2$	$r^2$	$\frac{r^2 - r_0^2}{r^2}$	k	k'	$\frac{r^2 - {r'_0}^2}{r^2}$	$\overline{r_m^2}$	$ r_0^2 - r'_0^2 $	$\Delta r_m^2$
1	0.664	0.680	0.000	0.999	0.991	0.218	0.548	0.148	0.261
2	0.674	0.676	0.001	1.004	0.986	0.183	0.549	0.124	0.221
3	0.699	0.682	0.001	0.996	0.994	0.166	0.557	0.113	0.209
4	0.674	0.680	0.001	1.002	0.988	0.174	0.554	0.119	0.216
5	0.668	0.682	0.000	0.997	0.993	0.211	0.552	0.144	0.259
6	0.679	0.679	0.002	0.996	0.994	0.162	0.554	0.110	0.199
7	0.674	0.678	0.000	0.999	0.991	0.205	0.549	0.139	0.247
8	0.685	0.678	0.001	1.002	0.988	0.189	0.550	0.128	0.230
9	0.684	0.678	0.000	0.998	0.992	0.195	0.549	0.132	0.236
10	0.686	0.681	0.001	0.998	0.992	0.171	0.555	0.117	0.214
Promedio	0.679	0.679	0.001	0.999	0.991	0.187	0.552	0.127	0.229
Desv. Est.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

**Tabla S3**. Promedio de los valores de los parámetros estadísticos usados para la evaluación del poder predictivo del modelo QSPR (Ecuación 18).

_____

Tabla S4. Lista de moléculas usadas para la validación del poder predictive y sus descriptores moleculares calculados y valores de pMIC predichos	s. Las
moléculas se obtuvieron de las siguientes referencias: (a) 1 a 10 de [8]; (b) 11 a 32 de [9]; (c) 33 a 39 de [10]; 40 a 45 de [11]; 46 y 47 de [12]; 48 a 10 de [8]; (b) 11 a 32 de [9]; (c) 33 a 39 de [10]; 40 a 45 de [11]; 46 y 47 de [12]; 48 a 10 de [8]; (b) 11 a 32 de [9]; (c) 33 a 39 de [10]; 40 a 45 de [11]; 46 y 47 de [12]; 48 a 10 de [8]; (b) 11 a 32 de [9]; (c) 33 a 39 de [10]; 40 a 45 de [11]; 46 y 47 de [12]; 48 a 10 de [8]; (b) 11 a 32 de [9]; (c) 33 a 39 de [10]; 40 a 45 de [11]; 46 y 47 de [12]; 48 a 10 de [8]; (b) 11 a 32 de [9]; (c) 33 a 39 de [10]; 40 a 45 de [11]; 46 y 47 de [12]; 48 a 10 de [8]; (b) 11 a 32 de [9]; (c) 33 a 39 de [10]; 40 a 45 de [11]; 46 y 47 de [12]; 48 a 10 de [8]; (b) 11 a 32 de [9]; (c) 33 a 39 de [10]; 40 a 45 de [11]; 46 y 47 de [12]; 48 a 10 de [8]; (b) 11 a 32 de [9]; (c) 33 a 39 de [10]; 40 a 45 de [11]; 46 y 47 de [12]; 48 a 10 de [8]; (b) 11 a 32 de [9]; (c) 33 a 39 de [10]; 40 a 45 de [11]; 46 y 47 de [12]; 48 a 10 de [8]; (b) 11 a 32 de [9]; (c) 33 a 39 de [10]; 40 a 45 de [11]; 46 y 47 de [12]; 48 a 10 de [11]; 46 y 47 de [12]; 48 a 10 de [11]; 46 y 47 de [12]; 48 a 10 de [11]; 46 y 47 de [12]; 48 a 10 de [11]; 46 y 47 de [12]; 48 a 10 de [11]; 46 y 47 de [12]; 48 a 10 de [11]; 46 y 47 de [12]; 48 a 10 de [11]; 4	76 de
[13]; and 77 a 98 de [14].	

No.	MolID	<i>p</i> MIC	MW	D/Dr06	GATS6m	nArCOOH	nRCONH2	nROR	nImidazoles	nHDon	nHBonds	C-018	C-029	C-032	H-051	N-075	N-079	TI2	pMIC _{pred}
1	P001	5.040	411.49	292.916	0.831	0	0	0	0	1	0	0	0	0	0	0	0	2.81	4.280
2	P002	4.103	380.52	264.61	1.416	0	0	0	0	1	0	0	0	0	0	0	0	2.594	4.002
3	P003	3.807	384.48	264.61	0.779	0	0	0	0	1	0	0	0	0	0	0	0	2.594	4.281
4	P004	4.172	445.38	264.61	0.583	0	0	0	0	1	0	0	0	0	0	0	0	2.594	4.367
5	P005	4.730	402.47	274.785	1.073	0	0	0	0	1	0	0	0	0	0	0	0	2.603	4.159
6	P006	4.760	431.35	255.939	0.6	0	0	0	0	1	0	0	0	0	0	0	0	2.672	4.357
7	P007	4.803	476.35	296.928	0.634	0	0	0	0	1	0	0	0	0	0	0	0	2.811	4.369
8	P008	3.747	335.39	164.429	0.765	0	0	0	0	1	0	0	0	0	0	0	0	2.736	4.234
9	P009	4.938	324.83	142.277	0.739	0	0	0	0	1	0	0	0	0	0	0	0	2.268	4.221
10	P010	4.037	326.37	150.278	1.223	0	0	0	0	1	0	0	0	0	0	0	0	2.339	4.015
11	P011	4.648	355.44	86.758	0.844	0	0	0	0	5	1	0	0	0	0	1	0	4.245	4.261
12	P012	4.393	395.51	100.554	0.77	0	0	0	0	4	1	0	0	0	0	1	0	4.847	4.202
13	P013	4.090	393.49	100.554	0.77	0	0	0	0	4	1	0	0	0	0	1	0	4.847	4.202
14	P014	5.068	467.96	235.976	0.85	0	0	0	0	4	1	0	1	1	0	3	0	5.555	5.513
15	P015	4.438	438.56	106.005	0.844	0	0	0	0	4	1	0	0	0	0	2	0	5.198	3.995
16	P016	4.453	453.58	110.383	0.817	0	0	0	0	4	1	0	0	0	3	3	0	5.389	3.511
17	P017	4.135	436.52	110.383	0.724	0	0	0	0	4	1	0	0	0	3	2	0	5.389	3.738
18	P018	4.450	450.55	113.825	0.705	0	0	0	0	4	1	0	0	0	3	2	0	5.534	3.752
19	P019	4.734	433.52	228.131	0.714	0	0	0	0	4	1	0	0	1	0	3	0	5.382	5.088
20	P020	4.146	447.55	235.976	0.693	0	0	0	0	4	1	0	0	1	3	3	0	5.555	4.790
21	P021	4.161	463.55	246.209	0.857	0	0	0	0	4	1	0	0	1	0	3	0	5.756	5.045
22	P022	4.159	461.58	243.821	0.677	0	0	0	0	4	1	0	0	1	6	3	0	5.701	4.489
23	P023	3.559	463.55	244.305	0.88	0	0	0	0	4	1	0	2	0	0	3	0	5.735	4.837
24	P024	4.790	493.58	260.48	1.025	0	0	0	0	4	1	0	2	1	0	3	0	5.974	5.937
25	P025	4.432	432.53	228.131	0.704	0	0	0	0	4	1	0	1	0	0	2	0	5.382	4.606

**- 192** 

26	P026	4.462	463.55	242.713	0.696	0	0	0	0	4	1	0	2	0	0	3	0	5.675	4.915
27	P027	3.860	463.55	246.209	0.857	0	0	0	0	4	1	0	2	0	0	3	0	5.756	4.849
28	P028	4.664	369.47	92.854	0.837	0	0	0	0	5	1	0	0	0	0	1	0	4.935	4.285
29	P029	5.885	383.5	98.843	0.918	0	0	0	0	5	1	0	0	0	0	1	0	5.611	4.270
30	P030	4.094	397.48	100.409	0.794	0	0	0	0	4	1	0	0	0	3	1	0	4.809	3.874
31	P031	4.997	397.49	100.409	0.794	0	0	0	0	7	2	0	0	0	0	1	0	4.809	4.331
32	P032	6.264	459.55	249.294	0.897	0	0	0	0	4	1	0	0	0	0	1	0	5.818	4.255
33	P033	4.549	566.9	644.687	1.162	0	0	0	0	0	0	0	2	0	0	2	2	8.161	3.824
34	P034	4.590	623.02	719.33	1.178	0	0	0	0	0	0	0	2	0	0	2	2	9.329	3.889
35	P035	4.549	566.9	704.755	1.462	0	0	0	0	0	0	0	0	0	0	2	2	8.716	2.789
36	P036	5.192	623.02	791.073	1.465	0	0	0	0	0	0	0	0	0	0	2	2	9.958	2.868
37	P037	4.561	582.9	730.69	1.049	0	0	0	0	0	0	0	0	0	0	2	2	9.287	2.999
38	P038	4.601	639.02	817.152	1.05	0	0	0	0	0	0	0	0	0	0	2	2	10.507	3.079
39	P039	4.620	667.08	860.738	1.051	0	0	0	0	0	0	0	0	0	0	2	2	11.148	3.119
40	P040	5.256	564.92	94.221	1.765	0	0	0	0	4	1	0	0	0	3	0	0	6.233	3.667
41	P041	5.510	566.94	94.221	1.765	0	0	0	0	5	1	0	0	0	0	0	0	6.233	4.098
42	P042	5.338	681.11	126.495	1.677	0	0	0	0	8	2	0	0	0	0	0	0	8.446	4.351
43	P043	5.300	624	109.95	1.73	0	0	0	0	6	2	0	0	0	0	0	0	7.361	4.062
44	P044	5.290	610.02	106.016	1.734	0	0	0	0	6	1	0	0	0	0	0	0	7.103	4.255
45	P045	6.171	444.48	221.13	1.164	0	0	0	0	7	4	0	0	0	0	0	0	2.026	3.948
46	P046	3.872	372.46	230.709	1.935	0	0	0	1	2	0	0	0	0	5	1	0	6.505	2.825
47	P047	3.946	441.34	251.358	1.051	0	0	0	1	2	1	0	0	0	5	1	0	6.718	3.026
48	P048	3.421	337.39	163.964	1.044	0	0	1	0	1	1	0	0	0	3	0	0	3.901	3.954
49	P049	3.496	401.44	317.333	1.064	0	0	1	0	1	1	0	0	0	0	2	0	5.295	4.011
50	P050	3.591	499.4	215.396	0.517	0	0	1	0	1	1	0	0	0	3	1	0	5.496	4.068
51	P051	3.501	405.44	208.358	1.137	0	0	1	0	2	2	0	0	0	2	3	0	5.488	3.436
52	P052	3.545	448.46	234.275	0.874	0	0	1	1	1	1	0	1	0	0	1	0	5.923	4.295
53	P053	3.579	485.37	207.282	0.517	0	0	1	0	1	1	0	0	0	0	1	0	5.303	4.374
54	P054	3.517	420.51	206.103	0.876	0	0	1	0	1	0	0	0	0	3	1	0	5.277	4.103

55	P055	3.502	406.48	197.99	0.879	0	0	1	0	1	0	0	0	0	0	1	0	5.044	4.407
56	P056	3.484	390.41	197.99	1.033	0	0	1	0	1	0	0	0	0	0	1	0	5.044	4.340
57	P057	3.501	405.49	197.99	0.869	0	0	1	0	1	0	0	0	0	0	0	0	5.044	4.598
58	P058	3.501	405.49	197.99	0.629	0	0	1	0	1	0	0	0	0	0	0	0	5.044	4.703
59	P059	3.482	388.44	197.99	1.104	0	0	1	0	2	0	0	0	0	0	0	0	5.044	4.610
60	P060	3.494	399.46	317.333	1.076	0	0	1	0	1	0	0	0	0	0	0	0	5.295	4.582
61	P061	3.524	427.52	348.902	1.082	0	0	1	0	1	0	0	0	0	2	0	0	6.042	4.405
62	P062	3.537	440.47	329.53	1.099	0	0	1	0	1	1	0	0	0	0	1	0	5.933	4.205
63	P063	3.535	438.5	329.53	1.135	0	0	1	0	2	1	0	0	0	0	0	0	5.933	4.490
64	P064	3.559	463.55	445.155	1.182	0	0	1	0	1	0	0	0	0	2	0	0	6.588	4.430
65	P065	3.505	409.53	197.99	0.869	0	0	1	0	1	0	0	0	0	0	0	0	5.044	4.598
66	P066	3.487	392.48	197.99	1.104	0	0	1	0	2	1	0	0	0	1	0	0	5.044	4.301
67	P067	3.502	406.51	207.282	1.096	0	0	1	0	1	1	0	0	0	1	0	0	5.303	4.202
68	P068	3.483	389.47	197.99	1.083	0	0	1	0	1	0	0	0	0	1	0	0	5.044	4.399
69	P069	3.439	351.42	173.546	1.071	0	0	1	0	1	1	0	0	0	2	0	0	4.201	4.061
70	P070	3.456	365.45	183.284	1.06	0	0	1	0	1	1	0	0	0	2	0	0	4.538	4.079
71	P071	3.456	365.45	183.128	1.098	0	0	1	0	1	1	0	0	0	1	0	0	4.488	4.167
72	P072	3.453	363.43	181.84	1.098	0	0	1	0	1	1	0	0	0	1	0	0	4.488	4.166
73	P073	3.470	377.46	190.459	1.09	0	0	1	0	1	1	0	0	0	1	0	0	4.774	4.182
74	P074	3.440	352.41	173.546	1.041	0	0	1	0	3	1	0	0	0	0	0	0	4.201	4.514
75	P075	3.457	366.44	183.284	1.087	0	0	1	0	3	1	0	0	0	2	0	0	4.538	4.297
76	P076	3.473	380.47	193.158	1.075	0	0	1	0	3	1	0	0	0	2	0	0	4.909	4.317
77	P077	6.006	506.57	484.937	0.935	0	0	0	0	1	0	0	4	0	0	2	0	6.202	5.960
78	P078	7.228	506.57	484.937	0.989	0	0	0	0	2	0	0	4	0	0	2	0	6.202	6.051
79	P079	5.705	506.57	484.937	0.953	0	0	0	0	2	0	0	2	0	0	2	0	6.202	5.115
80	P080	6.927	507.56	484.937	0.988	0	0	0	0	2	0	0	4	0	0	2	0	6.202	6.051
81	P081	6.926	505.58	484.937	0.973	0	0	0	0	2	0	0	2	0	0	1	0	6.202	5.292
82	P082	6.626	507.56	484.937	0.971	0	0	0	0	2	0	0	4	0	0	3	0	6.202	5.872
83	P083	6.006	506.57	484.937	0.936	0	0	0	0	2	0	0	3	0	0	2	0	6.202	5.598

84	P084	4.200	507.56	484.937	0.953	0	0	0	0	2	0	0	3	1	0	3	0	6.202	6.553
85	P085	3.909	519.56	501.962	1.158	1	0	0	0	3	0	0	2	0	0	1	0	6.347	5.868
86	P086	4.796	500.56	485.563	0.984	0	0	0	0	2	0	0	2	0	0	1	0	6.213	5.288
87	P087	6.302	500.56	484.937	1.061	0	0	0	0	2	0	0	2	0	0	1	0	6.202	5.254
88	P088	5.700	501.55	484.937	1.036	0	0	0	0	2	0	0	2	0	0	2	0	6.202	5.078
89	P089	7.217	494.53	467.912	1.022	0	0	0	0	2	0	0	2	0	0	1	0	6.049	5.257
90	P090	7.542	522.64	484.937	0.863	0	0	0	0	2	0	0	4	0	0	2	0	6.202	6.106
91	P091	6.635	517.62	484.937	0.865	0	0	0	0	2	0	0	2	0	0	2	0	6.202	5.153
92	P092	5.705	507.56	484.937	0.953	0	0	0	0	2	0	0	3	1	0	3	0	6.202	6.553
93	P093	5.728	534.63	519.047	0.981	0	0	0	0	2	0	0	4	0	0	2	0	6.359	6.078
94	P094	6.938	520.6	513.191	0.915	0	0	0	0	2	0	0	4	0	0	2	0	6.896	6.116
95	P095	6.627	508.56	495.866	1.026	0	0	0	0	2	0	0	2	0	0	1	0	6.731	5.288
96	P096	6.632	514.59	513.191	1.02	0	0	0	0	2	0	0	2	0	0	1	0	6.896	5.305
97	P097	6.018	520.6	513.191	0.951	0	0	0	0	2	0	0	2	0	0	2	0	6.896	5.149
98	P098	5.411	515.58	513.191	1.033	0	0	0	0	2	0	0	2	0	0	2	0	6.896	5.113

No.	MolID	MW	D/Dr06	GATS6m	nArCOOH	nRCONH2	nROR	nImidazoles	nHDon	nHBonds	C-018	H-051	N-075	TI2	<i>p</i> MIC
1	FQNP001	344.34	197.427	0.893	0	0	1	0	2	2	0	0	0	2.635	4.235
2	FQNP002	248.35	60.75	1.7	0	0	0	0	1	0	0	0	0	1.427	3.732
3	FQNP007	170.18	31.526	0	0	0	2	0	1	1	0	0	0	1.24	4.919
4	FQNP008	168.16	37.924	2.063	0	0	1	0	1	0	0	0	0	1.27	3.890
5	FQNP009	184.16	41.79	1.95	0	0	1	0	2	1	0	0	0	1.173	3.850
6	FQNP010	206.64	41.79	6.677	0	0	1	0	2	2	0	0	0	1.221	1.578
7	FQNP011	167.18	37.924	2.467	0	0	0	0	2	0	0	0	0	1.27	3.494
8	FQNP012	263.32	124.927	1.138	0	0	1	0	3	1	0	0	0	2.766	4.408
9	FQNP013	299.4	155.266	1.021	0	0	1	0	1	1	0	0	0	3.893	4.275
10	FQNP014	642.6	905.967	0.827	0	0	0	0	4	4	0	0	0	6.373	4.251
11	FQNP015	468.6	238.283	1.081	0	0	2	0	4	2	0	5	0	3.682	4.238
12	FQNP016	508.62	260.667	0.993	0	0	2	0	4	3	0	0	0	4.062	4.623
13	FQNP017	538.65	278.539	0.977	0	0	3	0	4	3	0	0	0	4.371	4.981
14	FQNP018	538.65	279.997	0.977	0	0	3	0	4	3	0	0	0	4.393	4.982
15	FQNP019	492.62	252.747	0.964	0	0	2	0	4	3	0	0	0	3.923	4.627
16	FQNP020	316.28	178.548	0.847	0	0	0	0	4	3	0	0	0	2.752	3.940
17	FQNP021	432.41	362.775	0.791	0	0	1	0	6	3	0	0	0	4.198	4.669
18	FQNP022	344.34	201.632	0.882	0	0	0	0	2	2	0	0	0	3.041	3.919
19	FQNP023	250.37	81.198	1.236	0	0	0	0	2	0	0	0	0	1.549	4.065
20	FQNP024	234.37	76.119	1.648	0	0	0	0	1	0	0	0	0	1.634	3.769
21	FQNP025	248.35	74.007	1.236	0	0	1	0	1	0	0	0	0	1.499	4.278
22	FQNP026	250.37	74.007	1.236	0	0	1	0	2	0	0	0	0	1.499	4.393
23	FQNP027	384.41	171.69	1.059	0	0	2	0	2	0	0	0	0	1.443	4.859
24	FQNP028	462.48	318.519	0.787	0	0	2	0	2	0	0	0	0	2.107	5.078
25	FQNP029	292.26	108.265	0.476	0	0	1	0	2	2	0	0	0	1.166	4.330
26	FQNP030	274.24	101.297	0.399	0	0	1	0	1	0	1	0	0	1.208	5.910

**Tabla S5**. Lista de moléculas de la base de datos BIOFACQUIM, sus descriptores moleculares y valores de *p*MIC calculados. Los descriptores C029, C032 y N079 se omitieron debido a que sus valores son de cero. Las moléculas se obtuvieron de la referencia [15].

27	FQNP031	248.25	79.846	0.642	0	0	1	0	1	1	0	0	0	1.519	4.339
28	FQNP032	210.62	26.957	2.896	0	0	0	0	1	0	0	0	0	1.421	3.189
29	FQNP033	342.33	119.54	0.909	0	0	1	0	5	3	0	0	0	3.373	4.343
30	FQNP034	176.18	24.549	1.733	0	0	0	0	1	0	0	0	0	1.343	3.695
31	FQNP035	224.28	38.08	1.25	0	0	1	0	3	1	0	0	0	2.84	4.311
32	FQNP036	226.25	45.591	1.091	0	0	0	0	2	0	0	2	0	1.32	3.892
33	FQNP037	224.23	45.591	1.091	0	0	0	0	2	0	0	0	0	1.32	4.102
34	FQNP038	180.22	42.114	1.3	0	0	0	0	2	0	0	3	0	1.502	3.697
35	FQNP039	404.51	208.41	1.05	0	0	5	0	2	2	0	0	0	3.678	5.533
36	FQNP040	194.2	55.767	1.138	0	0	0	0	2	1	0	0	0	1.148	3.880
37	FQNP041	194.2	55.767	1.138	0	0	0	0	2	1	0	0	0	1.148	3.880
38	FQNP042	192.23	56.472	0.919	0	0	0	0	0	0	0	0	0	1.379	3.956
39	FQNP044	170.18	31.526	0	0	0	2	0	1	1	0	0	0	1.24	4.919
40	FQNP045	172.2	37.924	0	0	0	1	0	2	1	0	2	0	1.253	4.493
41	FQNP046	418.53	194.21	1.485	0	0	0	0	2	0	0	0	0	2.76	4.051
42	FQNP047	460.57	215.462	1.493	0	0	0	0	1	0	0	3	0	2.657	3.626
43	FQNP048	452.55	230.455	1.406	0	0	0	0	5	3	0	0	0	4.969	3.895
44	FQNP049	436.55	223.697	1.417	0	0	0	0	4	2	0	0	0	4.977	3.975
45	FQNP050	420.55	210.898	1.289	0	0	0	0	4	1	0	0	0	5.218	4.233
46	FQNP051	434.53	202.035	1.486	0	0	0	0	3	1	0	0	0	2.747	3.966
47	FQNP052	476.57	223.286	1.489	0	0	0	0	2	1	0	3	0	2.633	3.543
48	FQNP053	466.58	239.281	1.376	0	0	0	0	4	2	0	0	0	4.823	3.998
49	FQNP059	402.48	228.301	1.071	0	0	1	0	1	1	0	0	0	6.528	4.360
50	FQNP060	388.45	219.002	1.078	0	0	1	0	2	0	0	0	0	6.272	4.664
51	FQNP061	402.48	228.301	1.071	0	0	1	0	1	1	0	0	0	6.528	4.360
52	FQNP062	388.45	219.002	1.078	0	0	1	0	2	0	0	0	0	6.272	4.664
53	FQNP063	404.45	227.357	1.057	0	0	1	0	3	1	0	0	0	6.479	4.594
54	FQNP077	1167.41	1692.143	0.951	0	0	12	0	16	8	0	2	0	8.304	9.049
55	FQNP078	1195.47	1739.777	0.958	0	0	12	0	16	8	0	2	0	8.397	9.076

56	FQNP079	1341.63	2360.184	0.965	0	0	13	0	19	10	0	2	0	10.723	9.756
57	FQNP080	1690.16	2257.102	1.01	0	0	14	0	13	8	0	9	0	6.18	8.879
58	FQNP081	2473.43	6328.172	1.071	0	0	19	0	16	11	0	10	0	20.998	12.845
59	FQNP082	2449.3	7015.971	1.082	0	0	19	0	16	11	0	8	0	21.234	13.451
60	FQNP083	2445.37	6531.924	1.071	0	0	19	0	16	11	0	10	0	21.416	12.972
61	FQNP084	2501.49	6713.547	1.076	0	0	19	0	16	9	0	10	0	21.566	13.485
62	FQNP085	248.35	65.655	0.729	0	0	0	0	1	1	0	0	0	3.637	4.012
63	FQNP086	248.35	32.852	0	0	0	0	0	1	1	0	1	0	0.868	4.138
64	FQNP087	248.35	32.852	0	0	0	0	0	1	1	0	1	0	0.868	4.138
65	FQNP088	368.37	204.391	1.062	0	0	2	0	4	2	0	0	0	3.488	4.749
66	FQNP089	381.46	200.156	1.021	0	0	0	0	0	0	0	0	0	2.363	4.018
67	FQNP090	270.36	73.874	1.415	0	0	0	0	1	0	0	0	0	1.83	3.875
68	FQNP091	270.36	73.874	1.415	0	0	0	0	1	0	0	0	0	1.83	3.875
69	FQNP092	256.33	68.062	1.427	0	0	0	0	1	0	0	0	0	1.586	3.860
70	FQNP093	228.22	57.413	1.759	0	0	0	0	1	0	0	0	0	1.299	3.701
71	FQNP094	506.64	639.103	1.685	0	0	0	0	2	1	0	0	0	5.637	4.086
72	FQNP095	348.75	140.462	1.188	0	0	0	0	4	1	0	0	0	2.233	4.163
73	FQNP105	394.45	172.17	1.051	0	0	0	0	0	0	0	1	0	2.644	3.890
74	FQNP106	336.31	115.969	0.905	0	0	0	0	0	0	0	1	0	2.237	3.912
75	FQNP107	382.34	135.316	0.9	0	0	0	0	1	1	0	0	0	2.198	3.941
76	FQNP108	336.31	140.815	0.957	0	0	0	0	0	0	0	0	0	2.878	4.025
77	FQNP109	284.28	160.088	0.788	0	0	0	0	2	0	0	0	0	2.78	4.337
78	FQNP110	300.28	170.12	0.875	0	0	0	0	3	0	0	0	0	2.847	4.421
79	FQNP112	344.34	201.768	1.02	0	0	0	0	2	1	0	0	0	3.05	4.062
80	FQNP113	330.31	189.459	1.031	0	0	0	0	3	1	0	0	0	2.92	4.162
81	FQNP114	262.33	64.764	1.425	0	0	0	0	1	1	0	0	0	1.422	3.651
82	FQNP115	254.41	0	1	0	0	0	0	2	0	0	1	0	5.078	4.104
83	FQNP116	530.52	453.461	1.168	0	0	0	0	6	3	0	0	0	6.283	4.274
84	FQNP119	540.5	662.017	0.96	0	0	0	0	6	0	0	2	0	4.777	4.847

85	FQNP120	342.34	157.033	0.994	0	0	3	0	8	4	0	0	0	3.361	5.134
86	FQNP121	528.95	179.831	1.378	0	0	0	0	1	0	0	0	0	14.694	4.272
87	FQNP122	557.01	191.167	1.366	0	0	0	0	1	0	0	0	0	15.562	4.305
88	FQNP123	585.07	202.538	1.356	0	0	0	0	1	0	0	0	0	16.423	4.337
89	FQNP124	138.18	30.514	0	0	0	0	0	1	0	0	0	0	1.783	4.468
90	FQNP125	122.13	26.324	0	0	0	0	0	1	0	0	0	0	1.544	4.460
91	FQNP126	302.35	120.139	1.182	0	0	0	0	2	1	0	0	0	1.857	3.915
92	FQNP127	300.33	120.139	1.182	0	0	0	0	2	1	0	0	0	1.857	3.915
93	FQNP128	270.3	106.425	1.319	0	0	0	0	2	1	0	0	0	1.7	3.843
94	FQNP129	274.34	139.317	0.742	0	0	0	0	2	1	0	0	0	4.117	4.175
95	FQNP130	244.31	122.152	0.729	0	0	0	0	2	0	0	0	0	3.862	4.368
96	FQNP131	358.37	208.04	0.862	0	0	1	0	1	1	0	0	0	2.814	4.348
97	FQNP132	344.34	195.731	0.866	0	0	1	0	2	2	0	0	0	2.68	4.247
98	FQNP133	710.95	787.218	0.937	0	0	0	0	3	1	0	0	0	4.01	4.572
99	FQNP134	538.59	452.095	0.448	1	0	0	0	5	3	0	0	0	5.632	4.986
100	FQNP135	538.59	452.691	0.441	1	0	0	0	4	2	0	0	0	5.45	5.074
101	FQNP136	552.62	463.793	0.433	1	0	0	0	4	2	0	0	0	5.492	5.085
102	FQNP137	594.57	478.798	0.994	0	0	3	0	8	5	0	0	0	5.466	5.167
103	FQNP138	354.34	187.811	1.042	0	0	0	0	6	4	0	0	0	5.15	3.945
104	FQNP139	578.57	618.478	0.879	0	0	3	0	8	5	0	0	0	4.087	5.263
105	FQNP140	432.41	330.321	0.926	0	0	1	0	7	3	0	0	0	3.17	4.680
106	FQNP141	454.76	185.141	0.533	0	0	0	0	1	0	0	2	0	4.232	4.174
107	FQNP142	456.78	185.141	0.533	0	0	0	0	2	0	0	0	0	4.232	4.499
108	FQNP143	426.8	223.217	0.66	0	0	0	0	1	0	0	0	0	2.246	4.301
109	FQNP144	414.79	167.372	0.769	0	0	0	0	1	0	0	0	0	4.08	4.267
110	FQNP145	218.32	56.795	1.143	0	0	0	0	0	0	0	0	0	2.878	3.895
111	FQNP146	150.24	34.381	0	0	0	0	0	1	0	0	0	0	1.602	4.466
112	FQNP147	274.34	72.859	0.95	0	0	1	0	0	0	0	3	0	3.145	4.013
113	FQNP148	402.68	125.97	0.679	1	0	0	0	2	1	0	0	0	10.287	4.877

114	FQNP149	346.56	104.141	0.718	1	0	0	0	2	1	0	0	0	8.322	4.799
115	FQNP150	404.7	125.97	0.679	1	0	0	0	2	1	0	0	0	10.287	4.877
116	FQNP151	348.58	104.141	0.718	1	0	0	0	2	1	0	0	0	8.322	4.799
117	FQNP152	454.76	185.141	0.533	0	0	0	0	1	0	0	2	0	4.232	4.174
118	FQNP153	456.78	185.141	0.533	0	0	0	0	2	0	0	0	0	4.232	4.499
119	FQNP154	456.78	245.125	1.235	0	0	0	0	2	0	0	0	0	2.301	4.178
120	FQNP155	386.43	223.207	1.161	0	0	0	0	2	0	0	1	0	6.592	4.199
121	FQNP156	400.46	232.506	1.153	0	0	0	0	1	0	0	1	0	6.839	4.099
122	FQNP157	386.43	222.633	1.161	0	0	0	0	2	0	0	1	0	6.58	4.199
123	FQNP158	416.46	240.861	1.123	0	0	0	0	2	1	0	1	0	6.998	4.032
124	FQNP159	218.27	70.528	1.368	0	0	0	0	1	1	0	3	0	1.788	3.373
125	FQNP160	234.27	77.573	1.427	0	0	0	0	2	0	0	0	0	2.048	3.992
126	FQNP161	420.5	0	1.098	0	0	0	0	1	1	0	3	0	2.298	3.463
127	FQNP162	420.5	0	1.098	0	0	0	0	1	1	0	3	0	2.298	3.463
128	FQNP164	284.28	158.458	0.75	0	0	0	0	2	0	0	0	0	2.613	4.348
129	FQNP165	316.28	176.374	0.956	0	0	0	0	4	2	0	0	0	2.715	4.093
130	FQNP166	286.25	155.567	0.889	0	0	0	0	4	1	0	0	0	2.431	4.307
131	FQNP167	302.25	165.599	0.917	0	0	0	0	5	2	0	0	0	2.559	4.215
132	FQNP168	516.49	440.044	1.132	0	0	0	0	7	4	0	0	0	6.453	4.197
133	FQNP169	380.52	161.315	1.284	0	0	0	0	0	0	0	0	0	2.461	3.883
134	FQNP170	190.26	30.952	0.542	0	0	0	0	0	0	0	0	0	2.32	4.130
135	FQNP171	188.24	30.952	0.542	0	0	0	0	0	0	0	0	0	2.32	4.130
136	FQNP172	192.23	31.084	1.379	0	0	0	0	0	0	0	0	0	1.816	3.751
137	FQNP173	194.2	48.032	1.706	0	0	0	0	2	1	0	0	0	2.922	3.671
138	FQNP174	614.59	368.003	1.091	0	0	0	0	5	4	0	4	0	2.756	3.431
139	FQNP175	614.59	442.102	1.141	0	0	0	0	6	3	0	4	0	3.834	3.797
140	FQNP182	328.44	96.148	0.932	0	0	0	0	0	0	0	0	0	2.547	4.002
141	FQNP183	330.46	96.148	0.932	0	0	0	0	0	0	0	1	0	2.547	3.897
142	FQNP184	328.44	96.148	0.932	0	0	0	0	0	0	0	0	0	2.547	4.002

143	FQNP185	246.33	61.057	0.756	0	0	0	0	1	0	0	0	0	1.247	4.141
144	FQNP186	330.41	96.006	0.83	0	0	0	0	1	0	0	0	0	2.591	4.162
145	FQNP187	272.27	101.297	0.894	0	0	1	0	0	0	1	0	0	1.208	5.579
146	FQNP188	304.32	115.007	0.802	0	0	1	0	1	0	0	0	0	1.061	4.481
147	FQNP191	254.25	97.643	1.096	0	0	0	0	2	1	0	0	0	1.464	3.930
148	FQNP192	346.31	89.966	1.133	0	0	2	0	1	0	1	0	0	1.397	5.920
149	FQNP193	295.32	147.825	0.885	0	0	2	0	4	2	0	0	0	3.39	4.792
150	FQNP194	290.29	158.057	0.889	0	0	0	0	5	1	0	0	0	2.637	4.429
151	FQNP195	464.41	358.561	0.903	0	0	2	0	8	4	0	0	0	3.293	4.954
152	FQNP196	464.41	358.561	0.903	0	0	2	0	8	4	0	0	0	3.293	4.954
153	FQNP197	448.41	344.764	0.92	0	0	2	0	7	4	0	0	0	3.156	4.821
154	FQNP198	568.52	614.71	0.974	0	0	2	0	7	4	0	0	0	5.105	5.000
155	FQNP199	298.32	145.105	0.857	0	0	1	0	4	2	0	3	0	3.532	4.157
156	FQNP200	286.31	135.944	0.989	0	0	1	0	4	1	0	0	0	3.326	4.608
157	FQNP201	456.78	243.519	1.086	0	0	0	0	2	0	0	0	0	2.275	4.242
158	FQNP202	428.77	223.896	1.023	0	0	0	0	2	0	0	0	0	2.209	4.256
159	FQNP203	374.42	92.876	1.093	0	0	0	0	3	1	0	0	0	1.834	4.053
160	FQNP204	356.4	89.5	1.115	0	0	0	0	2	1	0	0	0	1.903	3.928
161	FQNP205	402.48	107.121	1.055	0	0	0	0	1	1	0	3	0	1.717	3.529
162	FQNP206	360.44	93.257	1.083	0	0	0	0	3	2	0	2	0	1.91	3.645
163	FQNP207	374.52	158.607	1.176	0	0	0	0	2	1	0	5	0	2.507	3.429
164	FQNP208	340.4	85.377	1.2	0	0	0	0	1	1	0	0	0	1.905	3.774
165	FQNP209	342.42	85.377	1.2	0	0	0	0	1	1	0	0	0	1.905	3.774
166	FQNP210	342.42	89.565	1.1	0	0	0	0	1	0	0	0	0	1.986	4.025
167	FQNP211	356.4	88.753	1.195	0	0	0	0	2	2	0	0	0	1.836	3.687
168	FQNP212	362.46	173.725	1.006	0	0	1	0	3	2	0	0	0	1.676	4.263
169	FQNP213	390.52	163.382	1.134	0	0	0	0	2	1	0	3	0	1.627	3.639
170	FQNP214	256.27	136.096	0.838	0	0	0	0	2	1	0	2	0	2.346	3.876
171	FQNP215	272.27	143.884	0.933	0	0	0	0	3	1	0	0	0	2.23	4.162

172	FQNP216	254.25	136.096	0.838	0	0	0	0	2	0	0	0	0	2.346	4.290
173	FQNP218	286.3	153.219	1	0	0	0	0	2	0	0	0	0	2.266	4.227
174	FQNP219	270.3	145.431	0.825	0	0	0	0	1	0	0	2	0	2.379	3.977
175	FQNP220	286.3	154.563	0.875	0	0	0	0	2	1	0	0	0	2.3	4.080
176	FQNP221	270.3	146.775	0.781	0	0	0	0	1	1	0	2	0	2.415	3.794
177	FQNP222	300.28	167.876	0.875	0	0	0	0	3	1	0	0	0	2.666	4.212
178	FQNP223	284.28	153.219	1	0	0	0	0	2	1	0	0	0	2.266	4.024
179	FQNP224	580.54	601.67	1.023	0	0	3	0	9	5	0	0	0	5.514	5.341
180	FQNP225	434.38	335.179	1.101	0	0	1	0	6	2	0	0	0	4.209	4.721
181	FQNP226	594.57	618.03	0.994	0	0	3	0	8	5	0	0	0	5.445	5.246
182	FQNP227	462.44	364.378	1.133	0	0	1	0	5	2	0	0	0	4.286	4.611
183	FQNP228	448.41	348.381	1.095	0	0	1	0	5	2	0	0	0	4.089	4.613
184	FQNP229	528.65	276.827	0.964	0	0	0	0	1	1	0	7	0	2.445	3.262
185	FQNP230	544.65	268.661	0.98	0	0	1	0	1	1	0	7	0	2.334	3.582
186	FQNP231	556.71	297.826	0.932	0	0	0	0	1	1	0	5	0	2.53	3.501
187	FQNP232	568.72	309.014	0.929	0	0	0	0	1	1	0	4	0	2.641	3.617
188	FQNP233	598.75	328.291	0.944	0	0	0	0	0	0	0	8	0	2.387	3.283
189	FQNP234	596.73	330.786	0.945	0	0	0	0	0	0	0	7	0	2.486	3.391
190	FQNP235	572.71	288.775	0.945	0	0	1	0	1	0	0	5	0	2.417	4.025
191	FQNP236	614.75	318.687	0.95	0	0	1	0	0	0	0	8	0	2.279	3.605
192	FQNP239	234.27	77.068	1.427	0	0	0	0	2	1	0	3	0	1.92	3.469
193	FQNP240	406.47	0	1.105	0	0	0	0	1	1	0	3	0	1.981	3.452
194	FQNP241	420.5	0	1.098	0	0	0	0	1	1	0	3	0	2.298	3.463
195	FQNP242	176.18	52.989	1.04	0	0	0	0	0	0	0	0	0	1.613	3.907
196	FQNP243	206.21	65.449	1.193	0	0	0	0	0	0	0	0	0	1.571	3.846
197	FQNP244	298.31	170.767	0.741	0	0	0	0	1	0	0	0	0	2.842	4.250
198	FQNP245	204.39	0	0	0	0	0	0	0	0	0	0	0	1.378	4.326
199	FQNP246	220.39	0	2.182	0	0	1	0	0	0	0	0	0	1.439	3.706
200	FQNP247	270.3	77.645	0.565	0	0	0	0	0	0	0	0	0	2.938	4.162

201	FQNP248	244.31	83.872	1.253	0	0	0	0	0	0	0	0	0	2.448	3.852
202	FQNP249	216.2	53.167	0.938	0	0	0	0	0	0	0	0	0	1.341	3.945
203	FQNP252	162.15	46.449	1.63	0	0	0	0	1	0	0	0	0	1.338	3.753
204	FQNP253	304.32	90.115	0.891	0	0	0	0	2	1	0	0	0	3.382	4.063
205	FQNP254	216.2	53.167	0.625	0	0	0	0	0	0	0	0	0	1.347	4.082
206	FQNP255	192.18	58.909	1.138	0	0	0	0	1	0	0	0	0	1.553	3.980
207	FQNP256	192.18	58.909	1.517	0	0	0	0	1	0	0	0	0	1.557	3.815
208	FQNP257	302.3	101.823	1.251	0	0	0	0	5	3	0	0	0	1.848	3.811
209	FQNP258	286.3	96.041	1.25	0	0	0	0	4	1	0	0	0	1.797	4.099
210	FQNP259	180.17	43.841	1.857	0	0	0	0	3	1	0	0	0	2.91	3.717
211	FQNP260	184.16	42.676	0.78	0	0	0	0	3	2	0	0	0	1.949	3.960
212	FQNP261	170.13	38.248	0	1	0	0	0	4	2	0	0	0	1.623	4.935
213	FQNP262	126.12	26	0	0	0	0	0	3	0	0	0	0	0.95	4.674
214	FQNP263	164.17	39.975	2.037	0	0	0	0	2	0	0	0	0	2.95	3.725
215	FQNP265	472.78	253.777	1.002	0	0	0	0	3	0	0	0	0	2.352	4.401
216	FQNP266	168.16	38.571	0	1	0	0	0	2	1	0	0	0	1.469	4.905
217	FQNP267	152.16	34.705	0	1	0	0	0	1	0	0	0	0	1.602	4.995
218	FQNP268	468.84	258.649	0.662	0	0	0	0	0	0	0	3	0	2.576	3.898
219	FQNP269	426.8	224.18	1.033	0	0	0	0	0	0	0	3	0	2.167	3.705
220	FQNP270	440.78	235.134	1.323	0	0	0	0	0	0	0	3	0	2.187	3.585
221	FQNP271	442.8	235.134	1.323	0	0	0	0	1	0	0	3	0	2.187	3.700
222	FQNP273	576.95	375.158	0.64	0	0	2	0	4	2	0	0	0	5.141	5.073
223	FQNP274	290.29	158.057	0.889	0	0	0	0	5	1	0	0	0	2.637	4.429
224	FQNP275	454.86	174.078	0.75	0	0	0	0	1	0	0	0	0	3.868	4.274
225	FQNP276	452.84	174.078	0.75	0	0	0	0	0	0	0	2	0	3.868	3.948
226	FQNP278	304.37	157.395	0.755	0	0	0	0	2	1	0	0	0	4.22	4.182
227	FQNP279	314.36	126.626	0.969	0	0	0	0	1	0	0	0	0	1.632	4.095
228	FQNP280	272.32	106.02	1.319	0	0	0	0	2	1	0	0	0	1.71	3.843
229	FQNP281	454.86	174.803	1.076	0	0	1	0	0	0	0	0	0	3.844	4.350

230	FQNP282	585.01	389.689	1.001	0	0	0	0	1	0	0	1	0	4.941	4.209
231	FQNP283	440.83	174.693	0.727	0	0	0	0	1	0	0	0	0	3.716	4.280
232	FQNP284	454.86	183.434	0.717	0	0	0	0	1	0	0	0	0	3.936	4.295
233	FQNP285	404.37	180.983	0.757	0	0	0	0	2	0	0	0	0	1.929	4.341
234	FQNP286	369.93	169.52	0.75	0	0	0	0	2	1	0	0	0	1.825	4.132
235	FQNP287	302.5	173.691	1.155	0	0	0	0	1	0	0	0	0	1.7	4.042
236	FQNP288	218.37	57.922	0.667	0	0	0	0	1	0	0	0	0	3.825	4.243
237	FQNP289	234.37	60.604	0.971	0	0	1	0	1	0	0	0	0	3.891	4.446
238	FQNP290	252.39	67.55	1.063	0	0	0	0	3	0	0	0	0	4.156	4.312
239	FQNP291	560.71	440.654	0.966	0	0	4	0	8	4	0	0	0	5.474	5.695
240	FQNP292	560.54	515.161	0.801	0	0	0	0	8	1	0	0	0	2.939	5.023
241	FQNP293	814.79	978.98	0.809	0	0	0	0	10	1	0	0	0	3.214	5.521
242	FQNP294	707.91	0	0.7	0	0	0	0	9	1	0	10	0	6.403	3.920
243	FQNP295	302.35	123.419	0.679	0	0	0	0	1	1	0	1	0	1.847	3.917
244	FQNP296	332.38	136.113	0.977	0	0	0	0	1	1	0	1	0	1.696	3.790
245	FQNP297	288.32	115.575	0.716	0	0	0	0	1	1	0	2	0	1.779	3.789
246	FQNP298	318.35	128.269	0.96	0	0	0	0	1	1	0	2	0	1.634	3.686
247	FQNP299	302.35	123.419	0.679	0	0	0	0	1	1	0	1	0	1.847	3.917
248	FQNP300	332.38	136.113	0.977	0	0	0	0	1	1	0	1	0	1.696	3.790
249	FQNP301	300.33	123.419	0.679	0	0	0	0	1	1	0	0	0	1.847	4.022
250	FQNP302	286.3	115.575	0.716	0	0	0	0	1	1	0	0	0	1.779	4.000
251	FQNP303	392.68	158.183	0.784	0	0	0	0	0	0	0	2	0	3.831	3.923
252	FQNP304	250.27	80.687	0.942	0	0	1	0	2	1	1	0	0	1.546	5.580
253	FQNP307	554.53	681.752	0.962	0	0	0	0	5	0	0	2	0	4.884	4.745
254	FQNP310	288.37	147.646	0.686	0	0	0	0	1	1	0	0	0	4.174	4.091
255	FQNP311	302.4	156.888	0.675	0	0	0	0	0	0	0	0	0	4.278	4.192
256	FQNP312	244.31	123.143	0.729	0	0	0	0	2	0	0	0	0	3.887	4.369
257	FQNP313	258.34	130.481	0.712	0	0	0	0	1	0	0	0	0	4.045	4.270
258	FQNP314	230.28	113.823	0.747	0	0	0	0	3	0	0	0	0	3.78	4.468

259	FQNP315	230.28	114.814	0.747	0	0	0	0	3	0	0	0	0	3.806	4.469
260	FQNP316	272.32	107.638	1.397	0	0	0	0	2	1	0	0	0	1.779	3.812
261	FQNP317	270.25	147.779	0.8	0	0	0	0	3	0	0	0	0	2.547	4.433
262	FQNP318	300.33	118.116	1.045	0	0	0	0	2	1	0	0	0	1.59	3.967
263	FQNP319	432.41	351.825	0.949	0	0	1	0	7	4	0	0	0	3.44	4.486
264	FQNP321	292.41	38.703	0.772	0	0	0	0	1	0	0	0	0	1.769	4.135
265	FQNP322	138.18	30.752	2.813	0	0	0	0	2	0	0	0	0	2.063	3.358
266	FQNP323	268.26	44.396	1.096	0	0	1	1	4	2	0	0	1	2.535	3.670
267	FQNP324	396.72	158.183	0.784	0	0	0	0	1	0	0	0	0	3.831	4.249
268	FQNP330	1151.41	1669.117	0.921	0	0	11	0	16	9	0	2	0	8.266	8.511
269	FQNP331	1179.47	1715.713	0.923	0	0	11	0	16	9	0	2	0	8.347	8.539
270	FQNP332	869.18	889.623	0.957	0	0	7	0	10	5	0	2	0	8.006	6.834
271	FQNP333	1035.28	1396.119	0.967	0	0	10	0	14	8	0	2	0	8.601	7.984
272	FQNP334	1165.44	1695.422	0.921	0	0	11	0	15	10	0	2	0	8.575	8.216
273	FQNP335	1193.5	1742.017	0.923	0	0	11	0	15	9	0	2	0	8.623	8.446
274	FQNP340	330.36	136.113	0.977	0	0	0	0	1	1	0	0	0	1.696	3.895
275	FQNP341	316.33	128.269	0.96	0	0	0	0	1	1	0	0	0	1.634	3.897
276	FQNP342	270.25	105.488	1.043	0	0	0	0	3	1	0	0	0	1.542	4.074
277	FQNP343	250.27	80.687	0.942	0	0	1	0	2	1	1	0	0	1.546	5.580
278	FQNP344	152.16	34.943	0	0	0	0	0	1	0	0	0	0	2.041	4.477
279	FQNP345	466.87	183.44	0.739	0	0	0	0	0	0	0	2	0	4.141	3.965
280	FQNP346	468.84	180.147	0.746	0	0	0	0	0	0	0	0	0	3.694	4.160
281	FQNP347	438.81	165.605	0.762	0	0	0	0	0	0	0	2	0	3.647	3.933
282	FQNP348	440.83	165.605	0.762	0	0	0	0	1	0	0	0	0	3.647	4.258
283	FQNP349	482.87	187.726	0.736	0	0	0	0	0	0	0	3	0	3.743	3.854
284	FQNP350	360.39	154.53	1.116	0	0	0	0	0	0	0	5	0	1.931	3.413
285	FQNP351	332.38	137.144	1.114	0	0	0	0	1	0	0	1	0	2.409	3.952
286	FQNP352	344.39	146.041	1.091	0	0	0	0	1	0	0	0	0	2.719	4.080
287	FQNP353	344.39	152.751	1.203	0	0	0	0	1	0	0	0	0	2.934	4.040

288	FQNP354	374.42	162.844	1.103	0	0	0	0	0	0	0	4	0	2.142	3.534
289	FQNP355	346.36	146.216	1.134	0	0	0	0	0	0	0	6	0	1.888	3.294
290	FQNP356	262.28	98.32	1.374	0	0	0	0	2	2	0	0	0	1.651	3.610
291	FQNP357	328.39	146.742	1.218	0	0	0	0	0	0	0	0	0	3.051	3.918
292	FQNP358	316.38	136.813	1.26	0	0	0	0	0	0	0	1	0	2.748	3.781
293	FQNP359	372.45	172.733	1.214	0	0	0	0	0	0	0	0	0	3.015	3.934
294	FQNP360	360.44	162.403	1.244	0	0	0	0	0	0	0	1	0	2.718	3.802
295	FQNP361	314.31	169.95	0.96	0	0	1	0	2	1	0	0	0	2.129	4.381
296	FQNP362	314.31	171.951	0.974	0	0	0	0	2	1	0	0	0	2.262	4.046
297	FQNP363	258.29	79.872	1.14	0	0	1	0	1	1	0	2	0	1.76	3.916
298	FQNP364	304.37	156.483	0.715	0	0	0	0	2	1	0	0	0	4.19	4.198
299	FQNP367	256.27	98.673	1.535	0	0	1	0	1	0	0	0	0	1.7	4.167
300	FQNP369	272.32	106.425	1.319	0	0	0	0	2	1	0	0	0	1.7	3.843
301	FQNP371	242.29	92.238	1.545	0	0	0	0	2	0	0	0	0	1.73	3.940
302	FQNP373	208.23	52.932	1.193	0	0	0	0	1	0	0	3	0	3.201	3.678
303	FQNP374	340.4	141.874	1	0	0	1	0	2	0	0	0	0	2.262	4.554
304	FQNP375	334.45	93.422	0.968	0	0	0	0	0	0	0	3	0	4.107	3.707
305	FQNP376	316.43	0	1.28	0	0	0	0	0	0	0	1	0	2.744	3.694
306	FQNP377	330.46	0	1.278	0	0	0	0	0	0	0	2	0	3.18	3.600
307	FQNP378	320.42	88.432	0.969	0	0	0	0	0	0	0	2	0	3.783	3.801
308	FQNP379	230.33	0	2.015	0	0	0	0	0	0	0	0	0	1.342	3.443
309	FQNP380	232.35	0	1.417	0	0	0	0	0	0	0	0	0	1.524	3.709
310	FQNP381	332.48	0	1.335	0	0	0	0	0	0	0	2	0	3.802	3.591
311	FQNP382	318.45	0	1.289	0	0	0	0	0	0	0	1	0	3.335	3.705
312	FQNP384	218.37	57.922	1.333	0	0	0	0	1	0	0	0	0	3.825	3.951
313	FQNP385	384.46	145.069	1.227	0	0	2	0	0	0	0	0	0	3.818	4.599
314	FQNP386	370.43	139.8	1.182	0	0	2	0	0	0	0	0	0	3.791	4.615
315	FQNP387	370.43	137.372	1.229	0	0	2	0	1	1	0	0	0	3.699	4.502
316	FQNP388	414.44	132.901	0.942	0	0	2	0	0	0	0	0	0	3.812	4.717

317	FQNP389	274.29	137.479	0.603	0	0	0	0	3	1	0	0	0	3.627	4.337
318	FQNP390	468.44	395.379	0.508	1	0	0	0	5	3	0	0	0	5.736	4.930
319	FQNP391	210.2	50.733	0.3	0	0	0	0	2	2	0	0	0	1.807	4.057
320	FQNP392	286.3	116.827	0.875	0	0	0	0	1	0	0	0	0	1.9	4.137
321	FQNP393	182.19	42.676	0	0	0	0	0	2	1	0	0	0	1.806	4.387
322	FQNP394	124.15	26	0	0	0	0	0	2	0	0	0	0	0.95	4.560
323	FQNP395	212.32	0	1.167	0	0	0	0	1	0	0	2	0	1.8	3.729
324	FQNP396	228.32	0	1.136	0	0	0	0	2	1	0	2	0	1.688	3.651
325	FQNP397	244.32	0	1.133	0	0	0	0	3	1	0	0	0	1.667	3.978
326	FQNP398	260.41	0	1.078	0	0	0	0	2	0	0	0	0	6.774	4.218
327	FQNP400	300.33	119.85	1.087	0	0	0	0	2	1	0	0	0	1.641	3.951
328	FQNP402	338.43	143.089	1.152	0	0	1	0	1	0	0	0	0	2.288	4.374
329	FQNP403	298.36	163.337	1.283	0	0	0	0	2	2	0	4	0	4.811	3.344
330	FQNP404	232.35	61.406	1.007	0	0	0	0	0	0	0	0	0	3.047	3.962
331	FQNP405	362.46	105.103	1.069	0	0	0	0	2	0	0	0	0	3.626	4.203
332	FQNP406	280.35	76.266	1.086	0	0	0	0	3	2	0	0	0	3.797	3.891
333	FQNP407	262.33	68.43	0.991	0	0	1	0	1	0	0	0	0	3.09	4.422
334	FQNP408	304.37	82.552	0.996	0	0	1	0	0	0	0	3	0	3.596	4.010
335	FQNP409	322.39	90.388	1.04	0	0	0	0	2	2	0	3	0	3.429	3.480
336	FQNP418	152.16	35.181	2.292	0	0	0	0	2	0	0	2	0	2.349	3.385
337	FQNP419	284.28	114.56	1.193	0	0	0	0	1	0	0	0	0	2.034	4.000
338	FQNP424	166.19	39.792	1.467	0	0	0	0	1	0	0	2	0	2.678	3.643
339	FQNP425	248.35	83.447	1.36	0	0	0	0	1	0	0	2	0	2.132	3.701
340	FQNP426	238.41	0	3.4	0	0	0	0	2	0	0	0	0	1.35	3.066
341	FQNP428	366.7	0	0.677	0	0	0	0	0	0	0	2	0	10.179	4.038
342	FQNP429	380.73	0	0.669	0	0	0	0	0	0	0	2	0	10.607	4.052
343	FQNP430	394.76	0	0.661	0	0	0	0	0	0	0	2	0	11.033	4.066
344	FQNP431	408.79	0	0.654	0	0	0	0	0	0	0	2	0	11.458	4.080
345	FQNP432	422.82	0	0.647	0	0	0	0	0	0	0	2	0	11.881	4.093

346	FQNP433	436.85	0	0.641	0	0	0	0	0	0	0	2	0	12.302	4.106
347	FQNP434	450.88	0	0.636	0	0	0	0	0	0	0	2	0	12.722	4.119
348	FQNP435	260.31	66.799	1.425	0	0	0	0	1	1	0	2	0	1.58	3.446
349	FQNP436	170.18	0	0	0	0	1	0	1	0	0	0	0	1.461	4.776
350	FQNP437	288.32	148.231	0.729	0	0	0	0	1	0	0	0	0	4.167	4.276
351	FQNP438	258.29	132.485	0.713	0	0	0	0	1	1	0	0	0	4.167	4.070
352	FQNP439	272.32	140.226	0.699	0	0	0	0	0	0	0	0	0	3.951	4.164
353	FQNP440	288.32	148.955	0.926	0	0	0	0	1	1	0	0	0	4.378	3.992
354	FQNP441	258.29	132.485	0.76	0	0	0	0	1	1	0	0	0	3.972	4.045
355	FQNP442	302.35	156.697	1.112	0	0	0	0	0	0	0	0	0	3.916	3.992
356	FQNP443	288.32	148.955	1.105	0	0	0	0	1	1	0	0	0	3.982	3.903
357	FQNP444	302.35	156.697	0.858	0	0	0	0	0	0	0	0	0	4.388	4.115
358	FQNP448	516.74	210.886	1.114	0	0	0	0	3	0	0	0	0	2.05	4.320
359	FQNP449	574.78	242.922	1.046	0	0	0	0	3	1	0	3	0	2.075	3.849
360	FQNP450	532.74	217.92	1.112	0	0	0	0	4	2	0	0	0	2.037	4.032
361	FQNP451	574.78	239.868	1.106	0	0	0	0	3	1	0	3	0	1.971	3.818
362	FQNP452	516.74	210.886	1.114	0	0	0	0	3	1	0	0	0	2.05	4.116
363	FQNP453	574.78	242.922	1.046	0	0	0	0	3	2	0	3	0	2.075	3.645
364	FQNP454	532.74	217.92	1.112	0	0	0	0	4	3	0	0	0	2.037	3.829
365	FQNP455	574.78	239.868	1.106	0	0	0	0	3	1	0	3	0	1.971	3.818
366	FQNP456	516.74	210.886	1.114	0	0	0	0	3	1	0	0	0	2.05	4.116
367	FQNP457	304.47	67.283	0.76	0	0	0	0	0	0	0	5	0	7.31	3.653
368	FQNP458	332.53	76.826	0.73	0	0	0	0	0	0	0	5	0	8.309	3.696
369	FQNP459	360.59	86.574	0.707	0	0	0	0	0	0	0	5	0	9.279	3.736
370	FQNP460	388.65	96.494	0.687	0	0	0	0	0	0	0	5	0	10.225	3.774
371	FQNP461	330.51	76.826	0.73	0	0	0	0	0	0	0	5	0	8.309	3.696
372	FQNP462	358.57	86.574	0.707	0	0	0	0	0	0	0	5	0	9.279	3.736
373	FQNP463	386.63	96.494	0.687	0	0	0	0	0	0	0	5	0	10.225	3.774
374	FQNP464	314.56	98.865	0.676	0	0	0	0	0	0	0	3	0	8.824	3.956

375	FQNP465	374.62	225.677	1.016	0	0	1	0	0	0	0	2	0	8.77	4.317
376	FQNP466	340.61	98.806	1.043	0	0	1	0	0	0	0	2	0	7.696	4.206
377	FQNP467	340.61	0	0.692	0	0	1	0	0	0	0	2	0	8.237	4.316
378	FQNP468	330.51	76.826	0.73	0	0	0	0	0	0	0	3	0	8.309	3.907
379	FQNP469	358.57	86.574	0.707	0	0	0	0	0	0	0	3	0	9.279	3.946
380	FQNP470	316.58	98.865	0.676	0	0	0	0	0	0	0	5	0	8.824	3.745
381	FQNP473	482.62	219.028	0.89	0	0	1	0	0	0	0	3	0	2.07	4.096
382	FQNP474	222.41	67.335	2.182	0	0	0	0	1	0	0	0	0	1.419	3.525
383	FQNP475	444.66	243.866	1.304	0	0	0	0	2	1	0	0	0	2.436	3.947
384	FQNP476	228.31	75.336	1.943	1	0	0	0	1	0	0	0	0	1.853	4.174
385	FQNP477	246.33	81.527	0.85	0	0	0	0	2	1	0	0	0	1.631	4.033
386	FQNP478	230.28	83.129	0.747	0	0	0	0	0	0	0	0	0	3.493	4.099
387	FQNP479	214.33	68.176	1.6	0	0	0	0	1	0	0	0	0	1.545	3.783
388	FQNP480	218.37	68.176	1.6	0	0	0	0	1	0	0	0	0	1.545	3.783
389	FQNP481	214.38	68.176	0	0	0	0	0	0	0	0	0	0	1.545	4.369
390	FQNP482	250.37	80.415	1.8	0	0	0	0	2	0	0	0	0	1.769	3.823
391	FQNP491	218.37	29.016	0	0	0	0	0	0	0	0	0	0	0.903	4.331
392	FQNP492	220.39	29.016	0	0	0	0	0	1	0	0	0	0	0.903	4.445
393	FQNP493	270.41	35.971	1.14	0	0	0	0	2	1	0	0	0	1.475	3.876
394	FQNP495	546.96	371.127	0.955	0	0	1	0	1	0	0	0	0	2.753	4.603
395	FQNP496	228.26	88.562	1.349	0	0	0	0	0	0	0	0	0	1.789	3.796
396	FQNP497	296.39	131.487	0.921	0	0	0	0	0	0	0	0	0	2.425	4.024
397	FQNP498	254.3	69.628	0.445	0	0	0	0	0	0	0	0	0	2.178	4.191
398	FQNP499	228.26	61.241	0.81	0	0	0	0	0	0	0	0	0	2.036	4.023
399	FQNP500	314.41	93.122	0.694	0	0	0	0	1	1	0	0	0	2.695	4.019
400	FQNP501	228.26	61.241	0.81	0	0	0	0	0	0	0	1	0	2.036	3.917
401	FQNP502	354.38	111.762	1.185	0	0	2	0	0	0	0	0	0	3.672	4.595
402	FQNP503	370.43	139.8	1.182	0	0	2	0	0	0	0	0	0	3.791	4.615
403	FQNP504	220.39	0	2.182	0	0	1	0	0	0	0	0	0	1.439	3.706

404	FQNP505	223.4	0	0.845	0	0	0	0	1	0	0	0	0	5.769	4.180
405	FQNP506	1199.65	1656.598	1.024	0	0	10	0	10	7	0	4	0	8.71	7.644
406	FQNP507	1223.67	1189.333	1.054	0	0	10	0	8	6	0	5	0	5.649	7.156
407	FQNP508	306.54	43.844	0.963	0	0	0	0	2	0	0	0	0	1.648	4.166
408	FQNP509	348.58	54.411	0.866	0	0	0	0	1	0	0	3	0	2.614	3.807
409	FQNP510	272.52	38.593	0	0	0	0	0	0	0	0	0	0	1.514	4.351
410	FQNP511	272.52	38.593	0	0	0	0	0	0	0	0	0	0	1.514	4.351
411	FQNP512	272.52	38.593	0	0	0	0	0	0	0	0	0	0	1.514	4.351
412	FQNP513	230.33	56.674	1.007	0	0	0	0	1	1	0	0	0	1.318	3.827
413	FQNP514	246.33	61.057	0.756	0	0	0	0	1	0	0	0	0	1.247	4.141
414	FQNP517	531.76	75.315	1.165	0	0	0	0	2	0	0	4	0	2.911	3.705
415	FQNP518	517.73	73.202	1.134	0	0	0	0	2	0	0	4	0	2.978	3.719
416	FQNP519	533.73	75.65	1.084	0	0	0	0	3	0	0	3	0	2.96	3.962
417	FQNP520	434.48	59.269	0.884	0	0	1	0	2	0	0	5	0	1.761	4.019
418	FQNP521	474.5	65.611	0.827	0	0	2	0	0	0	0	8	0	2.4	3.851
419	FQNP522	432.46	56.312	0.922	0	0	3	0	0	0	0	5	0	1.702	4.436
420	FQNP523	344.44	0	0.83	0	0	1	0	0	0	0	2	0	1.667	4.093
421	FQNP524	312.44	0	0.862	0	0	0	0	0	0	0	2	0	1.568	3.743
422	FQNP527	178.15	52.369	1.625	0	0	0	0	2	0	0	0	0	1.384	3.874
423	FQNP530	332.28	186.472	0.967	0	0	0	0	5	3	0	0	0	2.648	4.004
424	FQNP531	318.25	175.657	0.892	0	0	0	0	6	4	0	0	0	2.59	3.940
425	FQNP533	204.19	63.096	1.364	0	0	0	0	1	1	0	3	0	1.52	3.363
426	FQNP535	218.22	71.989	1	0	0	0	0	0	0	0	3	0	1.659	3.620
427	FQNP536	560.9	237.694	1.147	0	0	0	0	2	0	0	7	0	4.453	3.528
428	FQNP537	574.78	244.195	1.183	0	0	0	0	4	0	0	5	0	4.401	3.955
429	FQNP538	652.91	412.194	0.956	0	0	2	0	7	3	0	5	0	4.444	4.552
430	FQNP539	460.47	352.603	0.934	0	0	1	0	6	3	0	2	0	3.689	4.377
431	FQNP540	460.47	352.603	0.934	0	0	1	0	6	3	0	2	0	3.689	4.377
432	FQNP541	446.44	339.588	0.966	0	0	1	0	7	3	0	2	0	3.797	4.473

433	FQNP542	512.56	409.063	0.805	0	0	3	0	6	2	1	2	1	4.621	6.430
434	FQNP543	290.34	80.673	1.074	0	0	0	0	1	0	0	0	0	2.018	4.032
435	FQNP544	372.45	122.65	1.035	0	0	0	0	0	0	0	0	0	3.639	3.999
436	FQNP546	302.5	0	0.78	0	0	1	0	0	0	0	2	0	1.754	4.117
437	FQNP547	302.5	0	0.78	0	0	1	0	0	0	0	2	0	1.754	4.117
438	FQNP548	446.49	61.383	0.86	0	0	2	0	0	0	0	5	0	1.996	4.140
439	FQNP549	434.48	59.269	0.884	0	0	1	0	2	1	0	5	0	1.761	3.815
440	FQNP550	328.44	0	0.883	0	0	0	0	0	0	0	2	0	1.689	3.736
441	FQNP551	416.46	54.202	0.858	0	0	2	0	0	0	0	5	0	1.756	4.131
442	FQNP552	279.49	87.419	2.021	0	0	0	0	1	0	0	0	0	1.885	3.618
443	FQNP553	295.49	93.959	1.729	0	0	0	0	1	0	0	0	0	1.908	3.751
444	FQNP554	302.36	106.192	1.753	0	0	5	0	2	1	0	0	0	1.027	5.304
445	FQNP556	302.35	172.423	0.988	0	0	0	0	2	1	0	0	0	2.838	4.054
446	FQNP557	352.41	136.173	1.004	0	0	0	0	2	0	0	0	0	2.638	4.225
447	FQNP558	272.32	152.916	1.048	0	0	0	0	2	0	0	0	0	2.826	4.220
448	FQNP559	300.33	106.57	0.776	0	0	0	0	1	1	0	0	0	2.186	3.978
449	FQNP560	316.33	112.887	0.827	0	0	0	0	2	2	0	0	0	2.204	3.871
450	FQNP561	240.27	127.648	0.85	0	0	0	0	1	0	0	2	0	2.349	3.955
451	FQNP562	442.8	223.21	1.323	0	0	0	0	1	0	0	1	0	2.371	3.908
452	FQNP563	442.8	232.849	1.033	0	0	0	0	1	0	0	3	0	2.194	3.826
453	FQNP564	458.8	244.695	1.035	0	0	0	0	2	0	0	1	0	2.333	4.161
454	FQNP565	498.82	282.541	0.984	0	0	0	0	1	0	0	3	0	2.668	3.887
455	FQNP566	208.28	51.057	1.094	0	0	0	0	0	0	0	0	0	1.788	3.886
456	FQNP567	418.48	183.245	1.236	0	0	2	0	2	2	0	0	0	3.955	4.443
457	FQNP568	226.25	54.924	1.19	0	0	0	0	2	2	0	2	0	1.791	3.458
458	FQNP569	182.19	43.659	1.3	0	0	0	0	1	0	0	2	0	2.495	3.714
459	FQNP571	1369.82	1718.197	1.079	0	0	10	0	8	6	0	5	0	6.149	7.460
460	FQNP572	1383.85	1778.609	1.097	0	0	10	0	8	6	0	6	0	6.324	7.386
461	FQNP573	2795.76	9251.423	1.099	0	0	20	0	16	8	0	10	0	22.254	15.481

462	FQNP574	320.52	81.901	1.23	0	0	1	0	2	0	0	0	0	1.688	4.405
463	FQNP576	304.52	76.911	0.912	0	0	1	0	1	0	0	0	0	1.641	4.425
464	FQNP579	217.24	49.06	1.132	0	0	1	0	1	0	0	0	0	2.602	4.337
465	FQNP580	264.35	69.14	0.6	0	0	0	0	2	0	0	2	0	2.85	4.158
466	FQNP581	447.58	280.529	1.024	0	0	0	0	2	0	0	0	0	2.394	4.293
467	FQNP582	645.69	673.098	0.995	0	0	5	0	14	12	0	0	0	6.025	5.223
468	FQNP583	207.26	46.543	0.701	0	0	0	0	5	2	0	0	0	1.666	4.219
469	FQNP584	344.54	114.451	1.364	0	0	0	0	0	0	0	5	0	1.685	3.275
470	FQNP585	330.56	134.288	1.613	0	0	0	0	0	0	0	3	0	1.687	3.388
471	FQNP586	330.56	134.288	1.613	0	0	0	0	0	0	0	3	0	1.687	3.388
472	FQNP587	274.29	102.014	0.447	0	0	2	0	0	0	0	1	0	1.152	4.745
473	FQNP590	306.54	109.544	0.502	0	0	0	0	1	0	0	2	0	3.642	4.129
474	FQNP591	320.57	117.416	0.502	0	0	0	0	0	0	0	2	0	4.025	4.028
475	FQNP592	324.56	115.464	1.054	0	0	0	0	2	0	0	2	0	3.524	4.003
476	FQNP593	216.25	69.552	1.026	0	0	0	0	1	1	0	3	0	1.738	3.521
477	FQNP594	544.64	455.734	1.102	0	0	2	0	2	2	0	2	0	2.977	4.423
478	FQNP595	570.63	485.217	1.065	0	0	2	0	2	1	0	0	0	3.108	4.873
479	FQNP596	544.64	460.628	1.061	0	0	2	0	3	2	0	2	0	3.187	4.563
480	FQNP597	526.62	443.139	1.116	0	0	2	0	2	1	0	0	0	3.087	4.826
481	FQNP598	540.6	455.132	1.051	0	0	2	0	2	1	0	0	0	3.101	4.862
482	FQNP599	194.24	71.54	1.875	0	0	0	0	0	0	0	2	0	1.495	3.338
483	FQNP600	318.34	203.129	0.493	0	0	0	0	1	1	0	2	0	1.968	3.941
484	FQNP601	334.34	213.855	0.677	0	0	0	0	2	2	0	2	0	1.982	3.779
485	FQNP602	392.68	158.183	0.784	0	0	0	0	0	0	0	2	0	3.831	3.923
486	FQNP603	348.53	147.179	1.224	0	0	0	0	3	1	0	0	0	2.7	4.048
487	FQNP604	330.51	141.617	1.314	0	0	0	0	2	0	0	0	0	2.733	4.095
488	FQNP605	330.51	139.883	1.209	0	0	0	0	2	0	0	0	0	2.708	4.139
489	FQNP607	330.51	139.883	1.209	0	0	0	0	2	0	0	0	0	2.708	4.139
490	FQNP608	330.51	129.87	1.209	0	0	1	0	1	0	0	0	0	2.707	4.352

491	FQNP609	416.56	193.082	1.11	1	0	0	0	2	1	0	3	0	2.964	4.229
492	FQNP610	348.53	147.179	1.224	0	0	0	0	3	1	0	0	0	2.7	4.048
493	FQNP612	380.52	161.315	1.284	0	0	0	0	0	0	0	0	0	2.461	3.883
494	FQNP613	412.77	167.372	0.769	0	0	0	0	1	0	0	0	0	4.08	4.267
495	FQNP614	180.18	37.6	0	0	0	0	0	6	5	0	0	0	0.873	4.006
496	FQNP615	252.44	34.261	1.594	0	0	0	0	2	0	0	0	0	1.213	3.873
497	FQNP616	304.46	186.229	0.885	0	0	0	0	0	0	0	0	0	3.652	4.102
498	FQNP617	218.37	68.176	1.6	0	0	0	0	1	0	0	0	0	1.545	3.783
499	FQNP618	316.33	180.798	0.827	0	0	0	0	2	2	0	2	0	2.918	3.717
500	FQNP620	456.48	197.256	1.258	0	0	0	0	0	0	0	4	0	2.603	3.497
501	FQNP621	382.39	132.831	1.259	0	0	0	0	0	0	0	1	0	2.382	3.770
502	FQNP622	348.44	163.557	0.904	0	0	2	0	6	2	0	0	0	3.322	5.021
503	FQNP623	332.44	155.904	0.935	0	0	2	0	5	1	0	0	0	3.309	5.091
504	FQNP624	186.28	42.114	1.3	0	0	0	0	3	1	0	0	0	1.566	3.926
505	FQNP625	186.28	42.114	1.3	0	0	0	0	3	1	0	0	0	1.566	3.926
506	FQNP626	300.28	168.586	0.942	0	0	0	0	3	0	0	0	0	2.82	4.390
507	FQNP627	290.27	148.117	0.683	1	0	0	0	3	0	0	0	1	3.723	4.857
508	FQNP628	420.49	331.777	1.409	0	0	0	0	2	1	0	1	0	3.432	3.870
509	FQNP629	420.49	326.113	1.442	0	0	0	0	2	1	0	1	0	3.367	3.851
510	FQNP630	406.51	265.803	1.182	0	0	0	0	2	1	0	2	0	2.604	3.806
511	FQNP631	422.51	295.134	1.319	0	0	0	0	3	1	0	1	0	3.672	4.010
512	FQNP632	422.51	275.107	1.196	0	0	0	0	3	2	0	0	0	2.537	3.926
513	FQNP636	472.78	203.683	1.109	0	0	0	0	3	0	0	0	0	2.381	4.326
514	FQNP637	486.76	212.614	1.133	0	0	0	0	3	0	0	0	0	2.467	4.323
515	FQNP638	512.85	257.276	1.07	0	0	2	0	1	0	0	0	0	2.622	4.817
516	FQNP639	428.5	195.18	0.712	0	1	0	0	2	0	0	2	0	2.342	5.417
517	FQNP640	547.62	417.868	1.231	0	0	0	0	1	0	0	0	0	5.489	4.243
518	FQNP641	293.29	80.316	1.304	0	0	0	0	1	0	0	0	0	1.492	3.918
519	FQNP642	339.37	116.861	1.016	0	0	0	0	1	0	0	0	0	1.446	4.064

520	FQNP643	256.43	0	1.545	0	0	0	0	3	0	0	0	0	1.48	3.996
521	FQNP644	442.85	178.252	0.744	0	0	0	0	1	0	0	0	0	4.082	4.284
522	FQNP645	426.8	221.611	0.674	0	0	0	0	1	0	0	0	0	2.212	4.293
523	FQNP646	456.78	245.124	1.235	0	0	0	0	2	0	0	0	0	2.301	4.178
524	FQNP647	456.78	243.519	1.086	0	0	0	0	2	0	0	0	0	2.275	4.242
525	FQNP648	442.81	0	0.662	0	0	0	0	2	1	0	2	0	12.188	4.120
526	FQNP651	194.21	41.79	1.857	0	0	1	0	5	5	0	0	0	1.173	3.421
527	FQNP652	434.43	362.775	0.791	0	0	1	0	6	3	0	2	0	4.198	4.458
528	FQNP653	342.34	80.959	0.958	0	0	3	0	8	6	0	0	0	3.136	4.694

No.	MolID	<i>p</i> MIC	JGI2	N074	MLOGP2	H2	H8	C1	C10
1	92	0.1741	0.067	0	2.677	4.51	6.97	167.12	68.96
2	93	0.2716	0.067	0	1.673	4.51	6.97	167.12	68.96
3	94	0.5163	0.085	0	0.004	4.52	6.95	167.15	69.29
4	95	0.1914	0.067	0	1.438	4.49	6.92	167.14	68.36
5	96	1.1350	0.092	0	0.992	4.51	6.38	167.19	69.7
6	97	1.1248	0.1	0	2.848	4.44	6.84	167.13	69.72
7	98	0.7739	0.078	0	3.419	4.48	6.93	166.56	76.04
8	99	0.7330	0.111	0	3.846	4.5	6.96	167.12	76.12
9	100	0.1160	0.111	0	13.544	4.47	6.76	167.14	76.45
10	101	-0.0574	0.089	0	9.273	4.44	6.75	167.14	76.45
11	103	-0.1673	0.049	0	0.099	4.42	7.6	167.16	59.05
12	104	-0.1911	0.049	0	0.099	4.48	6.89	167.18	58.95
13	105	0.0788	0.049	0	2.397	4.53	7.57	167.19	58.98
14	106	-1.4190	0	0	0.03	4.48	6.84	167.14	74.17
15	107	-0.4260	0	0	1.486	4.43	6.88	167.12	67.33
16	108	-1.2321	0	0	2.795	4.46	6.86	167.12	72.74
17	109	-0.4771	0	0	1.486	4.39	6.72	167.09	59.48
18	111	-0.9822	0	0	3.539	4.45	6.86	167.11	68.83
19	112	0.8085	0.111	0	8.847	4.46	6.89	168.22	58.93
20	113	0.6680	0.133	0	0.142	4.47	6.93	168.23	58.97
21	114	0.8009	0.121	0	0.235	4.47	6.96	168.26	58.98
22	115	0.9269	0.12	0	6.871	4.52	6.83	168.25	68.96
23	116	0.8305	0.104	0	0.02	4.44	6.74	167.16	58.87
24	117	0.6602	0.083	0	0.315	4.53	6.86	167.65	58.97
25	118	1.0976	0.094	0	1.162	4.47	6.76	167.19	59.03
26	119	1.0240	0.086	0	0.761	4.46	6.67	167.19	59.02

**Tabla S6**. Lista de moléculas para la generación del modelo QSAR de monobactamas: descriptores moleculares calculados y valor experimental de MIC (expresado como *p*MIC) se muestra a continuación. Las columnas H2, H8, C1 y C10 son valores de RMN de ¹H y ¹³C{¹H}

215

_____

27	120	1.2070	0.093	0	1.199	4.47	6.89	167.69	58.96
28	121	0.9192	0.059	0	0.444	4.51	6.77	167.19	59.01
29	122	0.7221	0.085	0	0.005	4.47	6.73	167.15	58.86
30	123	0.2966	0.085	0	0.146	4.77	6.89	168.21	68.94
31	124	0.3923	0.074	0	1.129	4.48	6.9	168.23	67.86
32	125	0.4968	0.058	0	1.833	4.39	6.97	168.25	67.79
33	126	1.7020	0.089	1	3.179	4.61	6.82	167.21	59.21
34	127	2.2478	0.089	1	6.858	4.44	6.78	167.2	66.7
35	128	2.6543	0.089	1	3.179	4.49	6.78	167.2	60.94
36	129	1.8494	0.105	1	4.859	4.52	6.77	167.18	60.92
37	130	2.1230	0.105	1	5.543	4.44	6.76	167.18	61.26
38	131	1.8165	0.105	1	6.257	4.52	6.79	167.18	60.92
39	132	2.1316	0.105	1	1.545	4.5	6.79	167.21	60.91
40	133	1.8403	0.092	1	1.545	4.41	6.79	167.19	60.93
41	134	2.1230	0.092	1	4.353	4.4	6.75	167.2	60.1
42	135	2.3639	0.089	1	0.071	4.57	6.78	167.18	60.87
43	136	2.3639	0.089	1	1.162	4.49	6.79	167.18	60.86
44	137	2.6773	0.089	1	0.591	4.42	6.76	167.16	60.78
45	138	2.3921	0.089	1	0.002	4.54	6.8	167.16	60.78
46	139	1.3781	0.086	1	5.654	4.44	6.72	167.21	76
47	140	1.6558	0.078	1	5.654	4.44	6.74	167.21	73.07
48	141	2.5196	0.099	1	1.635	4.44	6.85	167.21	60.95
49	142	2.1606	0.056	1	3.306	4.52	6.7	167.22	60.94
50	143	1.7395	0.074	1	3.179	4.51	6.82	167.2	60.89
51	144	1.3866	0.103	1	4.135	4.45	6.78	167.18	76.45
52	145	1.8792	0.083	1	4.353	4.43	6.75	167.22	73.15
53	146	2.0115	0.052	1	2.838	4.5	6.78	167.23	73.17
54	147	2.2021	0.056	1	1.907	4.44	6.8	167.21	60.95
55	148	1.7753	0.074	1	0.803	4.41	6.72	166.59	60.73
56	149	1.5849	0.097	1	3.194	4.42	6.78	167.2	60.95
----	-----	--------	-------	---	-------	------	------	--------	-------
57	150	1.5722	0.097	1	3.194	4.35	6.73	167.21	60.95
58	151	2.1631	0.097	1	4.353	4.43	6.75	167.19	60.95
59	152	2.0515	0.082	1	7.069	4.39	6.73	168.27	60.95
60	153	2.3763	0.086	1	2.465	4.36	6.74	167.23	60.96
61	154	1.5600	0.093	1	1.092	4.42	6.79	166.55	64.98
62	155	2.2900	0.079	1	0.232	4.55	6.79	166.54	60.96
63	156	1.3826	0.079	1	0.016	4.38	6.78	166.52	60.89
64	157	1.7052	0.079	1	0.256	4.51	6.76	166.54	60.74
65	158	1.7841	0.097	1	0.205	4.37	6.76	166.56	60.74
66	159	1.7841	0.083	1	0.738	4.38	6.75	166.56	59.9
67	160	1.5270	0.148	0	0.344	4.5	6.94	167.1	74.6
68	161	1.5184	0.127	0	0.109	4.46	6.85	167.12	69.55

**Tabla S7**. Valores promedios calculados para cada descriptor molecular usado en los diferentes experimentos de validación interna y externa del modelo QSAR de monobactamas.

	Variable	Exp1	Exp2	Exp3	Exp4	Exp5	Promedio	Desv. Est.
	Intercept	-14.80249	-14.75997	-10.9287	-13.28131	-13.00265	-13.355	2.521
1	JGI2	13.00481	11.10468	13.51732	12.96195	13.31444	12.781	0.930
2	N074	1.50795	1.3836	1.29625	1.34116	1.4558	1.397	0.007
3	MLOGP2	-0.03456	-0.04085	-0.03432	-0.03485	-0.03995	-0.037	0.000
4	H2	0.1317	0.42486	0.94441	0.1107	0.27576	0.377	0.116
5	H8	-0.18175	-0.49284	-0.5221	-0.49152	-0.39542	-0.417	0.020
6	C1	0.09391	0.09843	0.06652	0.10039	0.08977	0.090	0.000
7	C10	-0.01213	-0.00793	-0.02036	-0.01771	-0.01684	-0.015	0.000

# Referencias

- 1. Gonzalez, M.; Zamilpa, A.; Marquina, S.; Navarro, V.; Alvarez, L., Antimycotic spirostanol saponins from Solanum hispidum leaves and their structure-activity relationships. *J Nat Prod* **2004**, *67*(6), 938-41.
- 2. Pettit, G. R.; Schaufelberger, D. E.; Nieman, R. A.; Dufresne, C.; Saenz-Renauld, J. A., Antineoplastic agents, 177. Isolation and structure of phyllanthostatin 6. *J Nat Prod* **1990**, *53* (6), 1406-13.
- 3. Wang, T. M.; Hojo, T.; Ran, F. X.; Wang, R. F.; Wang, R. Q.; Chen, H. B.; Cui, J. R.; Shang, M. Y.; Cai, S. Q., Cardenolides from Saussurea stella with cytotoxicity toward cancer cells. *J Nat Prod* **2007**, *70*(9), 1429-33.
- 4. Tezuka, Y.; Honda, K.; Banskota, A. H.; Thet, M. M.; Kadota, S., Kinmoonosides A-C, three new cytotoxic saponins from the fruits of Acacia concinna, a medicinal plant collected in myanmar. *J Nat Prod* **2000**, *63* (12), 1658-64.
- 5. Susplugas, S.; Hung, N. V.; Bignon, J.; Thoison, O.; Kruczynski, A.; Sevenet, T.; Gueritte, F., Cytotoxic arylnaphthalene lignans from a Vietnamese acanthaceae, Justicia patentiflora. *J Nat Prod* **2005**, *68* (5), 734-8.
- Zhang, H. J.; Rumschlag-Booms, E.; Guan, Y. F.; Wang, D. Y.; Liu, K. L.; Li, W. F.; Nguyen, V. H.; Cuong, N. M.; Soejarto, D. D.; Fong, H. H. S.; Rong, L., Potent Inhibitor of Drug-Resistant HIV-1 Strains Identified from the Medicinal Plant Justicia gendarussa. *J Nat Prod* 2017, *80* (6), 1798-1807.
- 7. Gelmi, M. L.; Fontana, G.; Pocar, D.; Pontremoli, G.; Pellegrino, S.; Bombardelli, E.; Riva, A.; Balduini, W.; Carloni, S.; Cimino, M., Novel 3-O-glycosyl-3demethylthiocolchicines as ligands for glycine and gamma-aminobutyric acid receptors. *J Med Chem* **2007**, *50* (9), 2245-8.
- 8. Singh, A.; Kumar, N.; Singh, S.; Sewariya, S.; Sharma, M. K.; Chandra, R., High-valued pyrazinoindole analogues: Synthesis, antibacterial activity, structure activity relationship and molecular dynamics analyses. *Results in Chemistry* **2021**, *3*, 100194.
- 9. Wang, J.; Zhang, P. L.; Ansari, M. F.; Li, S.; Zhou, C. H., Molecular design and preparation of 2-aminothiazole sulfanilamide oximes as membrane active antibacterial agents for drug resistant Acinetobacter baumannii. *Bioorg Chem* **2021**, *113*, 105039.
- Vereshchagin, A. N.; Frolov, N. A.; Konyuhova, V. Y.; Kapelistaya, E. A.; Hansford, K. A.; Egorov, M. P., Investigations into the structure-activity relationship in gemini QACs based on biphenyl and oxydiphenyl linker. *RSC Adv* 2021, *11* (6), 3429-3438.
- Siricilla, S.; Mitachi, K.; Yang, J.; Eslamimehr, S.; Lemieux, M. R.; Meibohm, B.; Ji, Y.; Kurosu, M., A New Combination of a Pleuromutilin Derivative and Doxycycline for Treatment of Multidrug-Resistant Acinetobacter baumannii. *J Med Chem* 2017, *60* (7), 2869-2878.
- 12. Zhou, M.; Eun, Y. J.; Guzei, I. A.; Weibel, D. B., Structure-activity studies of divin: an inhibitor of bacterial cell division. *ACS Med Chem Lett* **2013**, *4*(9), 880-885.
- Matsingos, C.; Al-Adhami, T.; Jamshidi, S.; Hind, C.; Clifford, M.; Mark Sutton, J.; Rahman, K. M., Synthesis, microbiological evaluation and structure activity relationship analysis of linezolid analogues with different C5-acylamino substituents. *Bioorg Med Chem* 2021, *49*, 116397.

- Lyons, A.; Kirkham, J.; Blades, K.; Orr, D.; Dauncey, E.; Smith, O.; Dick, E.; Walker, R.; Matthews, T.; Bunt, A.; Finlayson, J.; Morrison, I.; Savage, V. J.; Moyo, E.; Butler, H. S.; Newman, R.; Ooi, N.; Smith, A.; Charrier, C.; Ratcliffe, A. J.; Stokes, N. R.; Best, S.; Salisbury, A. M.; Craighead, M.; Cooper, I. R., Discovery and structure-activity relationships of a novel oxazolidinone class of bacterial type II topoisomerase inhibitors. *Bioorg Med Chem Lett* **2022**, *65*, 128648.
- Pilon-Jimenez, B. A.; Saldivar-Gonzalez, F. I.; Diaz-Eufracio, B. I.; Medina-Franco, J. L., BIOFACQUIM: A Mexican Compound Database of Natural Products. *Biomolecules* 2019, 9(1), 31

**(** 220 **)** 



Article



# Identification of a Family of Glycoside Derivatives Biologically Active against *Acinetobacter baumannii* and Other MDR Bacteria Using a QSPR Model

Francisco José Palacios-Can ^{1,2}, Jesús Silva-Sánchez ³, Ismael León-Rivera ^{2,†}, Hugo Tlahuext ², Nina Pastor ¹, and Rodrigo Said Razo-Hernández ^{1,*}

- Centro de Investigación en Dinámica Celular (CIDC), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
- ² Centro de Investigaciones Químicas (CIQ), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
- ³ Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), Av. Universidad 655, Col. Sta. Ma. Ahuacatitlan, Cuernavaca 62100, Morelos, Mexico
- * Correspondence: rodrigo.razo@uaem.mx
- In memoriam of Dr. Ismael León Rivera. This work is dedicated to the memory of Dr. Ismael León-Rivera, colleague, friend and teacher whose contributions to this project were of great importance for its completion. An infinite gratitude for his contributions to science and in particular to this project.

Abstract: As the rate of discovery of new antibacterial compounds for multidrug-resistant bacteria is declining, there is an urge for the search for molecules that could revert this tendency. Acinetobacter baumannii has emerged as a highly virulent Gram-negative bacterium that has acquired multiple resistance mechanisms against antibiotics and is considered of critical priority. In this work, we developed a quantitative structure-property relationship (QSPR) model with 592 compounds for the identification of structural parameters related to their property as antibacterial agents against A. *baumannii*. QSPR mathematical validation ( $R^2 = 70.27$ ,  $R^N = -0.008$ ,  $a(R^2) = 0.014$ , and  $\delta K = 0.021$ ) and its prediction ability ( $Q^2_{LMO}$ = 67.89,  $Q^2_{EXT}$  = 67.75,  $a(Q^2)$  = -0.068,  $\delta Q$  = 0.0,  $\overline{r_m^2}$  = 0.229, and  $\Delta r_m^2 = 0.522$ ) were obtained with different statistical parameters; additional validation was done using three sets of external molecules ( $R^2 = 72.89$ , 71.64 and 71.56). We used the QSPR model to perform a virtual screening on the BIOFACQUIM natural product database. From this screening, our model showed that molecules 32 to 35 and 54 to 68, isolated from different extracts of plants of the Ipomoea sp., are potential antibacterials against A. baumannii. Furthermore, biological assays showed that molecules 56 and 60 to 64 have a wide antibacterial activity against clinically isolated strains of A. baumannii, as well as other multidrug-resistant bacteria, including Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa. Finally, we propose 60 as a potential lead compound due to its broad-spectrum activity and its structural simplicity. Therefore, our QSPR model can be used as a tool for the investigation and search for new antibacterial compounds against A. baumannii.

Keywords: QSPR model; antibacterials; Acinetobacter baumannii; natural products; virtual screening

# 1. Introduction

Opportunistic infectious diseases caused by multidrug-resistant bacteria represent a world-concerning health problem that is growing at an accelerated rate. Despite the immense quantity of literature and efforts sponsored by health committees, academia, and other non-governmental organizations on antibiotic resistance [1–3], there is still a lack of real education campaigns to promote the correct use of antibiotics. In accordance with recent reports, more than 2.8 million antibiotic-resistant infections occur in the U.S. alone, with over 35,000 deaths as a result [3,4]. It is estimated that by 2050 a stunning 10 million deaths will be caused solely by antibiotic-resistant bacteria [5]. In Mexico, the number of



Citation: Palacios-Can, F.J.; Silva-Sánchez, J.; León-Rivera, I.; Tlahuext, H.; Pastor, N.; Razo-Hernández, R.S. Identification of a Family of Glycoside Derivatives Biologically Active against *Acinetobacter baumannii* and Other MDR Bacteria Using a QSPR Model. *Pharmaceuticals* **2023**, *16*, 250. https://doi.org/10.3390/ ph16020250

Academic Editors: Anđelija M. Malenović and Ana Protić

Received: 9 January 2023 Revised: 31 January 2023 Accepted: 3 February 2023 Published: 7 February 2023



**Copyright:** © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). deaths caused by septicemia in hospitals has been increasing in recent years, and since 2019, it has been among the 15 main causes of death [6–8].

From the twelve bacteria listed on the website [9] of the World Health Organization (WHO), *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, and several *Enterobacteriaceae* are considered of "critical" urgency. *A. baumannii* is an opportunist Gram-negative (GN) pathogen that has gained notorious attention because of its high virulence, its multiple resistance mechanisms against antibiotics, and its great capacity for adaptation to different environments [10–13]. Its incidence has been mainly related to pneumonia (associated with the use of ventilators), septicemia (due to contamination of central and peripheral airways), and infections at the site of the injuries [14,15].

As companies have dropped out of the research and development (R&D) of new antibacterial drugs and fewer molecules have been approved by the FDA [16–20], the quest for novel potential candidates has decreased. Natural products (NPs) are a promising alternative to the use of traditional drugs because of their vast scaffold diversity and structural complexity, offering advantages and challenges in the drug discovery process [21]. These properties can be beneficial when compared to typical synthetic small-molecule compounds, for example, high molecular mass [22], a large number of sp³ carbon and oxygen atoms, which also correlate with low cLogP values (or higher hydrophilicity) [23–26], and greater rigidity [27]. Furthermore, small structural modifications to these scaffolds often lead to an improvement of the biological activity, for example, as in the case of camptothecin semisynthetic analogs topotecan and belotecan. Nonetheless, identifying bioactive compounds of interest is challenging and often takes additional time for isolation, complete characterization, and, if afforded, full synthesis [28,29]. Several analytical techniques have proven to be of relevance for this task, for example, the use of computational resources, which has reduced the amount of time and optimization of drug candidates. Quantitative Structure-Activity/Property relationships (QSAR/QSPR) have allowed the search and optimization of better bioactive molecules by determining which physicochemical and structural features (molecular descriptors) are key points for biological activity [30].

Virtual screening (VS) comprises the use of computational tools to search and analyze large databases of small molecules to identify potential bioactive compounds. VS can be divided into two major categories depending on the type of information available: ligandbased virtual screening (LBVS) and structure-based virtual screening (SBVS), both of which have been reviewed elsewhere [31–33]. Nevertheless, many other types of techniques have been developed to improve the accuracy of activity prediction. In this sense, the use of QSAR/QSPR as an approach for the virtual screening of large libraries of small compounds has proven to accelerate the rate of the discovery process by reducing the number of potential candidates. When comparing the hit rates of techniques like High-throughput screening (HTS) with the QSAR/QSPR-based virtual screening, it is seen that the hit rate of HTS ranges between 0.01% and 0.1%, while for the latter, it spans between 1% and 40%. [34] This has found application in the search for new antimalarial [35], anti-schistosomiasis [36], anti-tuberculosis [37], and antiviral [38,39] drugs, for which several compounds proved to be active. The usefulness of QSAR/QSPR models arises from the data used for the generation of the models, which is reflected within its applicability domain. In this sense, having a vast amount of structural information allows for a greater degree of confidence in the prediction data for virtual screening. Otherwise, data extrapolation may lead to false positives.

Due to the high resistance to different antibiotic treatments caused by *A. baumannii*, worldwide research groups have carried out important efforts in the search for compounds against this pathogen. Most of them have carried out QSAR-type studies to determine their biological properties based on the molecular structure. However, a problem regarding these QSAR models is the use of small sets of compounds, mainly those synthesized and tested in the same work with minor chemical changes at the core structure. Furthermore, small datasets considering molecules acting against multiple pathogens have the disadvantage that it is necessary to seek/use as many models as possible to determine and predict the

antibacterial activity of these sets of compounds. Prado-Prado et al. developed a QSAR analysis by introducing entropy-like molecular descriptors for their models to predict the antibacterial activity of several drugs against different strains of bacteria [40]. Semenyuta and collaborators established several QSAR models for the activity of imidazolium ionic liquids with the use of neural networks and random-forest regressions [41], allowing them to use multiple molecular descriptors to correlate the structure with the bioactivity of these new compounds towards *A. baumannii*. Nonetheless, a main drawback of these QSAR analyses is the use of complex molecular descriptors that are often difficult to interpret and handle, limiting their applicability and simplicity.

One important aspect of drug design relies on the pharmacokinetics profile of molecular candidates. Indeed, a major problem at the early stages of clinical phases is due to poor pharmacokinetics of compounds, especially regarding absorption and distribution in the organism. Furthermore, when targeting microorganisms like bacteria, it is important to consider another biological barrier, the cell wall, which most molecules need to pass through to exert their bioactivity. Considering the vast amount of chemical structures for compounds that present activity against *A. baumannii*, it is possible to design a structureproperty relationship model for the prediction of molecules that could have the possibility of harming the bacterium without considering a specific biological target, but that exert antibacterial activity.

In the present work, we have developed a QSPR model of active compounds (from synthetic to NPs) against multidrug resistance (MDR) *A. baumannii* by means of the genetic algorithms (GA) technique, using molecular 0D, 1D, and 2D-descriptors. The QSPR model was employed to identify structural features of the bioactivity compounds within the dataset that can be associated with their pharmacokinetic aspects (absorption and distribution). Therefore, one of the objectives of our QSPR model is to predict the entrance of the compounds into *A. baumannii* [42–44]. Then, our QSPR model was used to identify potential antibacterial candidates from an NP database. Furthermore, we obtained and carried out the biological evaluation of these candidates, corroborating the prediction of our QSPR model.

# 2. Results and Discussion

#### 2.1. QSPR Model Validation

As a first approach, regression models were built using GA to select the most appropriate descriptors. After the selection of the descriptors, multiple linear regression analysis was performed to generate suitable models that could allow us to categorize the biological activity of the dataset. The best QSPR model for antibacterial activity against *A. baumannii* consists of fifteen descriptors as follows:

 $p\text{MIC} = (0.001 \pm 0.000)\text{D/Dr06} + (-0.438 \pm 0.004)\text{GATS6m} + (0.529 \pm 0.004)\text{nArCOOH} + (1.249 \pm 0.005)\text{nRCONH2} + (0.334 \pm 0.001)\text{nROR} + (-0.429 \pm 0.006)\text{nImidazoles} + (0.115 \pm 0.000)\text{nHDon} + (-0.204 \pm 0.001)\text{nHBonds} + (1.257 \pm 0.005)\text{C018} + (0.476 \pm 0.001)\text{C029} + (1.149 \pm 0.004)\text{C032} + (-0.105 \pm 0.000)\text{H051} + (-0.186 \pm 0.001)\text{N075} + (-0.555 \pm 0.001)\text{N079} + (0.025 \pm 0.000)\text{T12} + 4.292(\pm 0.005)$ (1)

$$\begin{array}{l} R^2 = 70.278 \; (\pm 0.907); \; R^2{}_{ADJ} = 69.162 \; (\pm 0.973); \; a \left( R^2 \right) = 0.014 \; (\pm 0.000); \\ \mathrm{s} = 0.462 \; (\pm 0.000); \; \mathrm{F} = 62.978 \; (\pm 8.418); \; Q^2{}_{LMO} = 67.886 \; (\pm 1.043); \\ Q^2{}_{BOOT} = 66.882 \; (\pm 1.104); \; Q^2{}_{EXT} = 67.747 \; (\pm 5.414); \; a \left( Q^2 \right) = -0.068 \; (\pm 0.000); \\ \delta K = 0.021 \; (0.000); \; \delta Q = 0.000 \; (-0.005); \; R^P = 0.015 \; (0.100); \; R^N = -0.008 \; (-0.054) \end{array}$$

All statistical parameters were obtained as their average values (see Table S3), for example, the square correlation coefficient ( $R^2$ ) of 70.278 (±0.907), and the  $R^2_{ADJ}$  of 69.162 (±0.973). The Fischer F and the standard deviation (s) are 62.978 (±8.418) and 0.462 (±0.000), respectively, indicating that our model is acceptable. Moreover, redundancy and overfitting rules were checked to determine the nature of the descriptors used in the model. In this sense, the overfitting rule,  $R^N = -0.008$  (-0.054), was complied with fairly while the redundancy rule,  $R^P = 0.015$  (0.100), indicating that some descriptors, nHDon and nHBonds, are correlated to the dependent variable. However, these descriptors cannot be removed as they are important for the correct description of our regression

model. Furthermore, the prediction ability of the model was validated by the leave-many-out cross-validation,  $Q^2_{LMO} = 67.886 \ (\pm 1.043)$ , a value indicating that the regression model has good predictive power. The robustness parameter as indicated by the high value of  $Q^2_{BOOT} = 66.882 \ (\pm 1.104)$  based on bootstrapping, which was repeated 5000 times.

External validation was essential as a high  $Q^2_{LMO}$  only indicates a good internal validation, but it does not show a high prediction capability of the created model. Therefore, for the external validation procedure, 70% of all the molecules in the dataset were randomly selected for the training process, and the remaining 30% were used as the test set. This process was repeated six times; their plots are shown in Figure 1, with their upper/lower confidence intervals at a 95% confidence level. The Y-scrambling test was used on the training-test set, giving the new values of  $a(R^2) = 0.014 (\pm 0.000)$  and  $a(Q^2) = -0.068 (\pm 0.000)$ . These new values were lower than the original ones, confirming that our model is reliable.



**Figure 1.** Scatterplots of predicted *p*MIC against experimental *p*MIC values. Blue dots represent molecules of the training set (70%), and yellow diamonds depict molecules used for the test set (30%). For each plot, the percentage of molecules used in the training and test datasets were randomly chosen.

With the same purpose, the Asymptotic  $Q^2$  rule,  $\delta Q = 0.000 (-0.005)$ , was employed. Therefore, the model in (1) passed all the statistical tests proposed by Roy et al. [45–47], as an average value derived from ten experiments shows: (a)  $Q^2 = 67.88 (\pm 1.043)$ ; (b)  $r^2 = 0.679 (\pm 0.000)$ ; (c)  $(r^2 - r_0^2) / r^2 = 0.001 (\pm 0.000)$ ; (d)  $k = 0.999 (\pm 0.000)$  (or  $k' = 0.991 (\pm 0.000)$ ); (e)  $|r_0^2 - r'_0^2| = 0.127 (\pm 0.000)$ . For an acceptable prediction, the value of  $\Delta r_m^2$  should preferably be less than 0.2, while  $\overline{r_m^2}$  should be greater than 0.5. In our model,  $\Delta r_m^2$  presents a value of 0.229 (±0.000), while  $\overline{r_m^2}$  has an average value of 0.552 (±0.000). A complete list of each evaluation can be seen in Table S4.

The applicability domain is graphically depicted by the Williams plot in Figure 2. For each compound, the leverage values can be calculated, and by plotting these values against the standardized residuals, it is possible to establish the applicability domain of the developed model [48]. This allows the detection of molecules that our model cannot predict adequately, thus considered as outliers [49,50], molecules with distinctive structures (high leverage outliers,  $h > h^*$ ), or those



associated with the response (predicted residuals >  $3 \times$  SDEC). All compounds that are outside the limits established by the leverage warning and three times the standard deviation in error calculation are outliers.

**Figure 2.** Williams plots for molecules with antibacterial activity against *A. baumannii*. The dotted vertical line in red indicates the warning leverage limit ( $h^* = 3p/n$ , where *n* is the number of molecules and *p* is the number of descriptors in the model plus one). The upper/lower dotted horizontal lines in black represent the boundaries for which the triple of the standard deviation (3 × SDEC) value is used.

As seen from the Williams plot, outliers are correlated to the structure of molecules. Due to the relatively wide variety of molecular structures used in our model, detected outliers both from the training and test sets are very different (Figure 3).

In compound **1**, although it shares a similar structure with those of the Batzelladine alkaloids' family used in this model [51], the two cyclic ether-like motifs at the central positively charged nitrogen core, as well as two pendant primary aliphatic charged amine arms, are distinctively different from the rest of the analyzed molecules. Compounds **1**, **2**, and **5** to **13**, **14**, **15**, and **17** are considered outliers because of the many positively charged nitrogen atoms present in the molecules. Two fluoroquinolone derivatives are present as outliers: compound **3** possesses a 3,5-difluoro-substituted pyridine instead of the common cyclopropyl or ethyl groups at nitrogen, while compound **4** has a pyridine-type structure at the core as in nalidixic acid. These two features are unique among the set of fluoroquinolones used in our model. Compounds **14** and **15**, being both aminoglycosides, are seen as outliers from our model as it is suggested that amino groups are responsible for this distinction. Compound **16** is a flavanone-7-O-glycoside. Although there are many flavanones in the dataset, none of them present a disaccharide (or any mono- or polysaccharide), which makes **16** unique. On the other hand, many examples of substituted triazoles are seen in our model, but molecule **17** has a benzotriazole that is unique; thus, it is considered an outlier. Even though there are many compounds with aromatic alcohols, **18** (gallic acid) possesses a benzenetriol motif that is not encountered in any



other molecule. Structure **19** has the hydantoin functional group, which is unique among the set of active molecules against *A. baumannii*.

Figure 3. Chemical outliers obtained from the analysis of the Williams plots.

To test the reliability of our QSPR model, molecules that were not introduced in our initial dataset were employed as an external validation set to obtain their predicted *p*MIC values. Three sets of compounds were used as follows: (a) the first set of molecules reported by Matsingos et al. [52]; (b) compounds reported by Singh [53], Wang [54], and Zhou [55] as the second set, and finally, (c) chemical structures described by Lyons and collaborators [56]. For the three sets of data, there is a good correlation between experimental and predicted *p*MIC values with  $R^2$  values of 75.54, 71.64, and 71.56, respectively.

On the other hand, compounds that exhibit, for example, many positively charged nitrogen atoms like those reported by Vereshchagin and co-workers [57] or molecules with unusual functional groups like those reported by Siricilla [58] are not well predicted by our model in accordance with the results of the outliers analyzed previously. This fact can be explained by the limited number of similar molecules (charge and scaffold related) used in the generation of the QSPR model. Nevertheless, this type of molecules is very interesting and important for the development of antibacterial compounds since many of them use facilitated diffusion transport related to amino acids, like Lys, His, and Arg.

Our model applied to the first set of linezolid analogs with different C5-acylamino substituents gives an insight into their structural features. An increase in the *p*MIC values is seen when moving from small-chain alkyl groups (Me, Et, or nPr) to small-branched or cyclic alkyls motifs (*i*Pr, cyclopropyl, cyclobutyl) and finally to aromatic substituents. This increase is shown in Figure 4.



**Figure 4.** Scatterplot for molecular data set of linezolid analogs. Selected molecules are displayed within the plot showing the change of substituent.

The second set of compounds comprises three different groups of molecules for which our model classifies first the divin derivatives, moving into pyrazinoindole analogs, and finally with the subset of 2-aminothiazole sulfanilamide oximes, as seen in Figure 5. The last set of compounds comprises several oxazolidinone derivatives in Figure 6. The first molecules are classified in accordance with the structure of the 1,5-naphthyridin-2(1H)-one, while the last ones have a 1,8-naphthyridin-2(1H)-one. Molecules at the center possess the nitrogen atom at different positions of the quinolin-2(1H)-one core.



**Figure 5.** Scatterplots for the molecular data set were used for the validation of the QSPR model. Selected molecules are displayed within the plots.



**Figure 6.** Scatterplot for oxazolidinone derivatives used for the validation of the QSPR model. Selected molecules are displayed within the plots.

#### 2.2. QSPR Interpretation

The understanding of the descriptors presented by the QSPR model allows us to gain some insights into the chemical features of the molecules used in the model that are relevant for their antibacterial activity towards *A. baumannii*. Equation (1) displays two topological descriptors (D/Dr06 and TI2), one 2D-autocorrelation (GATS6m), six functional group counts (nArCOOH, nRCONH2, nROR, nImidazoles, nHDon, and nHBonds), and six atom-centered fragments (C-018, C-029, C-032, H-051, N-075, and N-079), all of them being 2D-dimensional descriptors.

The first descriptor in the model is D/Dr06, a topological descriptor. Distance/detour ring indices (D/Drk) are calculated by summing up distance/detour quotient matrix row sums of vertices belonging to single rings in the molecule. These descriptors can be considered special substructure descriptors reflecting local geometrical environments in complex cyclic systems [59]. D/Dr06 displays a positive coefficient value, indicating that the presence of this descriptor enhances the activity of the molecule. This descriptor appears when a 6-membered cyclic structure is present in the molecule. From the set of compounds, most of the cyclic structures belong to benzene-type rings (both carbocyclic and heterocyclic). D/Dr06 has been used in a similar way for the description of the anticancer activity of aromatic molecules [60]. The highest D/Dr06 value belongs to compound 2, where two adamantyl moieties are present in the molecule. Values of zero correspond to molecules that do not display any 6-membered cyclic systems, such as compounds **22** to **25**, as seen in Figure 7. Furthermore, molecules that display high values of D/Dr06 also show high *p*MIC values.

The second Mohar index [61] (TI2) is calculated from the eigenvalues of the Laplacian matrix as shown:

$$FI2 = \frac{4}{nSK - \lambda_{nSK-1}}$$
(2)

where the nSK is the number of non-H atoms and  $\lambda_{nSK-1}$  is the first non-zero eigenvalue. TI2 is a topological descriptor and belongs to the Mohar indices that are related to the solubility of compounds. In general, it is associated with size, shape, and symmetry, as well as with the branching or cyclicity of the molecule. TI2 shows a positive coefficient value, indicating that by increasing the value of the descriptor, the expected *p*MIC values will also increase. This descriptor has been used in the explanation of the activity of diaryl urea derivatives [62] and in the QSAR analysis of aminomethyl-piperidones [63].



**Figure 7.** On the top row, the highest D/Dr06 values are displayed for compounds. Below, molecules that do not have any 6-membered rings in their structures display a zero value of the descriptor.

The GATS6m [64,65] descriptor belongs to the 2D autocorrelation indices where the Geary coefficient is a distance-type function that can be any physicochemical property (w), calculated for each atom, such as atomic mass, polarizability, or volume, among others, and is represented by (3). By summing the products of a certain property of two atoms located at a certain distance or spatial lag (k), a spatial autocorrelation can be obtained.

$$GATS(k,w) = \frac{\left(\frac{1}{2\Delta k}\right) \cdot \sum_{i=1}^{A} \sum_{j=1}^{A} \left(w_i - w_j\right)^2 \cdot \delta(d_{ij};k)}{\left(\frac{1}{A-1}\right) \cdot \sum_{i=1}^{A} \left(w_i - \overline{w}\right)^2}$$
(3)

where A is the number of non-hydrogen atoms,  $\overline{w}$  is the average of the  $w_i$  atomic property value,  $\delta(d_{ii};k)$  is the Kronecker delta, and  $\Delta k$  is the number of vertex pairs at a distance equal to k. GATS6m is the mean Geary autocorrelation of lag 6/weighted by atomic mass, which means that this descriptor considers the atomic mass of any atom in the structure at different path lengths (lag) of 6. Strong spatial autocorrelation between pairs of atoms produces low values of this index. Moreover, symmetric or low-branched structures, as well as molecules with a low number of heteroatoms (atoms besides C and H), are expected to produce low to zero values. The GATS6m descriptor displays a negative coefficient in (1), which indicates that by increasing the autocorrelation between pairs of atoms considering their atomic masses at a distance of 6 between them, the value of this descriptor will increase, causing a reduction in its pMIC value. As seen in Figure 8a, there is a homogeneous distribution of the data when plotting the GATS6m descriptor against the corresponding pMIC values. Eight molecules from the dataset have a zero value of GATS6m; their structures are displayed in Figure 8b. Furthermore, these molecules are seen to have a medium interval of pMIC (between 3.5 to 5) relative to their location in the scatterplot. In Figure 8c, for the molecule with the highest GATS6m value, selected pathways are shown for which the sum of their atomic masses produces the final value.

The next six descriptors belong to the functional-group counts (FGC), which are considered indicator variables. Their value will depend on the number of functional groups present or absent from the molecule, meaning that not all compounds will feature them. The FGC has been used to identify structural features that are important for a property of particular interest. Therefore, their presence or absence can significantly alter the predicted activity in the model. Each FGC descriptor can be easily understood in terms of the nature of functional groups. For example, nArCOOH, nRCONH2, nROR, and nImidazoles account for the number of aromatic carboxylic acids, the number



of aliphatic primary amides, the number of aliphatic ethers, and the number of imidazole moieties, respectively (Figure 9).

**Figure 8.** (a) Scatterplot of the GATS6m descriptor vs. the experimental *p*MIC value of the 592 molecules. (b) Molecular structures of compounds with zero value of GATS6m. (c) Selected pathways are used for the calculation of the descriptor.



**Figure 9.** Functional-group count (FGC) descriptors with some representative molecules for each nArCOOH, nRCONH2, nROR, and nImidazoles. The corresponding functional groups are highlighted in yellow.

The nHDon descriptor indicates the number of hydrogen donor atoms (–NH₂ and –OH) for which the formation of hydrogen bonds is possible; in the same manner, nHBonds accounts for the number of intramolecular hydrogen bonds that are possible when there are acceptor atoms like N, O, or F, as shown in Figure 10. Intramolecular hydrogen bonds are crucial for the biological activity of many compounds. It is well established that intramolecular hydrogen bond formation can lead to temporarily closed ring systems which are more lipophilic in nature, while open forms are exposed to solvent, lending more hydrophilic character to the molecule [66]. For example, small hydrophilic molecules, such as  $\beta$ -lactams, use the pore-forming porins to enter cytoplasm/periplasm [67], while hydrophobic drugs like macrolides diffuse across the lipid bilayer [68]. In our model, the nHDon descriptor displays a positive value, indicating that a high number of hydrogen donor atoms (high aqueous solubility) leads to an increase in biological activity. However, as the nHBonds descriptor possesses a negative coefficient, it indicates that as the number of intramolecular hydrogen bonds increases, the biological activity will decrease, which is correlated to a more lipophilic nature of the molecules. Therefore, highly polar molecules are favored as antibacterials against *A. baumannii*, as expected for Gram-negative bacteria.



**Figure 10.** Functional-group count (FGC) descriptors with some representative molecules for nHDon and nHBonds. Highlighted in yellow are groups for which hydrogen donor atoms are counted (nHDon). Red arrows indicate the groups where intramolecular hydrogen bonds are possible (nHBonds).

Six atom-centered fragment (ACF) descriptors are present. ACF descriptors are based on structural fragments which contain information about the central atom and their bonding neighbors [69–71]. Each ACF is defined by the type of bonding, as well as the number and nature of the neighbors bounded to the centered atom. For example, C018 (=CHX) corresponds to an sp² C atom which is single-bonded to a hydrogen and to any electronegative atom (such as N, O, S, etc.). The C029 (R–CX–X) descriptor, for which the "-" represents an aromatic bond (e.g., benzene) or delocalized bonds (as in the N–O bond in a NO₂ group), corresponds to a central sp² C atom that is single-bonded to an electronegative X atom, and also both double-bonded to an X atom and an R group, in which their bonds are delocalized. The C032 (X–CX–X) descriptor behaves in a similar fashion to C029, but instead of an R group, it is replaced by a third X atom. This descriptor has also been used for the analysis of chemical features essential for anticoronaviral activity [72]. The H051 descriptor stands for the environment in which a hydrogen atom is bonded. It is defined as a hydrogen that is attached to an alpha-C atom; an alpha-C may be defined as a carbon connected through a single bond with -C=X(double bond),  $-C \equiv X$  (triple bond), or -C-X (aromatic bond), where X represents any electronegative atom, like in the case of alpha-hydrogens in carbonyl compounds. This descriptor has been used to explain the activity of a series of molecules containing nitroaromatics motifs as radiosensitizers [73]. The next two descriptors, N075 and N079, are nitrogen-based structural fragments. The first one is defined as a central sp² N atom that is bonded to two R groups or to one R and X groups (R–N–R or R–N–X), like in pyridine-type motifs. This descriptor is particularly important as many molecules in our set present these kinds of motifs. The second descriptor is related to any nitrogen atom which



bears a positive charge. Representative examples for each of the ACF descriptors are presented in Figure 11.

**Figure 11.** Atom-centered fragments (ACF) descriptors with representative molecules that incorporate them within their structures.

From a general view, descriptors in Equation (1) can be classified into global and indicator variables. Global terms like GATS6m and TI2 are present in the molecule and give information about the whole structure, while indicator variables only appear if the molecular structure contains the motif. Furthermore, descriptors can be associated with the steric and electronic properties of the molecule (D/Dr06, GATS6m, and nImidazoles, as well as the six-ACF descriptors), while others are more related to the solubility of compounds, like in the case of nHDon, nHBonds, TI2, as well as functional groups like nArCOOH, nRCONH2, and nROR. Electronic parameters can be associated with atom-centered fragments, which indicate the distribution of substituents around a specific atom. As many molecules include within their structure specific ACF moieties, their inclusion will lead to an increase or decrease in the predicted pMIC value. For example, the three ACF based on central carbon (C-018, C-029, and C-032) are positive in their signs, indicating that their presence enhances bioactivity. Furthermore, as they are carbon ACF descriptors, they can be associated with core-structure features. However, H051, N075, and N079 ACF descriptors lead to a decrease in the activity. H-051 counts hydrogen atoms that are reactive, and hence, they are prone to be abstracted by the use of bases. Nitrogen atoms like those described by the N075 descriptor are good hydrogen bond acceptors, leading to the generation of inter- and intramolecular interactions by the use of their lone pairs of electrons, which decreases the solubility of molecules, as stated by the nHBonds descriptor. On the other hand, molecules that are well-solvated in aqueous media are expected to be high in pMIC values.

Figure 12 shows the percentage of distribution of the descriptors for molecules in the dataset. 95.9% of the molecules (568) have the nHDon functional group, and almost all other descriptors fall within this category. The second major descriptor that appears in the dataset is nHBonds, with 53.9% of the molecules (319), followed by the N075 descriptor in 278 molecules of the subset (47%). Considering the high number of bioactive compounds, which includes pyridine-fused or pyridine-containing heterocycles, as well as their tendency to participate in hydrogen bonding, the presence of the N075 descriptor in great percentage is important to account for the description of the activity of molecules [74,75].



Figure 12. Local distribution of descriptors in molecules used in the model.

Some molecules are observed to be outside the boundaries of the nHDon/nHBonds descriptors, which agrees with the presence of compounds without donor groups, such as hydroxyls (–OH) or amines (–NH2), as in natural products. The rest of the molecules are located into these major categories, which can be seen adequately in the Venn diagram [76–81] in Figure 13. It is also seen that eight molecules lack the rest of the molecular descriptors used in the model. Thus, they are depicted outside the Venn diagram as a sole group.

## 2.3. Virtual Screening Using BIOFACQUIM Dataset

Once we fully validated our model for antibacterial activity against A. baumannii, we proceeded to search for new molecular candidates in an online database of molecular compounds. NP databases are relevant sources of biologically active compounds, which often comprise complex molecular structures isolated from diverse organisms. However, because there is no globally accepted community resource for NPs, an impressive number of sites contain information for several isolated molecules, which often differ in annotation and structure [82–84]. BIOFACQUIM [85] is a Mexican natural product database that comprises 528 compounds isolated from many plants and other organisms across Mexico. The BIOFACQUIM database was selected for the initial evaluation since those natural products isolated from different species from Mexico would represent a reliable and affordable option for biological assays. As a second approach for tracking new molecular candidates, larger databases from different regions across a continent would be beneficial. After careful curation of the database and calculation of their descriptors (Table S5), we performed the analysis of the molecules using our QSPR model. The predicted pMIC values from molecules of the database range between 1.65 and 11.24. Table 1 shows these values for the most active molecules, suggested by our model, and depicted for some structures in Figure 14. As stated in Equation (1), a high value of the calculated *p*MIC implies a small concentration of the compound, which correlates to an increase in its potency. In this sense, desirable molecules should exhibit high *p*MIC values.



**Figure 13.** Venn diagram showing representative molecules from the dataset classified by the presence of at least one molecular descriptor and their correlations. Molecular descriptors used for the Venn diagram are nHDon, nHBonds, nArCOOH, nRCONH2, nROR, nImidazoles, C018, C029, C032, H051, N075, N079.

Table 1. Molecular descriptor values for natural products 26 to 53 with their predicted pMIC value
These molecules show the highest values from the BIOFACQUIM database.

MolID	MW	D/Dr06	GATS6m	nROR	nHDon	nHBonds	C018	H051	N075	TI2	pMIC
26	274.24	101.297	0.399	1	1	0	1	0	0	1.208	5.910
27	404.51	208.41	1.05	5	2	2	0	0	0	3.678	5.533
28	1167.41	1692.143	0.951	12	16	8	0	2	0	8.304	9.049
29	1195.47	1739.777	0.958	12	16	8	0	2	0	8.397	9.076
30	1341.63	2360.184	0.965	13	19	10	0	2	0	10.723	9.756
31	1690.16	2257.102	1.01	14	13	8	0	9	0	6.18	8.879
32	2473.43	6328.172	1.071	19	16	11	0	10	0	20.998	12.845
33	2449.3	7015.971	1.082	19	16	11	0	8	0	21.234	13.451
34	2445.37	6531.924	1.071	19	16	11	0	10	0	21.416	12.972
35	2501.49	6713.547	1.076	19	16	9	0	10	0	21.566	13.485
36	272.27	101.297	0.894	1	0	0	1	0	0	1.208	5.579

MolID	MW	D/Dr06	GATS6m	nROR	nHDon	nHBonds	C018	H051	N075	TI2	pMIC
37	346.31	89.966	1.133	2	1	0	1	0	0	1.397	5.920
38	560.71	440.654	0.966	4	8	4	0	0	0	5.474	5.695
39	250.27	80.687	0.942	1	2	1	1	0	0	1.546	5.580
40	1151.41	1669.117	0.921	11	16	9	0	2	0	8.266	8.511
41	1179.47	1715.713	0.923	11	16	9	0	2	0	8.347	8.539
42	869.18	889.623	0.957	7	10	5	0	2	0	8.006	6.834
43	1035.28	1396.119	0.967	10	14	8	0	2	0	8.601	7.984
44	1165.44	1695.422	0.921	11	15	10	0	2	0	8.575	8.216
45	1193.5	1742.017	0.923	11	15	9	0	2	0	8.623	8.446
46	250.27	80.687	0.942	1	2	1	1	0	0	1.546	5.580
47	1199.65	1656.598	1.024	10	10	7	0	4	0	8.71	7.644
48	1223.67	1189.333	1.054	10	8	6	0	5	0	5.649	7.156
49	512.56	409.063	0.805	3	6	2	1	2	1	4.621	6.430
50	302.36	106.192	1.753	5	2	1	0	0	0	1.027	5.304
51	1369.82	1718.197	1.079	10	8	6	0	5	0	6.149	7.460
52	1383.85	1778.609	1.097	10	8	6	0	6	0	6.324	7.386
53	2795.76	9251.423	1.099	20	16	8	0	10	0	22.254	15.481



**Figure 14.** Molecular structure of selected natural products. Molecules **32** to **35** and **53** exhibits the highest predicted *p*MIC value. Molecules **27**, **36**, **37**, **46**, and **50** show low predicted values according to Equation (12).

Table 1 shows that molecules with the highest predicted *p*MIC values are compounds **32** to **35** and **53**, which were isolated from several plants of the genus *Ipomoea* [86,87]. Their molecular structures contain several functional groups that contribute to their predicted activity. Three important features are observed: (1) all of them have a high number of pyranose-like rings, which may contribute to their hydrophilicity properties; (2) most of them contain large aliphatic side chains

Table 1. Cont.

16 of 30

and/or macrocyclic lactone rings, which may contribute to their lipophilicity; (3) all of them present at least one terminal ester group which may be prone to cleavage by hydrolysis in aqueous media. Molecules **59** to **62** and **64** also exhibit terminal carboxylic acid fragments.

Analyzing these characteristics in our model, we can obtain some insights regarding the structural information that correlates to the predicted values. For example, all the molecules exhibit a great number of aliphatic ether groups and, according to our model in Equation (12), as the number of aliphatic ether motifs (nROR) increases, the greater their activity will be. This is highly correlated to a large number of donor atoms (oxygens) and, therefore, as the number of nHDon increases, so does the predicted bioactivity. Nonetheless, a great number of donor atoms also increases the possible number of intramolecular hydrogen bonds (nHBonds), which, according to our model, diminishes the predicted values. Another descriptor that appears to affect the predicted values is H-051, which implies the presence of hydrogens attached to alpha-carbon atoms, known as alpha-hydrogens ( $\alpha$ -H). As the number of  $\alpha$ -H increases, the bioactivity tends to decrease. In those molecules that are predicted with the highest *p*MIC values, ester and carboxylic acid groups appear in great numbers, suggesting that these kinds of functional groups are not adequate for their pharmacokinetic profile, as all of them exhibit  $\alpha$ -H. Another feature is the presence of a high number of pyranose-like rings, which are 6-membered rings; thus, the high D/Dr06 value is displayed. Furthermore, because of their structure, these molecules are highly branched, which is seen in their high TI2 values. GATS6m is complex in nature but correlates well with the molecules under analysis. As the average number of possible 6-pathways for which heavy atoms can be included, there is a decrease in the predicted bioactivity. There are many known bioactive compounds for which their molecular masses are substantially high, for example, the macrolides and some other natural products like digitoxin [21,22,88,89]; thus, they violate one of Lipinski's rules used for the evaluation of possible new drugs [90]. Molecules 31, 48, and 53 present relatively medium-high GATS6m values, hence high molecular mass; however, our model predicts elevated pMIC for these compounds. This can suggest that there could be a limit in the mass of the molecule and the number of oxygen atoms or any other heavy elements that will cause molecules to be less active.

#### 2.4. Antibacterial Activity Evaluation

Having identified molecular properties with high potential activity against *A. baumannii* from plants, we searched for similar molecules from the same genus of plants *Ipomoea*. Several isolated molecules from plants of the species *I. stans*, *I. purga*, *I. murucoides*, and *I. tyrianthina* [91–93] were subject to treatment with our model to obtain their predicted values prior to experimental work. Results are shown in Table 2, and Figure 15 depicts molecules with the highest and lowest predicted *p*MIC values.

MolID	MW	D/Dr06	GATS6m	nROR	nHDon	nHBonds	H051	TI2	pMIC
54	1139.49	637.544	1.05	8	8	4	5	4.452	6.553
55	1095.43	603.051	1.06	8	7	4	5	4.134	6.406
56	1155.49	645.374	1.047	8	9	4	5	4.4	6.672
57	1225.64	1192.314	1.016	10	9	5	7	5.92	7.289
58	1107.49	600.453	1.072	8	6	5	5	4.095	6.080
59	1153.38	1669.117	0.957	12	16	11	2	8.266	8.422
60	334.46	90.65	0.904	2	4	3	2	4.886	4.374
61	326.33	164.888	1.054	1	5	1	0	4.222	4.733
62	342.33	166.979	1.09	1	6	2	0	3.98	4.624
63	1646.15	2393.949	1.019	13	14	12	6	5.644	8.223
64	1019.28	1307.203	0.962	10	13	6	2	9.197	8.242
65	855.1	437.562	0.955	8	9	5	2	3.704	6.688
66	1093.46	601.959	1.069	8	6	4	5	4.081	6.285
67	1037.39	565.718	1.019	8	7	4	5	4.448	6.410
68	1123.49	624.213	1.054	8	7	4	5	4.266	6.424

Table 2. Molecular descriptors for natural products 54 to 68 with their predicted pMIC value.



**Figure 15.** Molecular structure of natural products isolated from different species of *Ipomoea*. Molecules **59**, **63**, and **64** display high values of predicted *p*MIC, while compounds **60** to **62** show the lowest values.

Compounds **59**, **63**, and **64** exhibit the highest predicted values of pMIC of 8.422, 8.223, and 8.242. From our QSPR model, we can observe some important features which are present in these compounds. First, molecules from **54** to **68** present many aliphatic ether groups from the pyranose-

type rings, consequently a great number of hydrogen donors (nHDon descriptor), which contributes to an increase in their antibacterial activity. As the pyranose-type rings are six-membered structures, the D/Dr06 descriptor also promotes a rise in the expected pMIC. However, because of a large number of oxygen atoms and carbonyl motifs, the nHBonds and H-051 descriptors have a considerable effect in decreasing the predicted pMIC. Furthermore, the value of the calculated GATS6m, compared to other molecules, implies a small negative contribution to the predicted activity, which is balanced by the contribution of the D/Dr06 descriptor. Compounds **60**, **61**, and **62** (Figure 15) are predicted to have the lowest pMIC values (4.781, 4.733, and 4.264, respectively). This situation is due to the presence of only one pyranose-type ring in each structure, hence, only one aliphatic ether group and a reduced number of oxygen atoms. Moreover, given their molecular structure (low symmetry), their GAST6m values are also the highest among the compounds, thus diminishing the predicted value. Consequently, it is expected that a great number of pyranose-type rings that do not form intramolecular hydrogen bonds are valuable for the antibacterial activity of these compounds.

#### 2.5. Glycoside SAR Analysis

As stated before, the increasing number of multidrug-resistant bacteria represents an important risk to human health worldwide. Although *A. baumannii* represents a serious threat, the search for wide-spectrum antibiotics for the treatment of infections caused by several of the ESKAPE pathogens is crucial. To determine if the proposed molecules display antibacterial activity towards this bacterial critical group, the corresponding bioassays were tested using clinical isolates, which are metallo- $\beta$ -lactamase producers and resistant to beta-lactam antibiotics (Table 3). Experiments were conducted by adding 3  $\mu$ L of compound solution over each agar plate.

**Table 3.** Biological assays for compounds isolated from *Ipomoea* sp. towards different bacterial strains. For each bacterial strain, essays marked as (+) were positive and (-) negative in susceptibility tests.

Bacterial Strains									
ID Sample	E. coli ATCC 25922	S. aureus ATCC	A. baumannii 9736 (1)	A. baumannii 10324	E. coli 10225	K. pneumoniae 6411	K. pneumoniae 3407-2	P. aeruginosa 4899	P. aeruginosa 4677
54	_	_	_	_	_	+	-	_	_
55	_	+	_	_	_	+	_	+	+
56	+	+	+	_	-	+	+	+	+
58	_	_	_	_	-	-	+	_	_
60	+	+	+	+	+	+	+	+	+
61	_	_	_	+	_	_	_	_	_
62	_	_	_	+	_	_	_	_	_
63	_	_	+	+	-	-	_	_	_
64	_	_	+	-	_	_	-	-	_

From the results, important features arise from the molecular structures of the glycosides. First, the molecular structures of compounds **54**, **55**, **56**, and **58** contain the same tetrasaccharide core, which is connected by a macrolactone ring. From **54** to **55**, the removal of one carbon atom from central 2-methylbutyrate to 2-methylpropionate increases the activity of the glycoside, being active not only in *K. pneumonia* but also now to *P. aeruginosa* and *S. aureus*. In compound **56**, the reinsertion of the carbon atom but with the addition of a hydroxyl group at position three of the 2-methylbutyrate group reinforces the activity spectrum by being active to *A. baumannii*, as seen in Figure **16**. However, the removal of the hydroxyl group of the central and outer 2-methylbutyrate groups and the addition of one carbon atom of the macrolactone ring (from ten atoms to eleven) causes molecule **58** to lose wide spectrum activity and to be only active against *K. pneumoniae*. This suggests that hydroxyl groups located in specific regions of this molecular core enhance the bioactivity of this set of glycosides.

Compounds **60** to **62** are the smallest compounds. They share in common a terminal carboxylic acid alongside a pyranose ring. Although **60** has wide antibacterial activity against multidrug-resistant bacteria, **61** and **62** only display activity against *A. baumannii*. This important loss of activity may be attributed to the removal of the aliphatic chain connecting the pyranose ring and the terminal carboxylic acid, being replaced by a more rigid phenyl core. Close inspection of compound **63** reveals the structure of compound **60** within it, forming an ester bond at the terminal carboxylic acid group. This feature could explain the retained activity against *A. baumannii*. Similar to this, molecules **54** to **56** share common structural features, like at the macrolactone ring with the same set of atoms; in addition, the lack of hydroxyl groups at the outer methylbutyrates may affect the expected activity.



**Figure 16.** SAR analysis of compounds **54**, **55**, **56**, and **58**. Small changes in the structure expand the antibacterial activity from **54** to **56**. Removal of –OH groups and elongation of the alkyl chain in the macrocyclic ring decrease the bioactivity of the molecule.

An insight into the chemical structures of **32** to **35** and **53**, the most potent molecules according to the model in Equation (12), reveals that the core of **60** is present (Figure 17). Furthermore, the macrolactone ring alongside the chiral carbon is also a common feature, with the cycle formed of ten or eleven methylene groups as in **54** to **58**. This could suggest that molecules of the BIOFACQUIM database would also exert antibacterial activity towards *A. baumannii* and other resistant bacteria.



**Figure 17.** Partial chemical structure of **53** and complete molecule **63**. A chemical core of **60** is displayed within the other structures. Furthermore, the macrolactone ring is shared between compounds.

One of our remaining questions is which action mechanisms can be exerted by these molecules. To propose one, we constructed a simplified version of the Venn diagram in which it is possible to observe the correlation between the H-051 and the nROR descriptors seen in the isolated molecules. The purpose of this diagram in Figure 18 is to identify molecules with known action mechanisms and with structural similarity (same molecular descriptors) to our compounds. Furthermore, other types of compounds used are also part of the inner set of molecules. These compounds have different structural motifs when compared to compounds **54** to **68**, and they present different mechanisms of action.



**Figure 18.** Simplified Venn diagram with representative molecules showing the nHDon, nHBonds, nROR, and H-051 descriptors which appear in molecules **54** to **68**.

From a structural point of view, compounds 56 and 63 resemble those of the macrolide antibiotics [89]. Examples of macrolides are erythromycin A, oleandomycin, josamycin, and spiramycin, isolated from different microorganisms, as well as many semisynthetic derivatives like clarithromycin, flurithromycin, and other unique compounds like azithromycin. Moreover, the latest new members, the ketolides and fluoroketolides, are also structurally related to the macrolide family. As stated above, when comparing the new molecules with macrolides, several features are shared (Figure 19). Macrolides are well characterized by the presence of a 14- to 16-membered macrocyclic lactone ring to which one or more deoxy sugars are attached. In the case of compounds like 56 and 63, the macrolactone ring is shown connecting two or three sugar-type rings. Furthermore, because of the relatively high number of carbonyl motifs in macrolides,  $\alpha$ -H are also present in great numbers. This is also true for many compounds from 54 to 58 and 65 to 68, where the ester group is observed. Moreover, a great number of aliphatic ether groups and a great number of oxygen atoms present at the hydroxyl groups and other motifs are also features that are in common. Macrolides are potential bacteriostatic compounds for which one mechanism of action relies on binding to the P site on the 50S subunit of the bacterial ribosome. Because of this, we can suggest that compounds 56 and 64, among others, could exhibit a similar action on bacteria, thus acting as protein synthesis inhibitors.

Finally, compound **60**, being a small molecule, can be considered a lead compound for which specific chemical transformations could improve its efficacy. Compound 60 is expected to be water soluble, having a calculated LogP value below 1.0, hence, with good gastrointestinal (GI) absorption. According to Equation (1), the incorporation of specific functional groups contributes favorably to the expected *p*MIC. In this sense, aromatic carboxylic acids, primary aliphatic amides, and aliphatic ethers can be employed to improve the activity of **60**-derived analogs as they represent simple chemical transformations, as seen in Figure 20. Calculated *p*MIC values for the new derivatives can be seen in Table S7. In all proposed compounds, their predicted *p*MIC values are higher than the lead compound. The physicochemical properties of compounds **60** and derivatives were tested using the SwissADME

server, for which specific alerts are given in Figure S4. All derivatives are expected to be soluble in water and predicted to be passively absorbed by the GI tract, and **60e** could also permeate through the blood-brain barrier. Furthermore, all compounds also obey Lipinski's rules.



**Figure 19.** Structural comparison between a macrolide (clarithromycin) and compound **63**, where arrows indicate the descriptors that are shared.



**Figure 20.** Proposed **60**-derivates which, in accordance with Equation (1), are expected to improve their antibacterial activity by incorporation of specific functional groups.

Moreover, molecules isolated from *Ipomoea* share within their structures a deoxy-sugar moiety, as in compound **60**, that could be relevant to their activity. By close inspection of the fragment, we searched for molecules in the ChEMBL database for bioactive compounds which incorporate deoxy sugar in their structures. A wide variety of molecules possesses the motif, from anticancer to anti-allergenic [94–102], demonstrating its importance; further research is needed to validate this point. Chemical structures for these compounds can be seen in Figure S3 as well as their predicted ADME properties.

In summary, the model was validated statistically by internal and external parameters, showing good predictive power. This was demonstrated using the model, first applied to the BIOFACQUIM natural products database in search of potential candidates and finally, by exploring the properties

of isolated natural products from *Ipomoea* sp. We observed wide antibacterial spectra activity of compounds **56**, **60**, and **63** against several isolated bacterial strains, which agrees with the properties calculated by the model.

#### 3. Materials and Methods

## 3.1. Data Set

An initial dataset of 944 compounds was obtained from the literature between 1995 and 2020. These compounds shared the same evaluation method, as follows. To improve the reliability of the data, all the compounds were curated [103–105] to point out outliers, uncertainties, and potential errors that could affect the models generated at later stages, which included: (1) removal of mixtures, salts, and inorganic/organometallic compounds; (2) ring aromatization as well as standardization of the carboxyl, nitro, and sulfonyls groups; (3) deletion of duplicates and exclusion of stereoisomers of the same compound, as 3D-molecular descriptors are not used in this work (see below). After data curation, compounds with undefined Minimum Inhibitory Concentration (MIC) values and values greater than 300  $\mu$ g/mL were removed [106], leaving a final set of 592 molecules for the generation of the models. Finally, logarithmic transformation of MIC values was achieved to normalize the experimental information; a conversion of MIC values from  $\mu$ g/mL to molar concentration (M = mol/L) was done, followed by a transformation to *p*MIC according to:

$$\nu \text{MIC} = -\log_{10}[\text{MIC}] \tag{4}$$

#### 3.2. Calculation of Molecular Descriptors

The structures of the molecules of interest were drawn in Avogadro [107,108] and MarvinSketch [109] (ChemAxon, Budapest, Hungary). For the calculation of molecular descriptors, the Dragon [110] computational package was employed. For most of the molecules, their action mechanism is unknown, as in the case of many natural products. Therefore, because molecular conformation is not considered, only zero-, mono- and bi-dimensional descriptors were calculated. The number of descriptors employed per family for the Genetic Algorithms (GA) technique were as follows: 45 constitutional, 105 topological, 33 connectivity indices, 96 2D autocorrelations, 21 topological charge indices, 93 functional groups, 88 atom-centered fragments, and ten molecular properties. A complete list with the molecular descriptors and biological activities reported as MIC in  $\mu$ g/mL is found in the Supplementary Information (SI, Tables S1 and S2).

#### 3.3. Generation of the Mathematical Model

The regression models were built using GA techniques with the Mobydigs software [111]. GA are a statistical method that can be employed for analyzing complex systems that correlate with multiple variables. In an analogous manner to genetic evolution, this approximation allows the selection of the most suitable mathematical models from a large set [112]. Molecular descriptors were used as independent variables, and the experimental MIC value expressed as pMIC was used as the dependent variable. The selection of the best model was based on parameter values such as the coefficient of determination ( $R^2$ ); additionally, the standard deviation (s) and the Fischer test (F) were employed. The Y-scrambling test was used to guarantee that the QSPR model was built adequately in terms of correlation obtained by chance. This was performed first by randomly permuting the *p*MIC values of the data set and then using the new column of values with the same variables to generate new models. The procedure was repeated 300 times, and the quality parameters of these new models were compared to the original values of the QSPR model: if the original model has no chance correlation, the new  $R^2$  and  $Q^2$  values calculated for the permuted pMIC QSPR models will have a significant difference with respect to the original values; otherwise, the model is rejected. Non-collinearity between descriptors is determined using the QUIK rule. Accordingly, the QUIK rule is based on the K multivariate correlation index that measures the total correlation of a set of variables as follows:

$$K = \frac{\sum_{j} \left| \frac{\lambda_{j}}{\sum_{j} \lambda_{j}} - \frac{1}{p} \right|}{\frac{2(p-1)}{p}}$$
(5)

where *j* = 1, . . . , *p* and  $0 \le K \le 1$ 

 $\lambda$  are the eigenvalues obtained from the correlation matrix of the data set X(n, p), *n* represents the number of compounds, and *p* the number of variables (descriptors). The total correlation in the set given by the model descriptors *X* plus the response  $Y(K_{XY})$  should always be greater than that measured only in the set of descriptors ( $K_X$ ). In other words, if  $K_{XY} - K_X < \delta K$ , then the model is rejected. The typical  $\delta K$  threshold values for models are between 0.01–0.05. Models that have negative values are not allowed. To detect models with an excess of "good" or "bad" descriptors, the redundancy ( $R^P$ ) and overfitting ( $R^N$ ) rules were applied.  $R^P$  is defined as:

$$\mathcal{R}^{p} = \prod_{j=1}^{p^{+}} \left( 1 - M_{j} \left( \frac{p}{p-1} \right) \right)$$
(6)

with  $M_j > 0$  and  $0 \le R^P \le 1$ . While  $R^N$  is defined as

$$R^{N} = \sum_{j=1}^{p^{-}} M_{j}$$
(7)

where  $M_i < 0$  and  $-1 < R^N \le 0$ .

Given a regression model with *p* variables,  $R_{jy}$  is the absolute value of the regression coefficient between the *j*th descriptors and the response *Y*. In this sense,  $M_j$  can be calculated as follows:

$$M_j = \frac{R_{jy}}{R} - \frac{1}{P} \quad \text{and} \quad -\frac{1}{P} \le M_j \le \frac{p-1}{p} \tag{8}$$

The redundancy rule establishes that if  $R^P < t^P$ , then the model is rejected, where depending on the data,  $t^P$ , which is a user-defined threshold, can range from 0.01 and 0.1, with a suggested value of 0.05. The overfitting rule specifies that if  $R^N < t^N(\varepsilon)$ , then the model is rejected. Calculating  $t^N(\varepsilon)$  follows:

$$t^{N}(\varepsilon) = \frac{p\varepsilon - R}{pR} \tag{9}$$

where values of  $\varepsilon$  can range from 0.01 to 0.1, and p is the number of variables.

#### 3.4. QSPR Validation of Prediction Capability

The model reported herein was validated internally by the leave-many-out cross-validation method ( $Q_{LMO}^2$ ) for which the data set was randomly divided into a training set (415 molecules) and a test set (117 molecules) which represented 70% and 30%, respectively of the complete data set. The robustness of the model was further evaluated by bootstrap ( $Q_{BOOT}^2$ ) and  $Q_{EXT}^2$ . The predictive ability validation was performed by applying the Asymptotic  $Q^2$  rule ( $\delta Q$ ). It is assumed that a good model should have a small difference between fitting and predictive ability, in which significant variations between the  $R^2$  and  $Q^2$  values can be due to overfitting or to some not predictable samples [113,114]. The Asymptotic  $Q^2$  rule evaluates the asymptotic  $Q^2$  versus the  $Q^2$  values of the model:

$$Q^2{}_{LMO} - Q^2{}_{ASYM} < \delta Q \tag{10}$$

If the difference is less than the threshold, typically  $\delta Q = -0.005$ , then the model is rejected. As  $Q^2_{LMO}$  is asymptotically related to the value of  $R^2$ , it is possible to calculate the  $Q^2_{ASYM}$  by using the following expression:

$$Q^{2}_{ASYM} = 1 - \left(1 - R^{2}\right) \left(\frac{n}{n - p'}\right)^{2}$$
 (11)

where *n* is the number of objects and *p'* the number of model parameters. To further evaluate the predictive applicability of the model, some statistical parameters developed by Roy et al. were used [45–47]. According to the statistical parameters, the following criteria must be present for each evaluation as shown: (i)  $Q^2 > 0.5$ ; (ii)  $r^2 > 0.6$ ; (iii)  $(r^2 - r_0^2)/r^2 < 0.1$  (or  $(r^2 - r'_0^2)/r^2 < 0.1$ ); (iv)  $0.85 \le k \le 1.15$  (or  $0.85 \le k' \le 1.15$ ) and (v)  $|r_0^2 - r'_0^2| < 0.3$ . Additionally, two parameters derived from the above,  $\overline{r_m^2}$  and  $\Delta r_m^2$  were also used to evaluate the predictive power of the model [115]. According to,  $\overline{r_m^2}$  follows that:

$$\overline{r_m^2} = \frac{(r_m^2 + r'_m^2)}{2}$$
(12)

where  $r_m^2$  is calculated as

$$r_m^2 = r^2 \left( 1 - \sqrt{r^2 - r_0^2} \right) \tag{13}$$

and where:

$$r'_{m}{}^{2} = r^{2} \left( 1 - \sqrt{r^{2} - r'_{0}{}^{2}} \right) \tag{14}$$

While according to (15),  $\Delta r_m^2$  is obtained by the following expression:

$$\Delta r_m^2 = \left| r_m^2 - r'_m^2 \right|$$
(15)

The calculation of the  $r^2$ ,  $r_0^2$ ,  $r'_0^2$ , k and k' are shown in the SI.

#### 3.5. External Validation

The generated model was validated externally by the prediction of different sets of molecules that were not included in the generation of the model with the following specifications: (1) only molecules with reported MIC values and active towards *A. baumannii* were used, and (2) molecules above 300  $\mu$ g/mL were excluded. Data curation, as stated above, was performed on a total of 98 molecules, which were drawn in Avogadro, and their molecular descriptors were obtained from the Dragon software package. A complete list of descriptors and references can be found in the SI, Table S5.

#### 3.6. Virtual Screening

Five hundred twenty-eight natural products were obtained from the molecular database BIO-FACQUIM. To improve the consistency of the data, all the compounds were curated by (1) ring aromatization, (2) standardization of the carboxyl, nitro, and sulfonyl groups if present, and (3) addition of missing bonds where required. The structures of the molecules of interest were drawn in Avogadro, and their molecular descriptors were obtained from the Dragon software package. A complete list of descriptors can be found in Table S6.

#### 3.7. Plant Material

Roots of *Ipomoea stans* were collected in the state of Puebla, México. The botanical classification was carried out by Abigail Aguilar, Head of the Instituto Mexicano del Seguro Social Herbarium in Mexico City (IMSSM), and a voucher specimen (number 15077) was deposited at IMSSM. Exudates from the bark of *Ipomoea murucoides* were collected manually on the campus of the Universidad Autónoma del Estado de Morelos (UAEM) in Cuernavaca, Morelos, Mexico. The plant material was identified by Biol. Alejandro Flores and a voucher specimen (No. 22444) were deposited at the Herbarium of the Centro de Investigación en Biodiversidad y Conservación, UAEM. Roots of *Ipomoea purga* were authenticated and donated by M. Sc. Abigail Aguilar, Head of the Instituto Mexicano del Seguro Social Herbarium in Mexico City (IMSSM). A voucher specimen (number 16180) is deposited at IMSSM.

#### 3.8. Extraction and Isolation of Compounds

The dried, powdered roots of I. purga and I. stans (250.0 g each one) were extracted by maceration with MeOH (500 mL × 3) to obtain a dark syrup (25.0 g *I. purge*, and 20.4 g *I. stans*). The dark syrups were extracted with distilled water (3  $\times$  50 mL) and dichloromethane (DCM, 3  $\times$  50 mL) to afford a dark solid (9.3 g I. purga and 7.6 g I. stans). The dark solids (1.0 g I. purga, 1.1 g I. stans) were submitted to a C18 column (Supelco,  $10 \times 15$  mm) with a gradient of MeOH:H₂O (0:100 to 100:0, at increments of 10%), fractions were collected and (0.7 g I. purga, 0.6 g I. stans) was obtained. The resinous solids were percolated on an activated charcoal column, eluting with MeOH. Fractions of 5 mL were collected and reunited, giving the convolvulin (0.42 g I. purga and 0.32 g I. stans). Convolvulin of I. purga was chromatographed on normal and inverse phase silica gel columns, using mobile phase DCM/MeOH/H₂O (84:14:2), respectively, with MeOH gradient, yielding 80 mg IPJALB (compound 63). From the convolvulin of *I. stans* in the same conditions, 30 mg of ISACAF (compound 62) and 27 mg of ISACAR (compound 61) were obtained. Exudates from the bark of Ipomoea murucoides (15 g) were dried, ground, and dissolved in MeOH to give, after filtration and removal of the solvent, a brown solid material (10 g). The brown solid was dissolved in a mixture of CHCl₃:MeOH (9:1). This solution was subsequently subjected to passage over a silica gel column eluted with a gradient system of CHCl₃:MeOH (from 9:1 to 7:3), leading to the separations of two chromatographic fractions. Purification of the less polar chromatographic fraction was carried out by preparative HPLC. Eluates with retention time, tR, and value of 23.5 min were collected and reinjected into the HPLC system

to achieve pure IM620 (compound **57**). The rest of the compounds tested for biological essays were given by Dr. Ismael León, purified by similar methods, and used as received.

#### 3.9. Bacterial Strains

*Escherichia coli* ATCC 25922 and *Staphylococcus aureus* ATCC 29,213 were purchased from the American Type Culture Collection. MDR clinical isolates, which are non-susceptible to at least one agent in three or more antimicrobial categories and cause nosocomial infections, were obtained from the Center for Research on Infectious Diseases collection of the National Institute of Public Health (Instituto Nacional de Salud Pública), Cuernavaca, Morelos, Mexico. The various strains include the following isolates: *A. baumannii* 9736 and 10324, *E. coli* 10225, *K. pneumoniae* 6411 and 3407-2, and two *P. aeruginosa* 4899 and 4677. These isolates are metallo-β-lactamase-producers and are resistant to all betalactam antibiotics, including cephalosporins, and carbapenems.

#### 3.10. Antibacterial Assays

The antibacterial activity of the compounds was qualitatively measured following the Kirby–Bauer method (1996), according to the CLSI (Clinical and Laboratory Standards Institute) recommendations [116]. Briefly, Petri dishes containing Müeller–Hinton agar were sown with bacteria inoculums from 1 to  $2 \times 10^8$  colony-forming units (CFU)/mL, and then 3 µL of the compound solution was placed over the agar. Incubation time was from 16 to 19 h at  $35 \pm 2$  °C. A halo of growth inhibition was observed as a positive result. Two reference susceptible strains were used: *E. coli* ATCC 25922 and *S. aureus* ATCC 29213.

#### 4. Conclusions

There is a great number of compounds that have been biologically tested as antibacterials against A. baumannii. Nevertheless, a careful selection of them needs to be done before their use for the generation of a QSPR/QSAR model. Our QSPR model comprises fifteen 2D-dimensional descriptors: one 2D-autocorrelation, two topological, six functional group counts, and six atomcentered fragments descriptors. These molecular descriptors were used to describe their suitability as antibacterial compounds against A. baumannii. Additionally, our QSPR model prediction ability, which was fully evaluated by means of different test and validation sets of molecules, allowed us the identification of antibacterial compounds against A. baumannii by means of a virtual screening of the BIOFACQUIM database, an interesting source for potential bioactive compounds. The identified compounds, isolated from Ipomoea sp., indicated specific molecular features consistent with antibacterial activity. Furthermore, our model proved to be predictively reliable by identifying compounds isolated from local collections of *Ipomoea* sp. that showed a promising wide antibacterial spectrum. Upon experimental testing, compound 60 showed wide antibacterial activity against clinically isolated multidrug-resistant bacteria. Its structure can be found in other compounds also isolated from *Ipomoea*, as in the case of molecule 63. Molecule 60 could serve as a lead compound for the development of new compounds with possible wide-spectrum antimicrobial activity, like 60a-60e proposed in this work.

**Supplementary Materials:** The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/ph16020250/s1, Figure S1. Scatterplots and Williams plots for each training-test experiment; Figure S2. Scatterplots for each of the molecular descriptors against experimental *p*MIC; Figure S3. Chemical structures from the ChEMBL database, which incorporate the deoxy-sugar moiety found in compound 60; Figure S4. SwissADME predictions for compound 60 and derivatives; Figure S5. BOILED-Egg model for 60-derivatives and compounds (a–f) and 60 to 60h; Table S1. Complete list of descriptors from the Dragon package; Table S2. List of molecules used for the generation of the QSPR model; Table S3. Average values for each molecular descriptor; Table S4. Statistical parameters for the evaluation of the predictive power; Table S5. List of molecules used for the validation test sets, their calculated molecular descriptors, and predicted *p*MIC values; Table S7. List of 60-derivatives, their calculated molecular descriptors, and predicted *p*MIC values; Table S7. List of 60-derivatives, their calculated molecular descriptors, and predicted pMIC values. Author Contributions: Conceptualization, F.J.P.-C. and R.S.R.-H.; methodology, F.J.P.-C.; software, R.S.R.-H.; validation, F.J.P.-C., R.S.R.-H. and N.P.; formal analysis, F.J.P.-C.; investigation, F.J.P.-C.; resources, I.L.-R. and J.S.-S.; data curation, F.J.P.-C.; writing—original draft preparation, F.J.P.-C.; writing—review and editing, R.S.R.-H., I.L.-R., J.S.-S., H.T. and N.P.; visualization, N.P.; supervision, R.S.R.-H., H.T. and N.P.; project administration, R.S.R.-H.; funding acquisition, R.S.R.-H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by CONACyT, Mexico, projects number 256927 and 320243.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and Supplementary Material.

Acknowledgments: We would like to thank CONACyT for a Ph.D. grant (F.J.P.-C.). In addition, R.S.R.-H. thanks Manuel Villanueva from the Universidad de Guanajuato for the software facilities. The authors would like to acknowledge Alejandro Sanchez-Pérez for technical support in the susceptibility assays. R.S.R.-H. thanks Anđelija M. Malenović and Ana Protić for kindly inviting him to contribute a full research article to the Special Issue of Pharmaceuticals on "The Age of In-Silico Methods in Drug Discovery, Development, Manufacture and Quality Control".

Conflicts of Interest: The authors declare no conflict of interest.

#### References

- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. *Clin. Infect. Dis.* 2016, 62, e51–e77. [CrossRef] [PubMed]
- 2. Pollack, L.A.; Srinivasan, A. Core elements of hospital antibiotic stewardship programs from the Centers for Disease Control and Prevention. *Clin. Infect. Dis.* **2014**, *59*, S97–S100. [CrossRef] [PubMed]
- Kadri, S.S. Key Takeaways from the U.S. CDC's 2019 Antibiotic Resistance Threats Report for Frontline Providers. *Crit. Care Med.* 2020, 48, 939–945. [CrossRef] [PubMed]
- 4. Antibiotic resistance threats in the United States, 2019. Available online: https://www.cdc.gov/drugresistance/Biggest-Threats. html. (accessed on 11 September 2022).
- De Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [CrossRef]
- Novoa-Farias, O.; Frati-Munari, A.C.; Peredo, M.A.; Flores-Juarez, S.; Novoa-Garcia, O.; Galicia-Tapia, J.; Romero-Carpio, C.E. Susceptibility to rifaximin and other antimicrobials of bacteria isolated in patients with acute gastrointestinal infections in Southeast Mexico. *Rev. Gastroenterol. Mex.* 2017, 82, 226–233. [CrossRef]
- Ramirez-Castillo, F.Y.; Moreno-Flores, A.C.; Avelar-Gonzalez, F.J.; Marquez-Diaz, F.; Harel, J.; Guerrero-Barrera, A.L. An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: Cross-sectional study. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 34. [CrossRef]
- Sosa-Hernandez, O.; Matias-Tellez, B.; Estrada-Hernandez, A.; Cureno-Diaz, M.A.; Bello-Lopez, J.M. Incidence and costs of ventilator-associated pneumonia in the adult intensive care unit of a tertiary referral hospital in Mexico. *Am. J. Infect. Control* 2019, 47, e21–e25. [CrossRef]
- 9. Asokan, G.V.; Vanitha, A. WHO global priority pathogens list on antibiotic resistance: An urgent need for action to integrate One Health data. *Perspect. Public Health* **2018**, *138*, 87–88. [CrossRef]
- 10. Custovic, A.; Smajlovic, J.; Tihic, N.; Hadzic, S.; Ahmetagic, S.; Hadzagic, H. Epidemiological monitoring of nosocomial infections caused by acinetobacter baumannii. *Med. Arch.* **2014**, *68*, 402–406. [CrossRef]
- Dijkshoorn, L.; Nemec, A.; Seifert, H. An increasing threat in hospitals: Multidrug-resistant Acinetobacter baumannii. *Nat. Rev. Genet.* 2007, *5*, 939–951. [CrossRef]
- 12. Geisinger, E.; Huo, W.; Hernandez-Bird, J.; Isberg, R.R. Acinetobacter baumannii: Envelope determinants that control drug resistance, virulence, and surface variability. *Annu. Rev. Microbiol.* **2019**, *73*, 481–506. [CrossRef] [PubMed]
- 13. Montefour, K.; Frieden, J.; Hurst, S.; Helmich, C.; Headley, D.; Martin, M.; Boyle, D.A. Acinetobacter baumannii: An emerging multidrug-resistant pathogen in critical care. *Crit. Care Nurse* 2008, *28*, 15–25, quiz 26. [CrossRef] [PubMed]
- Sebeny, P.J.; Riddle, M.S.; Petersen, K. Acinetobacter baumannii skin and soft-tissue infection associated with war trauma. *Clin. Infect. Dis.* 2008, 47, 444–449. [CrossRef] [PubMed]
- O'Toole, G.; Kaplan, H.B.; Kolter, R. Biofilm formation as microbial development. *Annu. Rev. Microbiol.* 2000, 54, 49. [CrossRef] [PubMed]
- Butler, M.S.; Gigante, V.; Sati, H.; Paulin, S.; Al-Sulaiman, L.; Rex, J.H.; Fernandes, P.; Arias, C.A.; Paul, M.; Thwaites, G.E. Analysis of the clinical pipeline of treatments for drug-resistant bacterial infections: Despite progress, more action is needed. *Antimicrob. Agents Chemother.* 2022, 66, e01991-21. [CrossRef]

- 17. Dheman, N.; Mahoney, N.; Cox, E.M.; Farley, J.J.; Amini, T.; Lanthier, M.L. An Analysis of Antibacterial Drug Development Trends in the United States, 1980–2019. *Clin. Infect. Dis.* **2021**, *73*, e4444–e4450. [CrossRef]
- Luepke, K.H.; Suda, K.J.; Boucher, H.; Russo, R.L.; Bonney, M.W.; Hunt, T.D.; Mohr, J.F., 3rd. Past, Present, and Future of Antibacterial Economics: Increasing Bacterial Resistance, Limited Antibiotic Pipeline, and Societal Implications. *Pharmacotherapy* 2017, 37, 71–84. [CrossRef]
- 19. Vila, J.; Moreno-Morales, J.; Balleste-Delpierre, C. Current landscape in the discovery of novel antibacterial agents. *Clin. Microbiol. Infect.* **2020**, *26*, 596–603. [CrossRef]
- 20. Jackson, N.; Czaplewski, L.; Piddock, L.J.V. Discovery and development of new antibacterial drugs: Learning from experience? *J. Antimicrob. Chemother.* **2018**, *73*, 1452–1459. [CrossRef]
- 21. Feher, M.; Schmidt, J.M. Property distributions: Differences between drugs, natural products, and molecules from combinatorial chemistry. *J. Chem. Inf. Comput. Sci.* 2003, 43, 218–227. [CrossRef]
- 22. Whitty, A.; Zhong, M.; Viarengo, L.; Beglov, D.; Hall, D.R.; Vajda, S. Quantifying the chameleonic properties of macrocycles and other high-molecular-weight drugs. *Drug Discov. Today* **2016**, *21*, 712–717. [CrossRef]
- Bueschleb, M.; Dorich, S.; Hanessian, S.; Tao, D.; Schenthal, K.B.; Overman, L.E. Synthetic strategies toward natural products containing contiguous stereogenic quaternary carbon atoms. *Angew. Chem. Int. Ed.* 2016, 55, 4156–4186. [CrossRef] [PubMed]
- 24. Ganesan, A. The impact of natural products upon modern drug discovery. *Curr. Opin. Chem. Biol.* 2008, 12, 306–317. [CrossRef] [PubMed]
- Kong, D.-X.; Jiang, Y.-Y.; Zhang, H.-Y. Marine natural products as sources of novel scaffolds: Achievement and concern. *Drug Discov. Today* 2010, 15, 884–886. [CrossRef] [PubMed]
- 26. Wei, W.; Cherukupalli, S.; Jing, L.; Liu, X.; Zhan, P. Fsp(3): A new parameter for drug-likeness. *Drug Discov. Today* 2020, 25, 1839–1845. [CrossRef]
- Furukawa, A.; Schwochert, J.; Pye, C.R.; Asano, D.; Edmondson, Q.D.; Turmon, A.C.; Klein, V.G.; Ono, S.; Okada, O.; Lokey, R.S. Drug-Like Properties in Macrocycles above MW 1000: Backbone Rigidity versus Side-Chain Lipophilicity. *Angew. Chem. Int. Ed.* 2020, 59, 21571–21577. [CrossRef]
- Cragg, G.M.; Schepartz, S.A.; Suffness, M.; Grever, M.R. The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. J. Nat. Prod. 1993, 56, 1657–1668. [CrossRef]
- Chhetri, B.K.; Lavoie, S.; Sweeney-Jones, A.M.; Kubanek, J. Recent trends in the structural revision of natural products. *Nat. Prod. Rep.* 2018, 35, 514–531. [CrossRef]
- 30. Muratov, E.N.; Bajorath, J.; Sheridan, R.P.; Tetko, I.V.; Filimonov, D.; Poroikov, V.; Oprea, T.I.; Baskin, I.I.; Varnek, A.; Roitberg, A. QSAR without borders. *Chem. Soc. Rev.* **2020**, *49*, 3525–3564. [CrossRef]
- 31. Banegas-Luna, A.J.; Ceron-Carrasco, J.P.; Perez-Sanchez, H. A review of ligand-based virtual screening web tools and screening algorithms in large molecular databases in the age of big data. *Future Med. Chem.* **2018**, *10*, 2641–2658. [CrossRef]
- 32. Vazquez, J.; Lopez, M.; Gibert, E.; Herrero, E.; Luque, F.J. Merging Ligand-Based and Structure-Based Methods in Drug Discovery: An Overview of Combined Virtual Screening Approaches. *Molecules* **2020**, *25*, 4723. [CrossRef]
- Wang, Z.; Sun, H.; Shen, C.; Hu, X.; Gao, J.; Li, D.; Cao, D.; Hou, T. Combined strategies in structure-based virtual screening. *Phys. Chem. Chem. Phys.* 2020, 22, 3149–3159. [CrossRef] [PubMed]
- 34. Neves, B.J.; Braga, R.C.; Melo-Filho, C.C.; Moreira-Filho, J.T.; Muratov, E.N.; Andrade, C.H. QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery. *Front. Pharmacol.* **2018**, *9*, 1275. [CrossRef] [PubMed]
- Zhang, L.; Fourches, D.; Sedykh, A.; Zhu, H.; Golbraikh, A.; Ekins, S.; Clark, J.; Connelly, M.C.; Sigal, M.; Hodges, D.; et al. Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. *J. Chem. Inf. Model.* 2013, 53, 475–492. [CrossRef]
- Neves, B.J.; Dantas, R.F.; Senger, M.R.; Melo-Filho, C.C.; Valente, W.C.; de Almeida, A.C.; Rezende-Neto, J.M.; Lima, E.F.; Paveley, R.; Furnham, N.; et al. Discovery of New Anti-Schistosomal Hits by Integration of QSAR-Based Virtual Screening and High Content Screening. J. Med. Chem. 2016, 59, 7075–7088. [CrossRef] [PubMed]
- Gomes, M.N.; Braga, R.C.; Grzelak, E.M.; Neves, B.J.; Muratov, E.; Ma, R.; Klein, L.L.; Cho, S.; Oliveira, G.R.; Franzblau, S.G.; et al. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. *Eur. J. Med. Chem.* 2017, 137, 126–138. [CrossRef]
- Lian, W.; Fang, J.; Li, C.; Pang, X.; Liu, A.-L.; Du, G.-H. Discovery of Influenza A virus neuraminidase inhibitors using support vector machine and Naïve Bayesian models. *Mol. Divers.* 2016, 20, 439–451. [CrossRef]
- Kurczyk, A.; Warszycki, D.; Musiol, R.; Kafel, R.; Bojarski, A.J.; Polanski, J. Ligand-Based Virtual Screening in a Search for Novel Anti-HIV-1 Chemotypes. J. Chem. Inf. Model. 2015, 55, 2168–2177. [CrossRef]
- Prado-Prado, F.J.; González-Díaz, H.; Santana, L.; Uriarte, E. Unified QSAR approach to antimicrobials. Part 2: Predicting activity against more than 90 different species in order to halt antibacterial resistance. *Bioorganic Med. Chem.* 2007, 15, 897–902. [CrossRef]
- Semenyuta, I.V.; Trush, M.M.; Kovalishyn, V.V.; Rogalsky, S.P.; Hodyna, D.M.; Karpov, P.; Xia, Z.; Tetko, I.V.; Metelytsia, L.O. Structure-Activity Relationship Modeling and Experimental Validation of the Imidazolium and Pyridinium Based Ionic Liquids as Potential Antibacterials of MDR Acinetobacter Baumannii and Staphylococcus Aureus. Int. J. Mol. Sci. 2021, 22, 563. [CrossRef]
- Lucas, A.J.; Sproston, J.L.; Barton, P.; Riley, R.J. Estimating human ADME properties, pharmacokinetic parameters and likely clinical dose in drug discovery. *Expert Opin. Drug Discov.* 2019, 14, 1313–1327. [CrossRef]
- 43. Currie, G.M. Pharmacology, Part 2: Introduction to Pharmacokinetics. J. Nucl. Med. Technol. 2018, 46, 221-230. [CrossRef]

- Vinarov, Z.; Abdallah, M.; Agundez, J.A.G.; Allegaert, K.; Basit, A.W.; Braeckmans, M.; Ceulemans, J.; Corsetti, M.; Griffin, B.T.; Grimm, M.; et al. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. *Eur. J. Pharm. Sci.* 2021, 162, 105812. [CrossRef] [PubMed]
- Roy, K.; Chakraborty, P.; Mitra, I.; Ojha, P.K.; Kar, S.; Das, R.N. Some case studies on application of "rm2" metrics for judging quality of quantitative structure–activity relationship predictions: Emphasis on scaling of response data. *J. Comput. Chem.* 2013, 34, 1071–1082. [CrossRef]
- Roy, K.; Das, R.N. QSTR with extended topochemical atom (ETA) indices. 16. Development of predictive classification and regression models for toxicity of ionic liquids towards Daphnia magna. *J. Hazard Mater.* 2013, 254–255, 166–178. [CrossRef] [PubMed]
- 47. Roy, P.P.; Roy, K. On some aspects of variable selection for partial least squares regression models. *QSAR Comb. Sci.* 2008, 27, 302–313. [CrossRef]
- Kar, S.; Roy, K.; Leszczynski, J. Applicability domain: A step toward confident predictions and decidability for QSAR modeling. In *Computational Toxicology*; Springer: Berlin/Heidelberg, Germany, 2018; pp. 141–169. [CrossRef]
- Netzeva, T.I.; Worth, A.; Aldenberg, T.; Benigni, R.; Cronin, M.T.; Gramatica, P.; Jaworska, J.S.; Kahn, S.; Klopman, G.; Marchant, C.A.; et al. Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52. *Altern. Lab. Anim.* 2005, *33*, 155–173. [CrossRef]
- 50. Roy, K.; Kar, S.; Ambure, P. On a simple approach for determining applicability domain of QSAR models. *Chemom. Intell. Lab. Syst.* **2015**, *145*, 22–29. [CrossRef]
- 51. Lin, Y.C.; Ribaucourt, A.; Moazami, Y.; Pierce, J.G. Concise Synthesis and Antimicrobial Evaluation of the Guanidinium Alkaloid Batzelladine D: Development of a Stereodivergent Strategy. J. Am. Chem. Soc. 2020, 142, 9850–9857. [CrossRef] [PubMed]
- Matsingos, C.; Al-Adhami, T.; Jamshidi, S.; Hind, C.; Clifford, M.; Mark Sutton, J.; Rahman, K.M. Synthesis, microbiological evaluation and structure activity relationship analysis of linezolid analogues with different C5-acylamino substituents. *Bioorganic Med. Chem.* 2021, 49, 116397. [CrossRef]
- Singh, A.; Kumar, N.; Singh, S.; Sewariya, S.; Sharma, M.K.; Chandra, R. High-valued pyrazinoindole analogues: Synthesis, antibacterial activity, structure activity relationship and molecular dynamics analyses. *Results Chem.* 2021, 3, 100194. [CrossRef]
- 54. Wang, J.; Zhang, P.L.; Ansari, M.F.; Li, S.; Zhou, C.H. Molecular design and preparation of 2-aminothiazole sulfanilamide oximes as membrane active antibacterial agents for drug resistant *Acinetobacter baumannii*. *Bioorganic Chem.* 2021, 113, 105039. [CrossRef] [PubMed]
- 55. Zhou, M.; Eun, Y.J.; Guzei, I.A.; Weibel, D.B. Structure—Activity studies of divin: An inhibitor of bacterial cell division. ACS Med. Chem. Lett. 2013, 4, 880–885. [CrossRef]
- Lyons, A.; Kirkham, J.; Blades, K.; Orr, D.; Dauncey, E.; Smith, O.; Dick, E.; Walker, R.; Matthews, T.; Bunt, A.; et al. Discovery and structure-activity relationships of a novel oxazolidinone class of bacterial type II topoisomerase inhibitors. *Bioorganic Med. Chem. Lett.* 2022, 65, 128648. [CrossRef]
- Vereshchagin, A.N.; Frolov, N.A.; Konyuhova, V.Y.; Kapelistaya, E.A.; Hansford, K.A.; Egorov, M.P. Investigations into the structure-activity relationship in gemini QACs based on biphenyl and oxydiphenyl linker. *RSC Adv.* 2021, *11*, 3429–3438. [CrossRef]
- Siricilla, S.; Mitachi, K.; Yang, J.; Eslamimehr, S.; Lemieux, M.R.; Meibohm, B.; Ji, Y.; Kurosu, M. A New Combination of a Pleuromutilin Derivative and Doxycycline for Treatment of Multidrug-Resistant Acinetobacter baumannii. *J. Med. Chem.* 2017, 60, 2869–2878. [CrossRef]
- 59. Randić, M. On characterization of cyclic structures. J. Chem. Inf. Comput. Sci. 1997, 37, 1063–1071. [CrossRef]
- 60. Helguera, A.M.; Combes, R.D.; Gonzalez, M.P.; Cordeiro, M.N. Applications of 2D descriptors in drug design: A DRAGON tale. *Curr. Top. Med. Chem.* **2008**, *8*, 1628–1655. [CrossRef]
- Trinajstic, N.; Babic, D.; Nikolic, S.; Plavsic, D.; Amic, D.; Mihalic, Z. The Laplacian matrix in chemistry. J. Chem. Inf. Comput. Sci. 1994, 34, 368–376. [CrossRef]
- 62. Sadeghian-Rizi, S.; Sakhteman, A.; Hassanzadeh, F. A quantitative structure-activity relationship (QSAR) study of some diaryl urea derivatives of B-RAF inhibitors. *Res. Pharm. Sci.* 2016, *11*, 445–453. [CrossRef]
- 63. Amini, Z.; Fatemi, M.H.; Gharaghani, S. Hybrid docking-QSAR studies of DPP-IV inhibition activities of a series of aminomethylpiperidones. *Comput. Biol. Chem.* 2016, 64, 335–345. [CrossRef] [PubMed]
- 64. Geary, R.C. The Contiguity Ratio and Statistical Mapping. Inc. Stat. 1954, 5, 115–146. [CrossRef]
- Velázquez-Libera, J.L.; Caballero, J.; Toropova, A.P.; Toropov, A.A. Estimation of 2D autocorrelation descriptors and 2D Monte Carlo descriptors as a tool to build up predictive models for acetylcholinesterase (AChE) inhibitory activity. *Chemom. Intell. Lab. Syst.* 2019, 184, 14–21. [CrossRef]
- Kuhn, B.; Mohr, P.; Stahl, M. Intramolecular hydrogen bonding in medicinal chemistry. J. Med. Chem. 2010, 53, 2601–2611. [CrossRef]
- Yang, N.J.; Hinner, M.J. Getting Across the Cell Membrane: An Overview for Small Molecules, Peptides, and Proteins. In Site-Specific Protein Labeling: Methods and Protocols; Gautier, A., Hinner, M.J., Eds.; Springer: New York, NY, USA, 2015; pp. 29–53. [CrossRef]

- 68. Khondker, A.; Bider, R.C.; Passos-Gastaldo, I.; Wright, G.D.; Rheinstadter, M.C. Membrane interactions of non-membrane targeting antibiotics: The case of aminoglycosides, macrolides, and fluoroquinolones. *Biochim. Biophys. Acta Biomembr.* **2021**, *1863*, 183448. [CrossRef]
- 69. Ghose, A.K.; Crippen, G.M. Atomic Physicochemical Parameters for Three-Dimensional Structure-Directed Quantitative Structure-Activity Relationships I. Partition Coefficients as a Measure of Hydrophobicity. J. Comput. Chem. **1986**, 7, 565–577. [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods. J. Phys. Chem. A 1998, 102, 3762–3772. [CrossRef]
- Viswanadhan, V.N.; Ghose, A.K.; Revankar, G.R.; Robins, R.K. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. *J. Chem. Inf. Model.* 1989, 29, 163–172. [CrossRef]
- De, P.; Kumar, V.; Kar, S.; Roy, K.; Leszczynski, J. Repurposing FDA approved drugs as possible anti-SARS-CoV-2 medications using ligand-based computational approaches: Sum of ranking difference-based model selection. *Struct. Chem.* 2022, 33, 1741–1753. [CrossRef] [PubMed]
- 73. De, P.; Roy, K. Nitroaromatics as hypoxic cell radiosensitizers: A 2D-QSAR approach to explore structural features contributing to radiosensitization effectiveness. *Eur. J. Med. Chem. Rep.* **2022**, *4*, 100035. [CrossRef]
- 74. Alizadeh, S.R.; Ebrahimzadeh, M.A. Antiviral Activities of Pyridine Fused and Pyridine Containing Heterocycles, A Review (from 2000 to 2020). *Mini Rev. Med. Chem.* 2021, 21, 2584–2611. [CrossRef]
- Altaf, A.A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E. A review on the medicinal importance of pyridine derivatives. J. Drug Des. Med. Chem. 2015, 1, 1–11. Available online: https://www.sciencepublishinggroup.com/journal/ paperinfo?journalid=329&doi=10.11648/j.jddmc.20150101.11 (accessed on 6 December 2022).
- 76. Huang, Z.; Yoon, S. Integration of Time-Series Transcriptomic Data with Genome-Scale CHO Metabolic Models for mAb Engineering. *Processes* **2020**, *8*, 331. [CrossRef]
- 77. Schmidt, S.; Schindler, M.; Eriksson, L. Block-wise Exploration of Molecular Descriptors with Multi-block Orthogonal Component Analysis (MOCA). *Mol. Inform.* 2022, 41, e2100165. [CrossRef] [PubMed]
- 78. Bai, L.Y.; Dai, H.; Xu, Q.; Junaid, M.; Peng, S.L.; Zhu, X.; Xiong, Y.; Wei, D.Q. Prediction of Effective Drug Combinations by an Improved Naive Bayesian Algorithm. *Int. J. Mol. Sci.* **2018**, *19*, 467. [CrossRef] [PubMed]
- McEuen, K.; Borlak, J.; Tong, W.; Chen, M. Associations of Drug Lipophilicity and Extent of Metabolism with Drug-Induced Liver Injury. Int. J. Mol. Sci. 2017, 18, 1335. [CrossRef]
- Nachega, J.B.; Ishoso, D.K.; Otokoye, J.O.; Hermans, M.P.; Machekano, R.N.; Sam-Agudu, N.A.; Bongo-Pasi Nswe, C.; Mbala-Kingebeni, P.; Madinga, J.N.; Mukendi, S.; et al. Clinical Characteristics and Outcomes of Patients Hospitalized for COVID-19 in Africa: Early Insights from the Democratic Republic of the Congo. *Am. J. Trop. Med. Hyg.* 2020, *103*, 2419–2428. [CrossRef] [PubMed]
- Lee, S.; Barron, M.G. A mechanism-based 3D-QSAR approach for classification and prediction of acetylcholinesterase inhibitory potency of organophosphate and carbamate analogs. J. Comput. Aided Mol. Des. 2016, 30, 347–363. [CrossRef]
- 82. Sorokina, M.; Steinbeck, C. Review on natural products databases: Where to find data in 2020. *J. Cheminform.* 2020, 12, 20. [CrossRef]
- 83. Sorokina, M.; Merseburger, P.; Rajan, K.; Yirik, M.A.; Steinbeck, C. COCONUT online: Collection of Open Natural Products database. *J. Cheminform.* 2021, 13, 2. [CrossRef] [PubMed]
- 84. Rutz, A.; Sorokina, M.; Galgonek, J.; Mietchen, D.; Willighagen, E.; Gaudry, A.; Graham, J.G.; Stephan, R.; Page, R.; Vondrasek, J.; et al. The LOTUS initiative for open knowledge management in natural products research. *Elife* **2022**, *11*, e70780. [CrossRef]
- 85. Pilon-Jimenez, B.A.; Saldivar-Gonzalez, F.I.; Diaz-Eufracio, B.I.; Medina-Franco, J.L. BIOFACQUIM: A Mexican Compound Database of Natural Products. *Biomolecules* **2019**, *9*, 31. [CrossRef]
- Munoz-Rodriguez, P.; Carruthers, T.; Wood, J.R.I.; Williams, B.R.M.; Weitemier, K.; Kronmiller, B.; Goodwin, Z.; Sumadijaya, A.; Anglin, N.L.; Filer, D.; et al. A taxonomic monograph of Ipomoea integrated across phylogenetic scales. *Nat. Plants* 2019, 5, 1136–1144. [CrossRef]
- 87. Nimmakayala, P.; Vajja, G.; Reddy, U.K. Ipomoea. In *Wild Crop Relatives: Genomic and Breeding Resources*; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 123–132. [CrossRef]
- Protti, Í.F.; Rodrigues, D.R.; Fonseca, S.K.; Alves, R.J.; Oliveira, R.B.; Maltarollo, V.G. Do Drug-likeness Rules Apply to Oral Prodrugs? *ChemMedChem* 2021, 16, 1446–1456. [CrossRef] [PubMed]
- 89. Stepanic, V.; Ziher, D.; Gabelica-Markovic, V.; Jelic, D.; Nunhuck, S.; Valko, K.; Kostrun, S. Physicochemical profile of macrolides and their comparison with small molecules. *Eur. J. Med. Chem.* **2012**, *47*, 462–472. [CrossRef]
- 90. Walters, W.P. Going further than Lipinski's rule in drug design. Expert Opin. Drug Discov. 2012, 7, 99–107. [CrossRef] [PubMed]
- Leon-Rivera, I.; Del Rio-Portilla, F.; Enriquez, R.G.; Rangel-Lopez, E.; Villeda, J.; Rios, M.Y.; Navarrete-Vazquez, G.; Hurtado-Dias, I.; Guzman-Valdivieso, U.; Nunez-Urquiza, V.; et al. Hepta-, hexa-, penta-, tetra-, and trisaccharide resin glycosides from three species of Ipomoea and their antiproliferative activity on two glioma cell lines. *Magn. Reson. Chem.* 2017, 55, 214–223. [CrossRef]
- Leon-Rivera, I.; Villeda-Hernandez, J.; Campos-Pena, V.; Aguirre-Moreno, A.; Estrada-Soto, S.; Navarrete-Vazquez, G.; Rios, M.Y.; Aguilar-Guadarrama, B.; Castillo-Espana, P.; Rivera-Leyva, J.C. Evaluation of the neuroprotective activity of stansin 6, a resin glycoside from Ipomoea stans. *Bioorganic Med. Chem. Lett.* 2014, 24, 3541–3545. [CrossRef]

- 93. Mirón-López, G.; Herrera-Ruiz, M.; Estrada-Soto, S.; Aguirre-Crespo, F.; Vázquez-Navarrete, L.; León-Rivera, I. Resin Glycosides from the Roots of Ipomoea tyrianthina and Their Biological Activity. J. Nat. Prod. 2007, 70, 557–562. [CrossRef]
- 94. Gonzalez, M.; Zamilpa, A.; Marquina, S.; Navarro, V.; Alvarez, L. Antimycotic spirostanol saponins from Solanum hispidum leaves and their structure-activity relationships. *J. Nat. Prod.* **2004**, *67*, 938–941. [CrossRef]
- 95. Lee, C.L.; Hwang, T.L.; Yang, J.C.; Cheng, H.T.; He, W.J.; Yen, C.T.; Kuo, C.L.; Chen, C.J.; Chang, W.Y.; Wu, Y.C. Anti-Inflammatory Spirostanol and Furostanol Saponins from Solanum macaonense. J. Nat. Prod. 2014, 77, 1770–1783. [CrossRef]
- 96. Tezuka, Y.; Honda, K.; Banskota, A.H.; Thet, M.M.; Kadota, S. Kinmoonosides A-C, three new cytotoxic saponins from the fruits of *Acacia concinna*, a medicinal plant collected in myanmar. *J. Nat. Prod.* **2000**, *63*, 1658–1664. [CrossRef] [PubMed]
- 97. Pettit, G.R.; Schaufelberger, D.E.; Nieman, R.A.; Dufresne, C.; Saenz-Renauld, J.A. Antineoplastic agents, 177. Isolation and structure of phyllanthostatin 6. *J. Nat. Prod.* **1990**, *53*, 1406–1413. [CrossRef]
- 98. Susplugas, S.; Hung, N.V.; Bignon, J.; Thoison, O.; Kruczynski, A.; Sevenet, T.; Gueritte, F. Cytotoxic arylnaphthalene lignans from a Vietnamese acanthaceae, Justicia patentiflora. *J. Nat. Prod.* **2005**, *68*, 734–738. [CrossRef] [PubMed]
- 99. Shi, D.K.; Zhang, W.; Ding, N.; Li, M.; Li, Y.X. Design, synthesis and biological evaluation of novel glycosylated diphyllin derivatives as topoisomerase II inhibitors. *Eur. J. Med. Chem.* **2012**, *47*, 424–431. [CrossRef] [PubMed]
- 100. Zhang, H.J.; Rumschlag-Booms, E.; Guan, Y.F.; Wang, D.Y.; Liu, K.L.; Li, W.F.; Nguyen, V.H.; Cuong, N.M.; Soejarto, D.D.; Fong, H.H.S.; et al. Potent Inhibitor of Drug-Resistant HIV-1 Strains Identified from the Medicinal Plant Justicia gendarussa. *J. Nat. Prod.* 2017, *80*, 1798–1807. [CrossRef]
- 101. Wang, T.M.; Hojo, T.; Ran, F.X.; Wang, R.F.; Wang, R.Q.; Chen, H.B.; Cui, J.R.; Shang, M.Y.; Cai, S.Q. Cardenolides from Saussurea stella with cytotoxicity toward cancer cells. *J. Nat. Prod.* 2007, *70*, 1429–1433. [CrossRef]
- 102. Gelmi, M.L.; Fontana, G.; Pocar, D.; Pontremoli, G.; Pellegrino, S.; Bombardelli, E.; Riva, A.; Balduini, W.; Carloni, S.; Cimino, M. Novel 3-O-glycosyl-3-demethylthiocolchicines as ligands for glycine and gamma-aminobutyric acid receptors. *J. Med. Chem.* 2007, 50, 2245–2248. [CrossRef]
- Ambure, P.; Cordeiro, M. Importance of data curation in QSAR studies especially while modeling large-size datasets. In Ecotoxicological QSARs; Springer: Berlin/Heidelberg, Germany, 2020; pp. 97–109. [CrossRef]
- Fourches, D.; Muratov, E.; Tropsha, A. Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research. J. Chem. Inf. Model. 2010, 50, 1189–1204. [CrossRef] [PubMed]
- 105. Young, D.; Martin, T.; Venkatapathy, R.; Harten, P. Are the chemical structures in your QSAR correct? *QSAR Comb. Sci.* 2008, 27, 1337–1345. [CrossRef]
- 106. Kowalska-Krochmal, B.; Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. *Pathogens* **2021**, *10*, 165. [CrossRef]
- 107. Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. *J. Cheminform.* **2012**, *4*, 17. [CrossRef] [PubMed]
- 108. Avogadro Home Page. Available online: https://avogadro.cc/ (accessed on 12 December 2022).
- MarvinSketch, 20.18.0 program; Chemaxon: Budapest, Hungary, 2022. Available online: https://chemaxon.com/products/ marvin(accessed on 12 December 2022).
- 110. Talete, S. Dragon for Windows (Software for Molecular Descriptor Calculations), Version 5.4; Talete, Srl: Milano, Italy, 2006.
- 111. Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M. MobyDigs: Software for regression and classification models by genetic algorithms. *Data Handl. Sci. Technol.* 2003, 23, 141–167. [CrossRef]
- 112. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992.
- 113. Mattioni, B.E.; Jurs, P.C. Development of quantitative structure-activity relationship and classification models for a set of carbonic anhydrase inhibitors. *J. Chem. Inf. Comput. Sci.* 2002, 42, 94–102. [CrossRef] [PubMed]
- 114. Miller, A. Subset Selection in Regression; Chapman and Hall/CRC: Boca Raton, FL, USA, 2002.
- Ojha, P.K.; Mitra, I.; Das, R.N.; Roy, K. Further exploring rm2 metrics for validation of QSPR models. *Chemom. Intell. Lab. Syst.* 2011, 107, 194–205. [CrossRef]
- 116. Schwalbe, R.; Steele-Moore, L.; Goodwin, A.C. Antimicrobial Susceptibility Testing Protocols; Crc Press: Boca Raton, FL, USA, 2007. [CrossRef]

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.



INSTITUTO DE INVESTIGACIÓN EN CIENCIAS BÁSICAS Y APLICADAS

POSGRADO EN CIENCIAS



Cuernavaca, Mor., a 19 de abril de 2024

# DRA. LINA ANDREA RIVILLAS ACEVEDO COORDINADORA DEL POSGRADO EN CIENCIAS PRESENTE

Atendiendo a la solicitud para emitir DICTAMEN sobre la revisión de la tesis titulada: Diseño *in sílico*, búsqueda y evaluación biológica de nuevos antibióticos contra la bacteria multirresistente *Acinetobacter baumannii*, que presenta el alumno M. en C. Francisco José Palacios Can (10036236) para obtener el título de Doctor en Ciencias.

Director de tesis: Dr. Rodrigo Said Razo Hernández Codirección de tesis: Dr. José Raymundo Hugo Tlahuext Romero Unidad Académica: Instituto de Investigación en Ciencias Básicas y Aplicadas (IICBA)

Nos permitimos informarle que nuestro voto es:

NOMBRE	DICTAMEN	FIRMA
Dr. Juan Gabriel Navarrete Vázquez Facultad de Farmacia UAEM	APROBADO	
Dr. Jaime Escalante García CIQ - UAEM	APROBADO	
Dr. José Luis Medina Franco Facultad de Química UNAM	APROBADO	
Dr. Herbert Höpfl Bachner ClQ - UAEM		
Dr. Luis Jesús Córdova Bahena Facultad de Medicina UNAM	APROBADO	
Dr. César Millán Pacheco Facultad de Farmacia UAEM	APROBADO	
Dr. José Raymundo Hugo Tlahuext Romero CIQ - UAEM	APROBADO	







Se expide el presente documento firmado electrónicamente de conformidad con el ACUERDO GENERAL PARA LA CONTINUIDAD DEL FUNCIONAMIENTO DE LA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MORELOS DURANTE LA EMERGENCIA SANITARIA PROVOCADA POR EL VIRUS SARS-COV2 (COVID-19) emitido el 27 de abril del 2020.

El presente documento cuenta con la firma electrónica UAEM del funcionario universitario competente, amparada por un certificado vigente a la fecha de su elaboración y es válido de conformidad con los LINEAMIENTOS EN MATERIA DE FIRMA ELECTRÓNICA PARA LA UNIVERSIDAD AUTÓNOMA DE ESTADO DE MORELOS emitidos el 13 de noviembre del 2019 mediante circular No. 32.

## Sello electrónico

#### LUIS JESÚS CÓRDOVA BAHENA | Fecha: 2024-04-19 15:13:37 | FIRMANTE

i6q6GNravR1DnXuYePMgteqbjmsbhSVzgpxCFNpxFVAj9QK7AdUcYpZfpfBpAfKlbz5N15ftGTHGKL8ZWFdlL3+IgSwMsQLB4G+RtbP6znbNjL6GWtZZp8HMNv9tuDRDYoNJoIIC bS3BK3PsO1yC1rW8BAQ40y0uFAC7OekoL0MC9YNb/KIITJQn8xuTvalFUWUgAd6XTlkYtMNJ9kxMHQ+0xrWfwMVaCC3FNRo+tc3YQ/w+DqjIQ+6A4J6Tf08VQ8PG/zEXzZ079 sJPQTBKMEUsQ9yUtaX4g4zAMKthMUTfql6hZT7X1HzKp8tiL49y8F3oYc9LBuuFwVS9zbiVJg==

#### JOSE LUIS MEDINA FRANCO | Fecha: 2024-04-19 15:37:48 | FIRMANTE

0bgTAt0YON3rAiQkAallzCT6u6gGUUgtYTBJcTYJbaEORe53C7ukQHwY7dNGO9saOGxqaIH9ibvAX3UqA1Q+zQzdQMw6W5QGddOvEn5hM37+7OIRr4s0dbMQJZ0zoloJckyZ zaPhiLfbxBFHm1+Or7/KQ55l8OhLPvpyrajtJ0WWXOBDQ/4ODb+Z32U/wEfyu81WxO3xcX3w2pZokIUBQWWibeq1rjrJ6t0InNIWQ4EE8PHGmv5JunMyoX6q1U3nz0pUKtRgBar2 Qc+UdYk6cbTO+DW88bHv6rA0TA5FXXO0BmoqIYEH0EuXKF3pT30gw8XFAVtHrAtpYYTbFNiTJw==

#### CESAR MILLAN PACHECO | Fecha:2024-04-19 15:50:43 | FIRMANTE

Ix+Id27SRb1bFi4C4pgSfw33V8WvppDuqEojTpnniT+IdPoHszkG6536xwql19xr7z43LA1DLJE84o1iGnZO36tV17/oS68VLKCJi0+1h9npzdCRrJrs/xbBB7waLXjiyhNqdnzE3gMVX ouiKU3GvhM6eSO/oFI88GNJs3dHHXNTlinmd41y2YuLGsgTq66nICoo6Xs//w9afYPS5++DWati8S388bOGWHh3f8U6SH203zfBT7UWSrJtNzFy3g+mVMrVndNluBOCacFchOc0 +kPzCTZl7aMBIIFwtSZsckmTJPeXmgRa4ZZrLmpxuKrJaVCT5ki+zefwN95bArptg==

#### JAIME ESCALANTE GARCIA | Fecha: 2024-04-19 19:27:31 | FIRMANTE

G/wvtW/rD8y+go+bD0D0zEp+YqROqIWr7XABICixRjD16U6UBh9SHRPRqzPGPy7ipkfxlQwuVgaBqP7XtdEFKXPIu7uAtoXQmkcgprx0zzZYTgtzMA172ZUC9+jVS6qXcR6ExFze VK/fG4K34KDEcG5Cyp26J1RJMnanwKS60O1oQ63L0AZTUJ6Yg62rkl7SietwVIEwl/ayeVCrem2jNplVxG1pwjdXs7Ava9uDzEtkAkqLXw0695+Kc7DUOMgJzYadZTCY+GVomVv 9M3DnP/ybrJvI3QCpQE21o7VWNeG/mHISxzgvoi0AGUj+r1JUJQ6TQa5/Z7xVeD0KRuDxxw==

#### JUAN GABRIEL NAVARRETE VAZQUEZ | Fecha: 2024-04-20 19:39:38 | FIRMANTE

gLrYYpq7Wq0qsOOZq8JFHyC993vAJygV5Jbsske5Jlx62omaiNjOMkwm4tOKkcOlj9VCftQykVsFl5zzW3zkzEPuh5mCpf2rqq2eX0h9yG1CVYIF/uWBfJZ8PmltouOzcFwnSi44V1 RHaLA7ddaiD8shBFCyuRMvmLSdlPreSsfTboollHY4hQ65TvmFP1MpxjktraTJA74y9HoyZfQu06mKxlKjBfEpgFvsh2ck6ljDzWVMwFQ+ijan6Dcrxxblw6e9jxLOX8zXUt7kmpD6Vu EN1Lmb1GjqLqEzqZU2ee9aHib2xf1SPNRV+vE9aSAnCOsvINNIeh/TnSR0KvNC3w==

#### JOSE RAYMUNDO HUGO TLAHUEXT ROMERO | Fecha: 2024-04-22 09:39:50 | FIRMANTE

PVcfXnSjynEwSh7luBGhW5y04HcxYGfH2mnzD1PnA3Y0Rbcdeo9fOr01rKiZdkAvJwQSCcFQJLKqXVsyQLBVkFgB7zlxXpX2SYGLvfUATg4l7vywTECm7JA7Tn89DW1NZx8uR vCrFZn3GAYQrOnxh7aJNPgRL/7UdlBxTklkb5MrhdmZs69oRhUuVnNPXRqW+8lcJ1G/upEXveKjkVr+AP4qfScYKyvvSm45pKb4YF+8etbe+KZ8JlR3zcAyru7O61Y8nyYJcl2wrCk Ekfrrg+m5C/F+ufMJzx+eDt4KkTqTOYv9B6Hv2Ors1R+NqZpx+ZkvoruGnqsF7sOc4WDyYg==

#### Puede verificar la autenticidad del documento en la siguiente dirección electrónica o

escaneando el código QR ingresando la siguiente clave:



0dQvGXo3z

https://efirma.uaem.mx/noRepudio/Sqa6mesl8DTCdsPjChRVaO6hkrmyy6F3



