

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MORELOS

INSTITUTO DE INVESTIGACIÓN EN CIENCIAS BÁSICAS Y APLICADAS

CENTRO DE INVESTIGACIÓN EN INGENIERÍA Y CIENCIAS APLICADAS

"EVALUACIÓN DEL COMPORTAMIENTO TÉRMICO DE UN INTERCAMBIADOR DE CALOR CONSIDERANDO PROBLEMAS DE CORROSIÓN Y RECUBRIMIENTO DE NIP"

TESIS PARA OBTENER EL GRADO DE: DOCTORADO EN INGENIERÍA Y CIENCIAS APLICADAS CON OPCIÓN TERMINAL EN: TECNOLOGÍA MECÁNICA

M. I. C. A. VÍCTOR MANUEL ZEZATTI FLORES

DIRECTOR: DR. GUSTAVO URQUIZA BELTRÁN DR. MIGUEL ÁNGEL BASURTO PENSADO SINODALES: DR. ARMANDO HUICOCHEA RODRÍGUEZ, DR. JUAN CARLOS GARCÍA CASTREJÓN, DRA. LAURA LILIA CASTRO GÓMEZ, DR. VÍCTOR MANUEL VELÁZQUEZ FLORES, DR. DARÍO COLORADO GARRIDO

CUERNAVACA, MORELOS

INSTITUTO DE INVESTIGACIÓN EN CIENCIAS BÁSICAS Y APLICADAS

Jefatura de Posgrado en Ingeniería y Ciencias Aplicadas

ESTADO DE MORELOS

WE BCIICAD

Cuernavaca, Morelos, 06 de mayo de 2019.

VICTOR MANUEL ZEZZATI FLORES PRESENTE

Por este conducto le notifico que su tesis de Doctorado titulada "EVALUACIÓN DEL COMPORTAMIENTO TÉRMICO EN UN INTERCAMBIADOR DE CALOR CONSIDERANDO PROBLEMAS DE CORROSIÓN Y RECUBRIMIENTO DE NIP"

Fue aprobada en su totalidad por el jurado revisor y examinador integrado por los ciudadanos

NOMBRE	FIRMA
DR. ARMANDO HUICOCHEA RODRÍGUEZ	al and pul
DR. JUAN CARLOS GARCÍA CASTREJÓN	Alist
DRA. LAURA LILIA CASTRO GÓMEZ	
DR. VÍCTOR MANUEL VELÁZQUEZ FLORES	AndAm
DR. GUSTAVO URQUIZA BELTRÁN	Cottop 10
DR. MIGUEL ÁNGEL BASURTO PENSADO	- Selfe
DR. DARIO COLORADO GARRIDO	/

Por consiguiente, se autoriza a editar la presentación definitiva de su trabajo de investigación para culminar en la defensa oral del mismo.

Sin otro particular aprovecho la ocasión para enviarle un cordial saludo.

Atentamente **Por una humanidad culta** Una universidad de excelencia

DR. ROSENBERG JAVIER ROMERO DOMÍNGUEZ COORDINADOR DEL POSGRADO EN INGENIERÍA Y CIENCIAS APLICADAS

RJRD*RSU/nmc

Av. Universidad 1001 Col. Chamilpa, Cuernavaca Morelos, México, 62209 Tel. (777) 329 70 00, ext. 6208 / raquel.sotelo@uaem.mx

INSTITUTO DE INVESTIGACIÓN EN CIENCIAS BÁSICAS Y APLICADAS

Jefatura de Posgrado en Ingeniería y Ciencias Aplicadas

Bitta Broom (1)

Cuernavaca. Morelos. 06 de mayo de 2019.

VICTOR MANUEL ZEZZATI FLORES PRESENTE

Por este conducto le notifico que su tesis de Doctorado titulada "EVALUACIÓN DEL COMPORTAMIENTO TÉRMICO EN UN INTERCAMBIADOR DE CALOR CONSIDERANDO PROBLEMAS DE CORROSIÓN Y RECUBRIMIENTO DE NIP"

Fue aprobada en su totalidad por el jurado revisor y examinador integrado por los ciudadanos

NOMBRE	FIRMA
DR. ARMANDO HUICOCHEA RODRÍGUEZ	er. Cartrus
DR. JUAN CARLOS GARCÍA CASTREJÓN	alinit
DRA. LAURA LILIA CASTRO GÓMEZ	0
DR. VICTOR MANUEL VELÁZQUEZ FLORES	A IL
DR. GUSTAVO URQUIZA BELTRÁN	Au
DR. MIGUEL ÁNGEL BASURTO PENSADO	-5-1
DR. DARIO COLORADO GARRIDO	Sontaball

Por consiguiente, se autoriza a editar la presentación definitiva de su trabajo de investigación para cutminar en la defensa oral del mismo

Sin otro particular aprovecho la ocasión para enviarie un cordial saludo.

Atentamente Por una humanidad culta Una universidad de excelencia

DR. ROSENBERG JAVIER ROMERO DOMINGUEZ COORDINADOR DEL POSGRADO EN INGENIERIA Y CIENCIAS APLICADAS

RIRD*KSUmme

Au Universidaet 1021 Cal Chamilipa, Culemanaca Manelos, Mexico, 82309 Tel. (777) 329 70 00, est, 6209 / rassel screngtuserume

Resumen

Este proyecto de investigación se basa en el funcionamiento de los intercambiadores de calor de tubos, su uso y problemática que presentan en las centrales hidroeléctricas.

Se toma como base el diseño de intercambiador de calor de tubos de uso industrial, del cual se tomaron los parámetros de operación para armar un equipo de monitoreo para el laboratorio, con la instrumentación adecuada para poder analizar el comportamiento de transferencia de energía calorífica en tuberías de diferentes materiales como el cobre, el acero 1018 y el acero inoxidable 316L en condiciones ideales, dichos materiales en condiciones de deterioro con presencia de oxidación forzada y también con un recubrimiento de níquel-electroless.

Se valida la utilización del recubrimiento como una solución viable al problema de corrosión presente en la industria.

ABSTRACT

This research Project is base on the operation of the tubes heat exchangers, their uses and their probles hydroelectric power plants.

It is based on the design of heat exchanger tubes for industrial use, which took the operation parameters to assemble a monitoring equipment for the laboratory, with the appropriate instrumentation to analyze the behavior of heat transfer in pipes of different materials such as copper, steel 1018 and stainless steel 316L in ideal conditions, in conditions of deterioration with the presence of forced oxidation and also with а nickel-electroless coating. The use of the coating is validated as a viable solution to the corrosion problem present in the industry.

AGRADECIMIENTOS

Es muy grato expresar mi más sincero agradecimiento a todas aquellas personas, que, gracias a su apoyo, sus consejos y confianza hicieron posible este trabajo.

Al Centro de Investigación en Ingeniería y Ciencias Aplicadas por el apoyo brindado para la realización de esta tesis. En especial al laboratorio de termohidráulica.

A mi asesor Dr. Gustavo Urquiza Beltrán y mi coasesor Dr. Miguel Ángel Basurto Pensado por su apoyo.

A mi asesora política Dra. Laura Lilia Castro Gómez por su apoyo.

Al jurado revisor: Dr. Armando Huicochea Rodríguez, Dr. Juan Carlos García Castrejón, Dra. Laura Lilia Castro Gómez, Dr. Víctor Manuel Velázquez Flores, Dr. Darío Colorado Garrido, Dr. Miguel Ángel Basurto Pensado y Dr. Gustavo Urquiza Beltrán.

Al Consejo Nacional de Ciencia y Tecnología (CONACyT) por el apoyo económico brindado durante estos años que duro el proyecto.

CONTENIDO:

Capítulo 1. Introducción	
1.1 Estado del Arte	13
1.2 Antecedentes y descripción del problema	14
1.3 Justificación	16
1.4 Objetivo general	16
1.5 Objetivos particulares	16

Capítulo 2. Marco Teórico

2.1 Características del Intercambiadores de calor utilizado		17
	2.1.1 Intercambiadores de acuerdo con su aplicación	18
	2.1.2 Intercambiadores de acuerdo con su construcción	18
	2.1.3 Intercambiadores de acuerdo con el contacto de los	19
fluidos		
	2.1.4 Intercambiadores según su operación	19
	Flujo paralelo	
	Contraflujo	
	Flujo Cruzado	
	2.1.5 Intercambiadores de un paso (simple) o múltiples	20
	pasos	
	2.1.6 Intercambiadores regenerativos y no regenerativos	21
Capítulo 3.	Metodología de Diseño	
3.1 Aná	llisis previo	23
3.2 Des	cripción del equipo de monitoreo	25
3.3 Tubería de prueba		26
	3.3.1 Tubería de prueba con presencia de oxidación	28
	3.3.2 1 ^{ra} Oxidación de la tubería de prueba	28
	3.3.3 2 ^{da} Oxidación de la tubería de prueba	35

3.3.4 Soluciones realizadas con anterioridad al problema de	39
corrosión	
3.3.5 Soluciones realizadas al problema de corrosión	41
3.3.6 Tubería de prueba con recubrimiento	44
3.4 Pruebas en el equipo de monitoreo	45
3.4.1 Fluido caliente (aire)	46
3.4.2 Fluido frio (agua)	48
3.4.3 Adquisición de temperaturas	49
3.4.4 Estandarización de pruebas	51
3.5 Cálculos realizados	54
3.5.1 Parámetros utilizados	54
3.5.2 Ecuaciones utilizadas	55
3.5.3 Obtención de las correlaciones	58
3.5.3.1 Descripción del método de Nelder-Mead	60
3.5.3.2 Desarrollo del algoritmo	60
Capítulo 4. Análisis de Resultados	65
4.1 Tubería de prueba - condiciones normales de operación	65
4.2 Tubería de prueba – con presencia de oxidación	69
4.3 Tubería de cobre y acero 1018 con recubrimiento de Ni-P	74
4.4 Cálculos realizados	80
Capítulo 5. Conclusiones y Recomendaciones	86
5.1 Conclusiones	86
5.2 Recomendaciones	88
Bibliografía	89

ANEXOS:		
1	Participación en el XVI congreso internacional anual de la SOMIM	96
	Participación en el taller de nanociencias y nanotecnología	96
	Participación en la 3ra exposición de trabajos de investigación	n 97
	de estudiantes de postgrado en ingeniería y ciencias aplicada	is
	Presentación de trabajo en el XXXIII encuentro nacional y II congreso internacional de la AMIDIQ	97
	Ponente en el XVIII congreso internacional anual de la SOMI	M98
	Asistencia a las jornadas de capacitación del CONRICYT	98
	Participación en el XXI congreso internacional anual de la SOMIM	99
	Arbitraje de artículos en el XXIV congreso internacional	99
	anual de la SOMIM	
	Certificate for mechanical design at the leve lof associate SolidWorks Dassault Systems	100
0	Deservalle de céleviles reglinedes siles fluides de trabais en	101

- 2
- Desarrollo de cálculos realizados a los fluidos de trabajo en 101 Matlab

ÍNDICE DE FIGURAS:

Núme	ero Descripción	Página
1.1Es	quema de una turbina kaplan y su sistema de enfriamiento	14
1.2	Esquema de funcionamiento del intercambiador de calor	15
1.3	Espejo del intercambiador con presencia de	15
	corrosión e incrustaciones	

Capítulo 2

Número	Descripción	Página
2.1	Intercambiador de Flujo Cruzado	20
2.2	Intercambiador de un paso o paso simple	21
2.3	Intercambiador no regenerativo	22

Número	Descripción	Página
3.1	Vista superior v lateral del modelo en CAD	24
3.2	Contornos de temperatura y vectores de velocidad	24
	con óptima distribución de aire	
3.3	Vistas del equipo de monitoreo instrumentado	26
3.4	Tuberías de prueba	27
3.5	Solución de Ácido Sulfúrico (H ₂ SO ₄).	32
3.6	Colocación de tubería para oxidación en tubos de PVC.	32
3.7	Colocación de probetas en vaso de precipitado	33
3.8	Solución de ácido sulfhídrico (H2S)	37
3.9	Colocación de tubería para oxidación en tubos de PVC	38
3.10	Colocación de probetas en vaso de precipitado	38
3.11	Limpieza de la tubería interna	40
3.12	Sistema se distribución de agua (no recirculación)	40

3.13	Técnica de electrohilado	43
3.14	Técnica de escurrimiento	43
3.15	Técnica por dipcoating	44
3.16	Proceso de inmersión del níquel electroless	45
3.17	Tubo de cobre (Cu) y acero 1018 preparados para recubrir	45
3.18	Maquina de humo y distribución de haz de luz	47
3.19	Distancias de prueba	47
3.20	Posición en el ducto del aire para la medición de la	48
	velocidad con el anemómetro	
3.21	Sistema de circulación de agua.	48
3.22	Flujómetro de turbina con su esquema de funcionamiento	49
3.23	Circuito integrado para interconexión flujómetro-pc	49
3.24	Configuración de la interfaz gráfica en Labview	50
3.25	Transformación de los simplex tras una (a) reflexión,	64
	b) reflexión-expansión	
3.26	Transformación de los simplex (a) tras una contracción	64
	hacia afuera, (b) tras una contracción hacia adentro	
3.27	Transformación de los simplex tras un encogimiento	64

Número	Descripción Pa	ágina
4.1	Tubería de cobre y acero 1018 con presencia de oxidación	70
4.2	Tubería de cobre y acero 1018 con recubrimiento Ni-P	74

ÍNDICE DE TABLAS:

	Capítulo 3	
Número	Descripción	Página
3.1	Equivalencias de resistencia a la corrosión	30
3.2	Peso de las probetas	34
3.3	Peso de los tubos de prueba	34
3.4	Serie Electroquímica de los principales metales	36
3.5	Peso de las probetas	39
3.6	Peso de los tubos de prueba	39
3.7	Parámetros de Operación	51
3.8	Especificaciones y distribución de la tubería	54
3.9	Especificaciones de la carcasa	55

Número	Descripción	Página
4.1	Conductividad térmica de los materiales	65
4.2	Condiciones de operación para la tubería de cobre	80
4.3	Cálculos obtenidos para la tubería de cobre	81
4.4	Condiciones de operación para la tubería de cobre	81
	con oxidación	
4.5	Cálculos obtenidos para la tubería de cobre con oxidació	on 81
4.6	Condiciones de operación para la tubería de cobre con	82
	recubrimiento de Ni-P	
4.7	Cálculos obtenidos para la tubería de cobre con	82
	recubrimiento de Ni-P	
4.8	Condiciones de operación para la tubería de acero 1018	82
4.9	Cálculos obtenidos para la tubería de acero 1018	83
4.10	Condiciones de operación para la tubería de acero 1018	83
	con oxidación	
4.11	Cálculos obtenidos para la tubería de acero 1018	83

con oxidación

4.12	Condiciones de operación para la tubería de acero 1018	84
	con recubrimiento de Ni-P	
4.13	Cálculos obtenidos para la tubería de acero 1018 con	84
	recubrimiento de Ni-P	
4.14	Condiciones de operación para la tubería de	85
	acero inoxidable 316L	
4.15	Cálculos obtenidos para la tubería de acero inoxidable 316L	85

ÍNDICE DE GRÁFICAS:

	Capítulo 3		
Número	Descripción	Página	
3.1	Comportamiento del aire de salida con ambos	52	
	fluidos constantes		
3.2	Variación de flujo másico en el agua en diversas	53	
	posiciones		

Número	Descripción	Página
4.1	Comportamiento de la tubería de cobre en	66
	condiciones normales de operación	
4.2	Comportamiento de la tubería de acero 1018	67
	en condiciones normales de operación	
4.3	Comportamiento de la tubería de acero inoxidable	67
	316L en condiciones normales de operación	
4.4	Comparativo del comportamiento de las tuberías	68
	en condiciones normales de operación	
4.5	Comparativo del comportamiento de las tuberías en	69
	condiciones normales de operación con énfasis con	
	mayor flujo volumétrico	
4.6	Comportamiento de la tubería de cobre en condiciones	71
	de oxidación forzada	
4.7	Comportamiento de la tubería de cobre en condiciones	71
	normales y de oxidación forzada	
4.8	Comportamiento de la tubería de acero 1018 en	72
	condiciones de oxidación forzada	
4.9	Comportamiento de la tubería de acero 1018 en	73
	condiciones normales y de oxidación forzada	
4.10	Comportamiento de la tubería de cobre con el recubrimie	ento75

4.11	Comportamiento de la tubería de cobre en condiciones	76
	normales y con el recubrimiento	
4.12	Comportamiento de la tubería de acero 1018 con el	77
	recubrimiento	
4.13	Comportamiento de la tubería de acero 1018 en	78
	condiciones normales y con el recubrimiento	
4.14	Comportamiento de la tubería de cobre y acero 1018	79
	con el recubrimiento contra el acero inoxidable 316L	

SIMBOLOGÍA:

Símbolo	Descripción	Unidades
Ι	Intensidad de corriente	A
Р	Potencia eléctrica	W
V	Voltaje	V
Т	Temperatura	°C
T_{pro}	Temperatura Promedio	°C
ΔT_{ML}	Diferencia Media Logarítmica	°C
ΔT	Diferencial de Temperatura	°C
M_V	Flujo Volumétrico	l/ _{min}
M_M	Flujo Másico	$kg/_{S}$
Р	Presión	$\frac{kg}{cm^2}$
ΔP	Diferencial de Presión	$kg/_{cm^2}$
H _{in}	Altura del Intercambiador	m
A _{in}	Ancho del Intercambiador	m
P _{in}	Profundidad del Intercambiador	m
D_{min}	Diámetro Interior del Tubo	m
D_{max}	Diámetro Exterior del Tubo	m
E_T	Espesor Pared del Tubo	m
L_T	Longitud del Tubo	m
P_t	Paso Triangular de los Tubos	m
P_l	Paso Longitudinal de los Tubos	m
K _m	Condición Térmica del Material Cu – Ni	$W/_{m K}$
k	Condición Térmica del Material	$W/_{m K}$
h	Coeficiente Convectivo	$W/_{m^2 K}$
U	Coeficiente global de transferencia de calor	$W/_{m^2 K}$

ρ	Densidad	kg/m^3
C_p	Calor Específico	^{kJ} ∕ _{kg} ∘C
ν	Viscosidad Cinemática	$m^2/_S$
μ	Viscosidad Dinámica	$\frac{kg}{ms}$
V	Velocidad	$m_{/s}$
Q	Calor	kW
ηE	Efectividad del área de transferencia de calor	Adimensional
n	Número de Tubos	Adimensional
ØU	Factor de corrección para el coeficiente global	
	Adimensional de transferencia de calor	
ØQ	Factor de corrección para el Calor	Adimensional
ØΔP	Factor de corrección para la caída de Presión	Adimensional
C_n	Factor de correlación	Adimensional
Pr	Número de Prandlt	Adimensional
Pr _{Tprom}	Número de Prandlt de Temperatura Promedio	Adimensional
Pr_{TE}	Número de Prandlt de Temperatura de Entrada	Adimensional
RelP _r	Relación de Prandlt	Adimensional
Rel_x	Relación de Pasos entre Tubos	Adimensional
Re	Número de Reynolds	Adimensional
Nu	Número Nusset	Adimensional

SUBÍNDICES:

Descripción
Agua
Aire
Entrada
Salida

- Min Mínimo
- Max Máximo
- * Datos operación dados por el fabricante

1.1 ESTADO DEL ARTE

Las centrales hidroeléctricas, utilizan un sistema de enfriamiento con intercambiadores de calor de tubos para los generadores, el agua de enfriamiento se toma de los ríos, que se encuentran contaminados, teniendo consecuencia directa en los tanques, los espejos y la tubería de los intercambiadores, formando óxidos, corrosión localizada, incrustaciones y picaduras, reduciendo la eficiencia del equipo (Szabó 2006), siendo importante realizar estudios para minimizar este efecto (Demadis 2003). Se han propuesto diversas soluciones trabajando incluso con medios más agresivos como el agua de mar (Hodhkies 2005) o ácido permangánico (Subramanian 2007) y el efecto de la erosión y corrosión en tuberías de la aleación de cobre níquel, (Kuznicka 2009) material comúnmente utilizado en los intercambiadores. Una solución es el cambio de material para minimizar este efecto, sin afectar la transferencia de calor (Despènes 2012). Se han realizado estudios para observar este efecto antes y después de ser sometidos a un proceso de oxidación (Zhao 2012) y con materiales que son menos susceptibles, como el acero inoxidable 316L (Betova 2010) o el titanio (Hwang 2010), implicando un rediseño por la pérdida de transferencia de calor. Otra solución realizada son los inhibidores de corrosión para el cobre como lo es el benzotriazol y benzotriazoles (Pineda 2008) (Finsgar 2010), con una buena protección, pero no se tiene un sistema de recirculación de agua, no era posible implementarla, pero se trato de formar una película protectora con el mismo inhibidor (Maciel 2008) para recubrir y proteger la tubería, quedando una capa muy ligera y con las presiones de trabajo y la arena que viene con el agua, se desprende fácilmente. Se han realizado pruebas a diferentes recubrimientos para la problemática como el recubrimiento del níquel electroless (Wu 2011), como influye, su espesor y las soluciones a las que puede ser sometido, incluso comparando su comportamiento con el acero inoxidable.

PLANTEAMIENTO DEL PROBLEMA

1.2 ANTECEDENTES Y DESCRIPCIÓN DEL PROBLEMA

La central generadora de la Angostura, llamada Dr. Belisario Domínguez en Venustiano Carranza, Chiapas México, cuenta con una central hidroeléctrica con cinco generadores de 180*MW* cada uno, la cual tiene la capacidad de generar 900*MW* de energía eléctrica.

Debido a su diseño, para mantener su temperatura de operación se utiliza un sistema de recirculación de aire, en el cual, el aire frio circula a través de los polos del rotor y del devanado del estator, posteriormente se extrae el aire caliente y se hace pasar a través de intercambiadores de calor de tubos (aireagua), los cuales se encuentran montados en cada una de las ventanas del estator para que continúe su ciclo de enfriamiento (figura 1).

Cada generador tiene 24 Intercambiadores, los cuales realizan el enfriamiento del aire a través de la circulación agua que pasa a través de la tubería, en un sistema de flujo cruzado donde los fluidos de trabajo no se mezclan. El agua del sistema de enfriamiento se toma del cauce del río Grijalva, ésta pasa por los equipos y se vierte de nuevo en él, no teniendo una recirculación de agua (figura 2).

Figura 2 Esquema de funcionamiento del intercambiador de calor.

El intercambiador está compuesto con 200 tubos de 2m cada uno de una aleación de cupro-níquel *90/10*, aletas de aluminio tipo placa y en gran parte de su estructura de acero A-36. El agua utilizada en el sistema de enfriamiento, debido a los asentamiento humanos, contaminación, desechos, etc., está altamente contaminada principalmente por ácido sulfhídrico, generando que los intercambiadores de calor y los materiales que lo componen sean susceptibles a tener problemas de oxidación, erosión, incrustaciones y corrosión localizada (figura 3), teniendo como consecuencia en su parte más afectada picaduras que provocan fugas y por consiguiente un aumento en la temperatura del generador dañando el devanado del mismo.

Figura.3 Espejo del intercambiador con presencia de corrosión e incrustaciones.

1.3 JUSTIFICACIÓN

Debido a los problemas presentes de corrosión localizada en los intercambiadores de calor se presenta una solución diferente a las que se han llegado a realizar anteriormente, pero de manera viable, sencilla, económica y principalmente afectar en lo mínimo a la transferencia de energía calorífica, evitando un rediseño y una re-fabricación de los intercambiadores.

1.4 **OBJETIVO GENERAL**

Presentar una solución al problema de corrosión localizada en tuberías de los intercambiadores de calor, evaluando su comportamiento de transferencia de energía calorífica considerando diferentes materiales y un recubrimiento.

1.5 **OBJETIVOS PARTICULARES**

- Caracterizar el comportamiento de transferencia de energía calorífica de la tubería de forma individual a tubos de prueba de diferentes materiales como el cobre (Cu), el acero 1018 y el acero inoxidable 316L, en condiciones ideales con tubería nueva.
- Caracterizar el comportamiento de transferencia de energía calorífica de la tubería de forma individual a tubos de los mismos materiales, pero en condiciones forzadas de formación de corrosión.
- Colocar un recubrimiento níquel electroless con base níquel (Ni) y Fosforo (P) a los tubos de prueba de cobre (Cu) y de acero 1018.
- Caracterizar el comportamiento de transferencia de energía calorífica de la tubería de forma individual a tubos de los tubos de cobre (Cu) y de acero 1018, que se les aplico el recubrimiento de níquel-fosforo (NiP).

MARCO TEÓRICO

La principal razón para mejorar o realizar un rediseño en un intercambiador de calor, radica en aumentar su rendimiento y aunado a ello su eficiencia, siempre con un fin en particular.

Se arma un equipo de monitoreo con un intercambiador de calor de prueba para nuestro estudio. A continuación, se describe las características del intercambiador utilizado para las pruebas.

2.1 Características del Intercambiador de Calor Utilizado

Los intercambiadores de calor son dispositivos diseñados para transferir la energía calorífica desde un medio hacia otro medio. La energía se transfiere de un fluido caliente a un fluido frio en una sola dirección por conducción y convección y en algunos casos radiación como en los gases, transfiriendo del fluido con mayor temperatura hacia el fluido de menor temperatura.

Existen diferentes tipos de intercambiadores de calor basado en características específicas como su aplicación o fin, de acuerdo con la manera que interactúan o están en contacto los fluidos, de acuerdo con su construcción, por el tipo de operación, por el número de pasos simple o múltiple, por su función en un sistema particular y regenerativo no regenerativo.

Se tomas estos parámetros para implementar el equipo de monitoreo de trasferencia de calor del laboratorio, tratando de asemejar las condiciones a los intercambiadores utilizados en la industria y poder observar su comportamiento a una escala menor.

17

2.1.1 Intercambiadores de acuerdo a su Aplicación

Las aplicaciones de los intercambiadores de calor son muy variadas, las principales son:

- Intercambiador de Calor: Realiza la función doble de calentar y enfriar dos fluidos.
- Condensador: Condensa un vapor o mezcla de vapores.
- Enfriador: Enfría un fluido por medio de agua.
- Calentador: Aplica calor sensible a un fluido.
- Rehervidor: Conectado a la base de una torre fraccionadora proporciona el calor de reebullición que se necesita para la destilación.
- Vaporizador: Un calentador que vaporiza parte del líquido.

Se basó en la utilización de un intercambiador de calor, debido a que es el utilizado en las centrales como medio para enfriar el aire que produce el generador y enfriar el devanado.

2.1.2 Intercambiadores de acuerdo con su construcción

Los intercambiadores de calor de acuerdo su construcción se puede clasificar en:

- Intercambiadores tubulares: Los que están hechos a base de tubos, como el utilizado para poder llevar a cabo un análisis a diferentes tuberías con diferentes materiales.
- Intercambiadores compactos: Los que están hechos a base de placas o láminas planas paralelas.
- Intercambiadores misceláneos: Los que tienen diferentes configuraciones según el requerimiento específico.

2.1.3 Intercambiadores de acuerdo con el contacto de los fluidos

El contacto de los fluidos de trabajo es la base de su diseño de un intercambiador debido a que será la forma en que va a transmitir la energía calorífica. Por los fluidos de trabajo en este caso agua y aire se mantiene el utilizado en la industria, que es un intercambiador indirecto, en los cuales los fluidos están separados por una pared divisora por la cual se transporta el calor, está pared proporciona el área de trasferencia de calor necesaria para su intercambio.

En los intercambiadores directos los fluidos están en contacto uno con el otro, el área necesaria para la transferencia es proporcionada por las interfaces del líquido o por las del gas.

2.1.4 Intercambiadores Según su Operación

Una de las características en un intercambiador es la dirección relativa que existe entre los dos flujos de fluidos y pueden ser de flujo paralelo, contraflujo y flujo cruzado.

Flujo Paralelo

Existe un flujo paralelo cuando el flujo interno (de los tubos) y el flujo externo (de la carcasa) ambos fluyen en la misma dirección. En este caso, los dos fluidos entran al intercambiador por el mismo lado, como el calor se transfiere del fluido con mayor temperatura hacia el fluido de menor temperatura, la temperatura de los fluidos se aproxima la una a la otra, a lo largo del intercambiador tratando de alcanzar el equilibrio térmico entre ellos.

Contraflujo

Se presenta cuando los dos fluidos fluyen en la misma dirección pero en sentido opuesto. Cada uno de los fluidos entra al intercambiador por diferentes lados, la temperatura del fluido más frío se aproximará a la temperatura del fluido de entrada.

Flujo Cruzado

Se toma la distribución de los flujos el de tipo cruzado, en este tipo de arreglo, uno de los fluidos fluye de manera perpendicular al otro fluido, esto es, uno de los fluidos pasa a través de tubos mientras que el otro pasa alrededor de dichos tubos formando un ángulo de 90° (Figura 2.1).

Figura 2.1 Intercambiador de Calor de flujo Cruzado.

2.1.5 Intercambiadores de un Paso (Simple) o Múltiples Pasos

Un método que combina las características de dos o más intercambiadores y permite mejorar el desempeño de un intercambiador de calor es tener que pasar los dos fluidos varias veces dentro del mismo intercambiador. Cuando los fluidos intercambian calor más de una vez, se denomina intercambiador de múltiples pasos. Sí el fluido sólo intercambia calor una sola vez, se denomina de paso simple o de un solo paso (Figura 2.2). Se optó por simplificar el diseño utilizando un simple paso y facilitar la construcción.

Figura 2.2 Intercambiador de un paso o paso simple.

2.1.6 Intercambiadores Regenerativos y No Regenerativos

Los intercambiadores de calor también pueden ser clasificados por su función en un sistema particular, una clasificación es:

- Intercambiador regenerativo
- Intercambiador no-regenerativo

Un intercambiador regenerativo es aquel donde se utiliza el mismo fluido, el fluido caliente abandona el sistema cediendo su calor a un regenerador y posteriormente regresarlo al sistema. Este tipo son comúnmente utilizados en sistemas con temperaturas altas donde una porción del fluido del sistema se remueve del proceso principal y éste es posteriormente integrado al sistema.

En los intercambiadores que se utilizan dos tipos de fluidos, donde el fluido de mayor temperatura es enfriado por un fluido de un sistema separado y la energía removida no es regresada al sistema se les denomina no regenerativos (figura 2.3). Debido a la eficacia de este tipo de sistema y a la utilización de dos tipos de fluidos, se eligió para implementarlo en el intercambiador.

Figura 2.3 Intercambiador no-regenerativo.

Metodología de diseño

3.1 Análisis previo

Para poder observar el comportamiento de intercambio de energía calorífica de los intercambiadores de calor utilizados en la industria hidroeléctrica, se implementó el ensamble de un equipo de monitoreo para poder observar este y más fenómenos relacionados.

Se toma como base el diseño de intercambiador de calor de tubos analizado el Centro de Investigaciones en Ingeniería y Ciencias Aplicadas (CIICAp) marca Mesabi, en el cual tomaron parámetros de operación de un intercambiador de uso industrial que sirvió como base para su diseño.

Basándose en el "Diseño y construcción de un prototipo de intercambiador de calor con aplicaciones en centrales hidroeléctricas" (Zezatti 2012), se realiza un análisis previo con los cálculos necesarios de balance de energía, posteriormente el diseño en CAD de sus componentes. Las cuales se compones principalmente de la parte que interviene en la distribución del flujo de aire como es el ducto por donde se pasa y se estabiliza hasta incidir sobre resistencias eléctricas en donde absorbe el calor de ellas y posteriormente incidir el aire caliente sobre la tubería del intercambiador hasta su paso a través de él, y finalmente salir (figura 3.1).

Vista superior - CAD

Figura 3.1 Vista superior y lateral del modelo en CAD.

Posteriormente con el análisis realizado y evaluado en "Simulación numérica y construcción de un intercambiador de calor experimental" (Castañeda 2014), en donde se utilizó el software computacional MESHING–ICEM como medio discretizador y el ANSYS Fluent para la simulación con los valores residuales convergidos, se monitorearon los vectores de velocidad y contornos de temperatura, creando distintos planos en los que se aprecian las líneas de corriente y contornos deseados (figura 3.2), donde se inspeccionó sin presencia de turbulencia significativa en áreas específicas del prototipo, la distribución uniforme del aire en todo el intercambiador y el alcance óptimo de la temperatura a las distancias requeridas basadas en los parámetros originales.

233-02 234-02 244-02	1 300-00 1 200-00 1 200-00 1 200-00 1 200-00 1 200-00 1 200-00 1 200-00 2 300-01 2 400-01 2 400-	
Contornos de temperatura	C 51 + 42 2 390-94 Velocity Vectors Colored By Velocity Mag	Vectores de velocidad

Figura 3.2 Contornos de temperatura y vectores de velocidad con optima distribución de aire.

3.2 Descripción del equipo de monitoreo

En base al diseño y el comportamiento de los fluidos en las simulaciones, se implementa el equipo de monitoreo integrando el intercambiador de calor con la instrumentación necesaria para su funcionamiento y análisis de los fluidos que intervienen.

Se instaló un ventilador para suministrar el aire forzado al interior del ducto, y por medio de un anemómetro Dwyer se monitorea la velocidad del aire a diferentes alturas y distancia determinada. Por medio de un controlador de temperatura Autonics, se controla la temperatura de las resistencias eléctricas que van a calentar el aire pasando a través de ellas. Se instala un sistema de circulación de agua con dos depósitos de agua uno superior y un inferior, por el cual se hace pasar a los tanques y tubería del intercambiador, para monitorear el caudal volumétrico se instala un flujómetro de turbina a la entrada del intercambiador. Para monitorear las temperaturas de todo el sistema se instalaron 32 termopares tipo T (Cu–Constantan), y por medio de un adquisidor de datos de national Instrumnet y la interface Labview, se adquieren los valores (figura 3.3).

Vista total del equipo.

Vista lateral y frontal del intercambiador.

Figura 3.3 Vistas del equipo de monitoreo instrumentado.

3.3 Tubería de prueba

Para la elección del material utilizado en la tubería del intercambiador, nos basamos en los equipos utilizados en la industria en su composición en general y a las propuestas utilizadas para su protección.

La tubería utilizada en los intercambiadores de calor de las hidroeléctricas, son de dos aleaciones principalmente, de cupro-níquel $70/_{30}$ y $90/_{10}$, que contienen cobre (*Cu*) en un 70% y 90% y níquel (*Ni*) en un 30% y 10% respectivamente, el porcentaje en su composición níquel es para proteger un poco la tubería del medio al que está expuesto de manera continua principalmente agua y otros medios corrosivos.

El intercambiador está compuesto de 4 filas de 10 tubos cada fila en forma alineada. Se implementa la utilización de tubería de diferentes materiales para su análisis y observar su comportamiento. Debido a que las aleaciones son difíciles de conseguir, se utilizó el material de cobre (*Cu*) como tubería principal por el material utilizado en la industria.

Los tanques o espejos del intercambiador son fabricados de un material de acero estructural con un 0.26% Carbono (C) max. como el A-36, son altamente susceptibles de igual manera que la tubería a problemas de oxidación, incrustaciones y corrosión localizada. Se elige tubería de acero 1018, por ser un acero muy utilizado, por su resistencia mecánica, ductilidad y por su bajo contenido de carbono (C) del 0.15 a 2%, para observar el comportamiento de este material en el intercambiador.

Algunos de las soluciones que se han propuesto y llevado a cabo en la industria para evitar los problemas de corrosión es el cambio de tuberías por otra de un material más resistente a estos medios, como las aleaciones de aceros inoxidables, debido al porcentaje de níquel (*Ni*) y el cromo (*Cr*) en su composición ya que tienen buena resistencia a la corrosión en general, una buena resistencia (dureza) y soldabilidad. Claro que el solo hecho de cambiar la tubería implica una serie de cálculos y de rediseño de los intercambiadores debido a su baja conductividad térmica. Debido a ello de eligió también la tubería de acero inoxidable tipo 316L, el cual contiene un contendido de carbono (*C*) menor al 0.3%.

Se prepararon tuberías de prueba de acuerdo a las especificaciones de diseño del intercambiador con el [1] cobre (Cu), el [2] acero inoxidable tipo 316L y el [3] acero 1018 (figura 3.4).

Figura 3.4 Tuberías de prueba.

3.3.1 Tubería de prueba con presencia de oxidación

Debido a la problemática en la tubería utilizada en los intercambiadores de calor de las hidroeléctricas, se pretende tener un punto de referencia con respecto a dicha problemática y como punto de comparación con la tubería en condiciones ideales o el material nuevo, debido a esta razón se induce una oxidación forzada a los tubos de prueba para su análisis.

3.3.2 1ª Oxidación en la Tubería de Prueba

Las pruebas de corrosión de laboratorio son métodos importantes para entender el comportamiento de los metales y aleaciones en diferentes ambientes corrosivos.

Uno de los métodos más usados en estudios de oxidación para determinar el grado de afectación en los metales, es el de pérdida de peso. El método de pérdida de peso relaciona el daño causado por la corrosión con pérdida de peso en materiales.

Para realizar las pruebas es necesario seguir algunas recomendaciones.

- Manufactura de Probetas: Primero se tiene que cortar una probeta de los materiales a utilizar de dimensiones similares, como medio de observación.
- Limpieza Previa: Es necesario realizar su limpieza antes de ser empleados. Las probetas y los tubos se deben desengrasar para remover cualquier suciedad, aceite o grasa que pueda intervenir en las pruebas de corrosión. Esto se puede lograr mediante el pulido con polvo limpiador, seguido por el enjuagado completo en un disolvente apropiado, pudiendo ser acetona, metanol, etc. Otro de los cuidados que debe darse es el colocarlos en un desecador hasta el comienzo de las pruebas.

- Volumen se Solución: El volumen empleado de solución a estudiar es un aspecto que se debe considerar al realizar las pruebas de corrosión. Es recomendable que el volumen sea lo suficientemente grande para evitar cambios apreciables de corrosión a causa del agotamiento de los constituyentes corrosivos o a la acumulación de productos de corrosión que pudieran afectar el avance de la misma.
- Duración: La duración de la prueba de corrosión está influenciada por la naturaleza de este y su finalidad. Los materiales que experimentan efectos de corrosión importantes no requieren de tiempos de prolongados para obtener velocidades de corrosión precisas. La formación de películas protectoras se observa en muchos materiales resistentes a la corrosión. Debido a ello, el realizar ensayos cortos en este tipo de materiales puede arrojar resultados no muy precisos de velocidad de corrosión.

Si las velocidades de corrosión esperadas son bajas o moderadas, se puede emplear la ecuación para calcular el tiempo de duración de las pruebas:

Duracion de la prueba (h) =
$$\frac{78.74}{velocidad de corrosión (mmy)}$$

Donde 78.74 es una constante de ajuste de unidades y *mmy* corresponde a milímetros por año. La velocidad de corrosión se calcula con la ecuación:

$$Velocidad \ de \ corrosión = \frac{KW}{ATD}$$

Donde *K* corresponde a una constante para el ajuste de unidades, *T* es el tiempo de exposición en horas, *W* es la masa perdida en gramos, *D* es la densidad del material en $\frac{gr}{cm^3}$ y *A* es el área de exposición en cm^2 .

A partir de la pérdida de peso:

$$mm/_{ano} = 87.6 \left(\frac{W}{ATD}\right)$$

Comúnmente se reporta en milésimas por pulgada por año, (1mil=0.001plg):

$$milpulg/_{ano} = 534 \left(\frac{W}{ATD}\right)$$

Estos resultados se pueden comparar con equivalentes de velocidades (tabla 3.1).

Resistencia a	MPY	MMY	micra/	nm /	pm _{/s}
la corrosión	mil _{/año}	mm/año	año	/h	
Sobresaliente	<1	<0.02	<25	<2	<1
Excelente	1-5	0.02- 0.1	25-100	2-10	1-5
Bueno	5-20	0.1-0.5	100-500	10-50	5-20
Regular	20-50	0.5-1	500-1000	50-150	20-50
Malo	50-200	1-5	1000- 5000	150-500	50-200
Inaceptable	200+	5+	5000+	500+	200+

Tabla 3.1. Equivalencias de resistencia a la corrosión.

 Limpieza Posterior: Al finalizar las pruebas de corrosión es importante realizar una inspección visual de la apariencia de las probetas. Realizada la inspección visual, las probetas deben de ser sometidas a un procedimiento de limpieza.

La limpieza posterior es uno de los procedimientos de mayor importancia en el desarrollo experimental de las pruebas. De forma general, el proceso de limpieza debe retirar todos los productos de corrosión de las probetas con una eliminación mínima de la superficie no atacada.

Existen 3 tipos de limpieza principalmente:
- Limpieza mecánica: Este tipo remueve los productos de corrosión mediante procedimientos mecánicos, como el raspado, el cepillado, desbaste, el choque mecánico y el ultrasonido.
- Limpieza química: La limpieza química implica la eliminación de material de la superficie por disolución como acetona, tetracloruro de carbono y alcohol para eliminar los residuos de aceites, grasas o resinas.
- Limpieza electrolítica: Consiste en formar con la probeta una celda de corrosión electrolítica, a determinadas condiciones de temperatura e intensidad de corriente y en presencia de inhibidores de corrosión.

Para obtener estas condiciones en los tubos de prueba, se decide realizar una oxidación forzada. Posteriormente se comparará con la oxidación existente en la industria. Para hacerlo se utiliza ácido sulfúrico.

Preparación de ácido sulfúrico (H₂SO₄)

Procedimiento:

Concentración de la solución a 0.5 *molar*, esto equivale a 14ml de Ácido Sulfúrico (H_2SO_4) por 500*ml* de Agua Destilada.

- Se toma un tubo de cada material y se corta una probeta de 8-10mm de longitud de cada uno de ellos. Los tubos de prueba solo se tienen listos.
- Se realiza una limpieza con metanol y se secan.
- En una balanza proporcional, se pesan los tubos y las probetas para poder determinar posteriormente su reducción.
- Se colocan 200*ml* de agua destilada en el matraz de bola, se extraen del frasco con una pipeta y una jeringa 14*ml* de ácido sulfúrico (H₂SO₄)

y se colocan en el matraz de 500*ml*, se le colocan los *ml* de agua destilada hasta llegar a la marca de 500*ml*.

Se tapa y se agita por unos 15 minutos. Queda lista la solución. (figura 3.5).

Figura 3.5 Solución de ácido sulfúrico (H_2 SO₄).

Para sumergirlos se introducen en una tubería de PVC de ³/₄pulg. con tapones en ambos lados. Se distribuye 150*ml* en cada tubo con la tubería de prueba correspondiente en cada una de ellas y se tapan. (figura 3.6)

Figura 3.6 Colocación de tubería para oxidación en tubos de PVC.

 El restante de vierte en un vaso de precipitados de 200*ml* y se coloca la probeta de cada tubo para poder observar el comportamiento que sufren los que están dentro de los tubos de *PVC*. (figura 3.7)

Figura 3.7 Colocación de probetas en vaso de precipitado.

• Se observa su comportamiento cada 48*hrs*, 96*hrs*, 144*hrs* y 168*hrs*.

Análisis de la Tubería

Se estuvo observando el comportamiento de las probetas en el vaso de precipitados y a los siete días (168*hrs*), se decide sacarlos en base a su comportamiento y cambio. El tubo de acero inoxidable tipo *316L* no presentó cambios, se observó en el tubo de cobre un cambio de coloración haciéndose más opaco y el tubo de acero *1018* se notaban residuos producto de la oxidación y empezó a presentar picaduras en el área de los cortes y por esta razón se decidió retirar los tubos antes de que sufran demasiado daño.

Al sacar los tubos de prueba se observaron. El tubo de acero inoxidable no presento cambios visibles, el tubo de cobre presenta zonas con presencia de un poco de oxidación, pero no uniforme y el tubo de acero *1018* presento presencia de oxidación, pero no de manera uniforme.

Después de observar, a los tubos que no se utilizarían en la prueba se les dio un baño de metanol y se secaron unos 15 minutos para quitar todo rastro de humedad. Posteriormente se pesaron nuevamente las probetas (tabla 3.2) y los tubos de prueba (tabla 3.3).

Probeta	Limpio (gr)	Oxidado (gr)	Diferencia
Cobre	2.99	2.82	0.17
Acero 1018	2.52	0.69	1.83
Acero Inox. 316	2.62	2.62	0

Tabla 3.2 Peso de las probetas.

Tubo de Prueba	Limpio (gr)	Oxidado (gr)	Diferencia
Cobre	171	171	0
Acero 1018	146	141	5
Acero Inox. 316	220	220	0

Tabla 3.3 Peso de los tubos de prueba.

Con el peso de las probetas y los tubos pudimos observar solamente en el tubo de acero con capa de cromo una reducción del 3.5% y en el tubo de cobre e inoxidable tipo *316L* ningún cambio.

Se obtuvo la velocidad de corrosión de las probetas a los diferentes materiales y se comparó con la Tabla 3.

Para el Cobre:

$$mm_{ano} = 87.6 \left(\frac{W}{ATD}\right) = 87.7 \left(\frac{0.17gr}{(0.3676cm^2) * (168hrs) * (8.96 \frac{gr}{cm^3})}\right)$$

= 0.0269

0.0269 mm/año comparando = Excelente

Para el Acero 1018:

$$mm/_{ano} = 87.6 \left(\frac{W}{ATD}\right) = 87.7 \left(\frac{1.83gr}{(0.3676cm^2) * (168hrs) * (7.87 \frac{gr}{cm^3})}\right)$$

= 0.3299

0.3299 mm/año comparando = Bueno

Para el Acero inoxidable tipo 316L:

$$mm/_{ano} = 87.6 \left(\frac{W}{ATD}\right) = 87.7 \left(\frac{0.0gr}{(0.4009cm^2) * (168hrs) * (8.0 \frac{gr}{cm^3})}\right)$$

= 0.0

0.0 mm/año comparando = Ninguna

2.3.3 2ª Oxidación en la Tubería de Prueba

En la hidroeléctrica utilizan el agua del río para el enfriamiento de los intercambiadores de calor, pero desafortunadamente por los asentamientos humanos, basura, desechos de la industria, etc., el agua contiene residuos contaminantes principalmente ácido sulfhídrico (H_2S), dañando la tubería y los tanques o tapas.

Debido a que no tenemos una noción exacta de la contaminación que presenta el río, se simulará las condiciones y la afectación en las diferentes tuberías de prueba con los diferentes materiales.

En condiciones normales, el ácido sulfhídrico es un gas incoloro inflamable, se caracteriza por tener un olor repulsivo, similar al huevo podrido, aunque se puede oler a bajos niveles se debe tener cuidado debido a que es considerado un veneno de amplio espectro. La característica que más nos afecta es que es corrosivo a todos los metales de la serie electroquímica (tabla 3.4).

	Metal	Tensión
+Nobles	Acero inoxidable tipo 316 (inactivo)	-0,05
Nobioo	Monel	-0,08
	Tipo de acero inoxidable 304 (inactivo)	-0,08
	Plata	-0,13
	Titanio	-0,15
	Aleación de Inconel 600	-0,17
	Acero inoxidable tipo 316 acero inoxidable (activo)	-0,18
	Bronce de silicio	-0,18
	Níquel 200	-0,20
	Cobre	-0,24
	Cuproníquel 70/30	-0,25
	Bronce de manganeso	-0,27
	Latón	-0,29
	Cobre	-0,36
	Tipo de acero inoxidable 304 (activo)	-0,53
	Plomo	-0,55
	Fundición gris	-0,61
	Acero al carbono	-0,61
	Aluminio	-0,75
	Cadmio	-0,80
	Alumini3003	-0,94
\sim	Zine	-1,03
Actives	Hierro galvanizado	-1,05
-ACIIVOS	Aleación de magnesio	-1,6

Tabla 3.4 Serie Electroquímica de los principales metales.

Preparación de Ácido Sulfhídrico (H₂S)

Procedimiento:

Preparación de sulfuro de hidrógeno o ácido sulfhídrico (H_2S) como disolución acuosa.

- Se prepara agua destilada con cloruro de sodio (*NaCl*) al 3%. Se pesan 30*gr* de cloruro de sodio (*NaCl*), se vierte en un matraz aforado de 1/ y se llena con agua destilada, se tapa y se agita.
- Se miden 900*ml* en un matraz de agua destilada con cloruro de sodio (NaCl) antes preparada, en un vaso de precipitados de 1*l*, posteriormente se vierte en la celda electroquímica de 1*l*.

- Se pesan 3.12*gr* de sulfuro de sodio (*Na*₂*S*₉*H*₂*O*) y 0.46*gr* de sulfito de sodio (*Na*₂*SO*₃) y se vierten en la celda electroquímica y se taponea todas las entradas.
- Se le coloca un agitador y se coloca en la parrilla agitadora dentro de la campana extractora, en una boca se intercambia un tapón con una manguera a la cual se conecta el tanque de nitrógeno, en otra boca se coloca otro tapón con otra manguera y se coloca en un vaso de agua, se mantienen tapadas las bocas que no se necesitan y se abre el tanque de nitrógeno a una presión de 160 ^{Kg}/_{cm²}, se deja desairar la solución por 1*hr*.
- Posteriormente se extrae 1 ml de ácido acético (C₂H₄O₂) con ayuda de una jeringa, se destapa la celda y se introduce el ácido, se deja agitar por 15min.
- Terminado se retiran los tapones con las mangueras y se colocan tapones ciegos. Queda lista la solución de sulfuro de hidrógeno. (figura 3.8)

3.8 Solución de ácido sulfhídrico (H_2S).

 Se continúa trabajando en la campana con guantes y mascarilla. Se destapa una salida y se vierten 150*ml* de la solución en un vaso de precipitados y se coloca en el tubo de *PVC* con la tubería de prueba deseada e introducida previamente y se tapa. Este procedimiento se repite para cada tubo de prueba (figura 3.9).

Figura 3.9 Colocación de tubería para oxidación en tubos de PVC.

• En el sobrante de solución se colocan las probetas para poder llevar a cabo la observación del comportamiento de los tubos (figura 3.10).

Figura 3.10 Colocación de probetas en vaso de precipitado.

 Se sujetan en la rejilla posterior de la campana cada tubo. Se dejan sumergidos el tiempo necesario observándolos cada 12*hrs*.

Análisis de la Tubería

Se ha estado observando el comportamiento de las probetas en el vaso de precipitados a diferentes días.

Podemos observar que desde el primer día ya empiezan a presentar muestras de oxidación, se visualiza mejor a partir del cuarto día principalmente en el cobre poniéndose gris y en el de acero y acero con capa de cromo en su parte interior, que se pusieron de color negro, indicio de la formación de sulfuro de hierro en su capa. El tipo de ataque depende de la composición de la película superficial, la que a su vez está condicionada por la composición del medio.

Para poder realizar el cálculo por pérdida de peso, se pesaron las probetas (tabla 3.5) y los tubos de prueba (tabla 3.6), y posteriormente se realizará lo mismo cuando se extraigan.

Probeta	Limpio (gr)
Cobre	2.99
Acero Inox. 316	2.62
Acero 1918	5.66

Tabla 3.5 Peso de las probetas.

Tubo de Prueba	Limpio (gr)	
Cobre	171	
Acero Inox. 316	220	
Acero 1018	350	

Tabla 3.6 Peso de los tubos de prueba.

3.3.4 Soluciones realizadas con anterioridad al problema de corrosión

Debido a la problemática en la hidroeléctrica que ha existido desde hace tiempo, han realizado diferentes acciones para disminuir y tratar de frenar este comportamiento.

Principalmente lo que realizan es un mantenimiento cada determinado tiempo a la tubería, se desmontan los intercambiadores, se quitan las tapas y se les realiza una limpieza, esta consiste en hacer pasar por el interior con un limpiador químico y un cepillado o latigueado, donde introducen una manguera con agua a una presión de 80-100^{*Kg*}/_{*cm*²} y con ello quitan las incrustaciones y capas de óxido de la superficie interna (figura 3.11).

Figura 3.11 Limpieza de la tubería interna.

Esta limpieza quita la capa de óxido formada y las pequeñas incrustaciones, pero en las partes donde la corrosión localizada ya está presente, no se puede revolver del todo. Es por ello que optaron por prevenir que se lleve a cabo el proceso de oxidación con este tipo de mantenimientos frecuentes.

Debido a que el problema era el agua, optaron por tratar de neutralizar dicha contaminación proveniente del rio Grijalva utilizando inhibidores de corrosión, estos actúan de diferentes formas principalmente formando una película protectora sobre la superficie metálica o bien entregando sus electrones al medio neutralizando la alcalinidad o acidez del medio. Se utilizaron inhibidores como el bromo (*Br*), otros a base de hipoclorito de sodio (*NaClO*) y sulfato ferroso (*FeSO*₄). El inhibidor neutralizaba el oxidante, pero se tenía que verter grandes cantidades de inhibidor debido a que el agua que es tomada directamente del río para que mueva al generador y se suministre a los intercambiadores y posteriormente se regresaba nuevamente al río siguiendo su cauce, no teniendo una recirculación de agua (figura 3.12).

Figura 3.12 Sistema se distribución de agua (no recirculación).

Tratando de cambiar la manera de proteger se opta por utilizar un recubrimiento, pero a la tubería. Se han utilizado recubrimientos orgánicos como la resina epoxi, recubrimientos de poliuretano con la adición de pigmentos metálicos, entre otros productos. Colocando una capa protectora entre el agua contaminada y la pared de la tubería se evita el contacto entre ellos, pero se presentó la problemática de que a pesar de filtrase el agua, llegan impurezas como arena y piedras pequeñas que al entrar con la presión del agua va botando paulatinamente esta capa haciendo que entren en contacto los medios y nuevamente esté presente la oxidación y de manera localizada que es más destructiva.

Al no poder recubrir la tubería se ve la opción de cambiar todos los tubos de cupro-níquel ${}^{90}/{}_{10}$ o ${}^{70}/{}_{30}$ por acero inoxidable. Este tipo de aleaciones por su alto contenido de cromo (*Cr*) de 16-18% y níquel (Ni) de 10-14%, se encuentra constantemente protegido por una capa pasiva que protege al material cuando entra en contacto con medios corrosivos, incluso la humedad del aire, lo que los hace resistentes a la corrosión en entornos altamente corrosivos y a la fluencia de temperaturas elevadas. Sustituyeron la tubería por inoxidable y se percataron que la temperatura del generador no se mantenía normal, sino que su tendencia era a incrementarse, causando daños en el devanado, debido a que el coeficiente de transferencia de calor del acero inoxidable es mucho menor al del cobre, para poder haber realizado satisfactoriamente dicho cambio se tenía que realizar un rediseño en el intercambiador tomando en cuenta este factor y ajustando el número de tubos, haciendo que se incrementara aún más el precio.

3.3.5 Soluciones realizadas al problema de corrosión

Basándose en las soluciones realizadas anteriormente y la problemática de cada una, se propusieron diferentes alternativas para tratar de minimizar este deterioro que perjudica a largo plazo a los intercambiadores y al generador.

41

Se propone colocar un recubrimiento a base de primarios y pintura alquidal siliconada y posteriormente un recubrimiento polimérico de inhibidor de corrosión tomando como base el benzotriazol ($C_6H_5N_3$), aplicado por diferentes técnicas.

Se estableció una metodología para la realización de las pruebas:

Se eligió un polímero sintético, higroscópico y soluble en agua que se obtiene del monómero vinil-pirrolidona. Polivinil-pirrolidona (PVP) (C_6H_9NO)_n

Y como inhibidor de corrosión se utilizan principalmente compuestos cíclicos nitrogenados, utilizando la familia de las aminas, como el Benzofenona, benzoxazinona, etc. Benzotrialsol (*BTA*) $C_6H_5N_3$.

Para aplicarlo se utilizaron tres métodos:

1. Electrohilado: Por medio de fuerzas electrostáticas de forman fibras poliméricas que se pegan al material. Se coloca la jeringa con la solución en el Inyector o Bomba de Perfusión a una razón de $0.5 \ ^{ml}/_{hr}$, se coloca la probeta colectora a 16 cm, y se conecta ambos polos del Voltímetro a 16 kV (figura 3.13).

Figura 3.13 Técnica de electrohilado.

 Por escurrimiento: Aplicación de la película polimérica por escurrimiento a través de las paredes del sustrato. Se preparó las probetas lijando su interior y se colocó la película polimérica. Tiempo de Curado a temperatura promedio de 25 °C entre capa y capa es de 24*hrs* (figura 3.14).

Figura 3.14 Técnica de escurrimiento.

3. Por Dipcoating: Se aplica la película polimérica por inmersión. Se preparan las probetas cubriendo su exterior y lijando el interior. Se introduce las probetas al vaso y se deja por 5*min*. Tiempo de Curado a temperatura promedio de $25^{\circ}C$ entre capa y capa es de 24hrs (figura 3.15).

Figura 3.15 Técnica por dipcoating.

3.3.6 Tubería de Prueba con recubrimiento

En base a lo obtenido con los recubrimientos utilizados, se buscó otra alternativa viable y más resistente debido a que a película que se forma es muy delgada y se penetra fácilmente.

Se propone la utilización de un recubrimiento níquel electroless. Este tipo de recubrimiento es muy sofisticado diferente a los tradicionales debido a que ofrece un buen acabado y resistencia a la corrosión.

Debido a que se aplica mediante inmersión (figura 3.16), se logra un recubrimiento uniforme aun en las superficies complejas e irregulares, manteniendo su espesor. Tiene una excelente resistencia a la corrosión, debido a que tiene el más bajo factor de corrosión en ambientes alcalinos, comparado con aleaciones de alto costo como Níquel 200 y Acero Inoxidable Tipo *316*, logrando resistencia a la corrosión y protección contra la excoriación superficial por abrasión. Contiene una dureza de superficie de hasta 500-650 *Vickers* (44 a 62° *Rockwell C*), protegiéndolo contra el desgaste. Con estas

características lo hace un recubrimiento ideal para la problemática a pesar de que no se ha implementado anteriormente.

Figura 3.16 Proceso de inmersión del níquel electroless.

La tubería de prueba que se desea recubrir son la de cobre (Cu) y la de acero 1018, que son los materiales principales utilizados en el intercambiador de uso industrial propensos a la oxidación (figura 3.17).

Figura 3.17 Tubo de cobre (*Cu*) y acero 1018 preparados para recubrir.

3.4 Pruebas en el equipo de monitoreo

Para la realización de las pruebas es importante el diseño del experimento para poder obtener la información pertinente bajo las mismas condiciones. El diseño consiste en una secuencia completa de pasos tomados de antemano para asegurar que se mantengan las condiciones de operación en cada prueba y que los datos sean apropiados y permitan un análisis objetivo que conduzca a deducciones válidas.

Es importante la repetición del experimento para disminuir los errores durante el muestreo por algún factor. Se establecieron los parámetros importantes a tomar en consideración y los que tenían más repercusión. Para ello se realizaron pruebas previas a cada fluido y su instrumentación.

3.4.1 Fluido caliente (aire)

Para el fluido caliente en este caso el aire, se coloca en la entrada del ducto un ventilador comercial vertical ajustándose a su entrada y sellando toda posible fuga de aire para evitar pérdidas.

Una parte primordial de dicho fluido, es que se estabilice y se distribuya lo más uniformemente posible a lo largo del ducto, debido a que el aire es incoloro se utiliza una máquina generadora de vapor denso cuyo aspecto se asemeja al del humo o la niebla para observar su comportamiento. Las máquinas de humo generalmente producen el humo vaporizando agua mezclada con un fluido basado en el glicol o el glicerol, el más usado es la glicerina ($C_3H_8O_3$). Para generar el humo de esta manera se inyecta el fluido sobre una base caliente que hace que se evapore rápidamente, cuando el vapor resultante entra en contacto con el aire exterior frío se genera la niebla artificial. La máquina de humo se colocó dentro de una caja de acrílico transparente y se le conecto un compresor de 1*Hp* para introducir aire a presión y poder dirigir el humo por medio de mangueras a la parte trasera del ventilador, las mangueras se distribuyeron en su parte superior, central e inferior, para una homogénea distribución. En la parte superior del ducto se colocó cartulina negra solo dejando una ranura central de 1 cm de ancho, a lo largo del ducto por la cual se incidió un haz de luz láser para que por medio del poder ver el reflejo del aire y su comportamiento en total obscuridad (figura 3.18).

Figura 3.18 Maquina de humo y distribución de haz de luz.

Observando el comportamiento del aire y su distribución dentro del ducto, se prosigue a la obtención de la temperatura de temperatura de operación sobre la cual se incidirá sobre la entrada del intercambiador. Para ello se colocó un juego de resistencias las cuales elevarían la temperatura del aire al incidir sobre ellos. En la simulación realizada se determinó una distancia sobre la posición de dichas resistencias, pero se corrobora esta información colocando las resistencias a diferentes distancias con respecto a la entrada del intercambiador y variando el voltaje con la ayuda del controlador de temperatura Autonics hasta obtener la temperatura deseada de aproximadamente 60 °C (figura 3.19).

Figura 3.19 Distancias de prueba.

Obteniendo la distribución del flujo de aire y la distancia de las resistencias con la temperatura de operación, se monitorea cada una de las tres velocidades del ventilador con un anemómetro Dwyer. Se toma mediciones al centro del ducto donde el aire está más estable y por la altura del intercambiador en diferentes puntos de manera vertical, tomando como referencia la parte superior, central y la parte inferior (figura 3.20).

Figura 3.20 Posición en el ducto del aire para la medición de la velocidad con el anemómetro.

3.4.2 Fluido frio (agua)

El fluido de trabajo que se encargará del enfriamiento del intercambiador es el agua. Se implementa un sistema de circulación de agua con tubería de *PVC*. El sistema consiste en un depósito superior, que por caída de presión suministra el agua al intercambiador al tanque y se distribuye uniformemente en la tubería pasando a través de ella hasta salir al tanque inferior para ser recolectado a otro depósito por donde se circula el agua por medio de una bomba hasta el tanque superior (figura 3.21).

Figura 3.21 Sistema de circulación de agua.

Para los cálculos posteriores es importante conocer el caudal de agua que se suministra al intercambiador, para ello utilizamos un flujómetro de turbina de Atlas Scientific (figura 3.22).

Figura 3.22 Flujómetro de turbina con su esquema de funcionamiento.

El cual se conecta a la tubería y al paso del agua, la turbina gira y manda un pulso a cierta frecuencia que llega a un chip que se conecta a un circuito integrado (figura 3.23), que sirve como interfaz para recibir en la computadora la información y con los programas Arduino y Realterm, pasar la frecuencia recibida en flujo de agua en l/s.

Figura 3.23 Circuito integrado para interconexión flujómetro-pc.

3.4.3 Adquisición de Temperaturas

Con los fluidos de trabajo listos solo era necesario conocer lo más importante en el intercambiador, las temperaturas de funcionamiento, para ello se utilizaron termopares tipo T (*cobre-constantan*), se prepararon y se colocaron en diferentes puntos estratégicos del equipo de monitoreo. Para conocer las temperaturas del fluido caliente (*aire*), se colocó un termopar a la salida del ventilador, como referencia a la cual el aire entra al ducto. Se colocaron tres termopares pasando las resistencias eléctricas, de manera distribuida a lo alto y ancho, para conocer la temperatura promedio alcanzada a la temperatura de operación deseada y sobre la cual se incide sobre la tubería. Se colocaron siete termopares a la salida del intercambiador, de manera distribuida a lo alto y ancho, para conocer el promedio del aire a la salida y ver cuánto es que aumenta o disminuye. Para conocer las temperaturas del fluido de enfriamiento (*agua*), se coloca un termopar a la entrada de agua en el depósito superior y a la salida del intercambiador, y así conocer la energía recibida. Para conocer la temperatura de la tubería se eligieron seis tuberías distribuidas en el intercambiador, para monitorear su comportamiento, en cada una de ellas de distribuyeron tres termopares, uno en la parte superior, en la central y la inferior.

Por medio de un adquisidor de datos de National Instrument de 32 canales y con el programa Labview como interface gráfica, se realiza una configuración para obtener el diferencial de voltaje de cada termopar y convertirlo en una temperatura en grados Centígrados (figura 3.24).

Figura 3.24 Configuración de la interfaz gráfica en Labview.

3.4.4 Estandarización de Pruebas

Teniendo los parámetros y la instrumentación listase realizaron diferentes pruebas manteniendo los parámetros de operación de los fluidos de trabajo (tabla 3.7).

	Fluido Caliente	Fluido Frio
	1 Aire	2 Agua
Temperatura de Entrada	58.7 °C	27.3 ℃
Temperatura de Salida	33.3 °C	29.9 °C
Presión de Entrada	3.86 Kg/cm ²	3.86 Kg/cm ²
Presión de Salida	3.09 Kg/cm ²	3.09 Kg/cm ²

Tubería	½ [∽] x 0.48 <i>m</i>	Arreglo Lineal
Carcasa	0.12271 x 0.3175 x 0.48 <i>m</i>	

Tabla 3.7 Parámetros de Operación.

Para la prueba se establecieron las condiciones y tiempos de manera cronológica para su operación.

En la realización de la prueba las válvulas que se encuentran en la entrada y salida de del intercambiador, se aperturan al 100%, lo cual implica que el fluido de enfriamiento en este caso agua se mantiene constante y por la parte del fluido caliente, el aire, también se mantiene constante al permanecer el ventilador en una sola velocidad. Conforme se fueron realizando las pruebas se pudo denotar el comportamiento del aire a la salida del intercambiador y este mismo comportamiento de igual manera con todas las tuberías (gráfica 3.1).

Gráfica 3.1 Comportamiento del aire de salida con ambos fluidos constantes.

Este comportamiento se repite en las pruebas con las diversas tuberías de diferentes materiales variando un 5% aproximadamente.

En otros métodos como el de Wilson Plot para evaluar coeficientes de convección, la resistencia térmica proporcionada por uno de los fluidos se mantiene constante al variar el flujo másico del otro fluido en un intervalo adecuado de flujo turbulento. Analizando esto se mantiene el fluido que cede la energía calorífica al sistema constante (el aire caliente) y se realizan pruebas para evaluar la variación de flujo másico del fluido que recibiré dicha energía (el agua fría).

Por medio de la apertura de las válvulas se definen diversas posiciones y midiendo sus flujos hasta definir los de mayor variación, con esto se obtenienen nueve variaciones de flujo (gráfica 3.2).

Gráfica 3.2 Variación de flujo másico en el agua en diversas posiciones.

Determinando los flújos, se realizan nuevas pruebas a las diferentes tuberías. Cada tubería se divide en nueve pruebas parciales cada una de ellas como se estipulo anteriormente, pero va a variar el flujo que le corresponda de manera gradual.

3.5 Cálculos Ralizados

3.5.1 Parámetros Utilizados

Para realizar el análisis del equipo de monitoreo, el intercambiador y los tubos de trabajo, se tomaron en cuenta los parametros del diseño tomado como base en el intercambiador. Los parámetros primordiales son los fluidos que intervienen en el sistema como sus temperaturas y presiones de operación. Los valores del fluido interno (agua), utilizado para recibir la energía del sistema como para el fluido externo (aire).

Otro parámetro es la tubería que se colocaría en el intercambiador, tanto su tamaño como su distribución. Se tomo el diámetro exterior del tubo utilizado $\phi \frac{1}{2} in (12.7 mm)$ con una pared de 0.03937" (1*mm*) y una longitud de 0.50*m*. Su distribución es lineal, conformado por cuatro ileras de diez tubos cada una (tabla 3.8).

Especificaciones de la Tubería			
Detalle y Abreviatura		Valor	
Diámetro Exterior	Dext	0.0127 m	-−−Pl−-► Dext
Diámetro Interior	Dint	0.0107 m	
No. De Tubos	N	40 tubos	
Longitud de Tubos	L	0.51675 m	Fila Fila Fila
Separación Longitudinal	Pı	0.02032 m	1 2 n
Separación Transversal	Pt	0.02822 m	

Tabla 3.8 Especificaciones y distribución de la tubería

Las especificaciones de la carcasa por donde sale el aire esta basado en el diseño del intercambiador (tabla 3.9).

Especificaciones de la Carcaza			
Detalle Abrevia	e y tura	Valor (m)	
Ancho	Ain	0.3175	$\left \begin{array}{c} \oplus \ \oplus $
Profundidad	Pin	0.12271	An

Tabla 3.9 Especificaciones de la carcasa.

3.5.2 Ecuaciones Utilizadas

Con las pruebas experimentales se obtienen los parámetros de los fluidos de trabajo instrumentados para cada prueba, para poder realizar un análisis del comportamiento de cada tubería.

Las propiedades de los fluidos se obtienen de tablas, basándose en el promedio de las temperaturas de entrada y salida de ambos fluidos con los valores de referencia:

$$T_{pro} = \frac{T_E + T_S}{2}$$
 Ecuación 1

Con el valor de la temperatura de los fluidos se obtienen los valores por medio de una interpolación:

$$f(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} * (x - x_0)$$
 Ecuación 2

Para la tubería se toman en cuenta sus características y dimensiones y se determina de tablas sus propiedades y su conductividad térmica de cada material.

Se realizan primero los cálculos para el agua, con el flujómetro se obtiene el flujo volumétrico M_V , que es el volumen que pasa por un área dada en la unidad

de tiempo, con él se determina el flujo másico M_M , que es la masa que pasa por un área dada en la unidad de tiempo:

$$M_M = {M_V \over
ho}$$
 Ecuación 3

Donde ρ es la densidad del fluido.

Se determina la velocidad V con la que se desplaza el fluido:

$$V = \frac{M_{M1}}{\rho A_T}$$
 Ecuación 4

Donde A_T es la sección donde cruza el fluido.

Se determinan los números adimensionales para el fluido de enfriamiento.

Se determina el número de Prandlt *Pr* del fluido que representa la relación que existe entre la difusividad molecular de la cantidad de movimiento y la difusividad molecular del calor:

$$Pr = \frac{Cp * \mu}{K}$$
 Ecuación 5

Donde *K* es la conductividad térmica del agua.

Para caracterizar el movimiento del fluido se determina el número de Reynolds *Re*, representa la relación que existe entre las fuerzas de inercia y las fuerzas viscosas que actúan sobre un elemento de volumen de un fluido, para saber si el flujo puede considerarse laminar o turbulento:

$$Re = \frac{\rho_{agua} * Vel_{agua} * D_{ext}}{\mu_{agua}}$$
 Ecuación 6

Donde μ es la viscosidad dinámica del fluido.

Se calcula la potencia interna Qint:

$$Q_{int} = M_M * (Ht_{out} - Ht_{in})$$
 Ecuación 7

Donde *Ht*_{out} y *Ht*_{in} son las entalpías del agua a la salida y entrada respecivamente.

Se determina con las mismas temperaturas en base a que es de flujo cruzado, la diferencia media logarítmica ΔT_{ML} :

$$\Delta T_{ML} = \frac{\Delta T_2 - \Delta T_1}{\ln\left(\frac{\Delta T_2}{\Delta T_1}\right)} = \frac{(T_{S2} - T_{E1}) - (T_{E2} - T_{S1})}{\ln\left(\frac{T_{S2} - T_{E1}}{T_{E2} - T_{S1}}\right)}$$
Ecuación 8

Se determina la resistencia térmica Rov:

$$Rov = rac{\Delta T_{ML}}{Q_{int}}$$
 Ecuación 9

Se determina la resistencia de la pared de la tubería Rs_{wall}:

$$Rs_{wall} = \frac{r_{ext} * log\left(\frac{r_{ext}}{r_{int}}\right)}{K_{wall}}$$
 Ecuación 10

Donde K_{wall} es la conductividad térmica de la pared del tubo.

Se determina la cantidad total de calor transferido con el coeficiente convectivo de trasferencia de calor *h*:

$$h = \frac{Q_{int}}{(S_{int} * 40) * T_{pro}}$$
 Ecuación 11

Se calcula la relación que existe entre el calor transferido por convección a través del fluido y el que se transferiría si sólo existiese conducción con el número de Nusselt:

$$Nu = \frac{h * D_{int}}{K}$$
 Ecuación 12

Se realizan los cálculos posteriormente para el aire, de igual manera mediante su temperatura promedio se determina sus propiedades (ecuación 1) y se interpolan sus valores (ecuación 2). Con el anemómetro se toman en cuenta las velocidades obtenidas para cada prueba $Vel_{aire} = m/s$.

Se determina el número de Prandlt Pr del aire:

$$Pr = \frac{Cp * \mu}{K_{aire}}$$
 Ecuación 13

Se determina en número de Reynolds:

$$Re = \frac{\rho_{aire} * Vel_{aire} * D_{ext}}{\mu_{aire}}$$
 Ecuación 14

Para el cálculo del número de Nusselt se utiliza una correlación para convección forzada en flujo externo para una tubería según Welty, Wicks y Wilson.

Ecuación 15

$$Nu_{aire} = \left((0.506 + Re_{ext}^{0.5}) + (0.00141 * Re_{ext}) \right) * Pr_{ext}^{1/3}$$

Se determina la cantidad total de calor transferido con el coeficiente convectivo de trasferencia de calor *h*:

$$h_{ext} = \frac{Nu_{ext} * K_{aire}}{D_{ext}}$$
 Ecuación 16

Los cálculos realizados se realizan para cada uno de los nueve flujos para cada tubería.

Por la cantidad de variables que se obtienen con la instrumentación y para ser más exactos al manejar todos los decimales, se establece una programación en el programa Matlab y se introducen los valores y las ecuaciones correspondientes.

3.5.3 Obtención de Correlaciones

Para poder contar con un indicador que nos permita establecer la covariación conjunta de dos variables y poder establecer comparaciones entre distintos

casos, se necesitan implementar correlaciones de dependencia de dichas variables en una distribución bidimensional. Para establecer la correlación entre los fluidos de trabajo del intercambiador se utilizan las variables adimensionales realizadas en los cálculos basados en la ecuación del modo:

$$Nu_{exp} = a Re^b * Pr^c$$
 Ecuación 17

Cuando deseamos encontrar el mínimo de una función a valores reales, definidos en un espacio *n-dimensional*, en este caso la constante *a* y los exponenciales *b* y *c* del número de Reynolds y número de Prandtl respectivamente, y cuyas derivadas parciales no están disponibles, se utilizan métodos de optimización de búsqueda directa. El método utilizado es el *Nelder-Mead* del toolbox de Matlab de optimización (fminsearch). Este método de optimización hace una minimización a la función la cual puede ser una ecuación no lineal multidimensional que además no considera restricciones.

Una idea intuitiva y natural para problemas de dimensión 2 ó 3 se origina en el conocido método de bisección para ecuaciones no lineales unidimensional, y en la cual se consideran los valores de la función en un conjunto de puntos del plano o del espacio (respectivamente) a fin de localizar el mínimo de la función. Basados en esta idea fue propuesto el método de simplex de Spendley, Hext and Himsworth en 1962 y posteriormente, el método de Nelder and Mead.

Cada iteración comienza con un simplex en IR^n dado por los n + 1 vértices y los correspondientes valores funcionales. Luego de realizar algunos test en los valores de f en uno o dos puntos adicionales, la iteración del algoritmo termina con un nuevo simplex, distinto de la inicial, de modo que los valores de la función en los nuevos vértices satisfacen "alguna" condición de descenso comparada con el simplex inicial de esta iteración. Un rasgo interesante de este método a diferencia de otros métodos de búsqueda directa es el bajo número de evaluaciones de función extras que realiza por iteración.

59

3.5.3.1 Descripción del método de Nelder-Mead

Al comienzo de cada iteración comenzamos con un simplex no degenerado en IR^n y termina con otro simplex en IR^n (distinto del anterior). Se define un simplex no degenerado en IR^n como la cápsula convexa de n + 1 puntos no-coplanares X₁, X₂, ..., X_{n+l} h IR^n , es decir, no todos esos puntos están en un mismo hiperplano de IR^n . Supongamos que los vértices del simplex inicial están ordenados de modo tal que:

$$f_1 \le f_2 \le \dots \le f_{n+1},$$

Donde $f_i = f(x_i)$.

Como estamos buscando el minimizador de *f*, decimos que X_1 es el mejor vértice y que X_{n+1} es el peor.

Llamando diámetro del simplex S a:

$$diam(S) = \max_{1 \le i,j \le n+1} ||x_i - x_j||.$$

Los parámetros ρ , δ , γ y σ son usados en cada iteración y deben satisfacer:

$$\delta > 1, 0 < \rho < \delta, 0 < \gamma < 1, 0 < \sigma < 1$$

Donde ρ es el coeficiente de reflexión, δ es el coeficiente de expansión, γ es el coeficiente de contracción y σ es el coeficiente de encogimiento o reducción (shrink).

Los valores defaults comúnmente usados son:

$$\rho = 1, \delta = 2, \gamma = \frac{1}{2} y \sigma = \frac{1}{2}$$

Que son los valores usados en el algoritmo estándar.

3.5.3.2 Desarrollo del algoritmo

Veamos cómo realizar la iteración k-ésima:

Partimos de *dim*+1 puntos que forman un simplex no degrado de R^{dim} , si k = 1 tendremos los *dim*+1 vértices iniciales.

El objetivo de la iteración es obtener un nuevo simplex variando uno o más de los vértices que lo forman.

Paso 1: Ordenación

En primer lugar ordenamos los puntos de forma que los valores de la función objetivo en dichos puntos estén ordenados de forma creciente, i.e.

$$\begin{aligned} x_1^{k-1}, x_2^{k-1}, \dots, x_{dim}^{k-1}, x_{dim+1}^{k-1} & k \ge 1 \text{ tal que } f(x_1^{k-1}) \le f(x_2^{k-1}) \le \cdots \\ & \le f(x_{dim}^{k-1}) \le f(x_{dim+1}^{k-1}) \end{aligned}$$

Puesto que nuestro problema es minimizar la función objetivo entendemos que el primer punto es el mejor, el último el peor, etc.

Paso 2: Reflexión

Hallamos el punto de reflexión que será el punto simétrico, ponderado por ρ , del peor respecto al centro de gravedad que forman los *dim* mejores, esto es:

Dado²
$$\bar{x} = \frac{1}{dim} \sum_{i=1}^{dim} x_i^{k-1}$$

² Para no entorpecer la notación omitiremos a partir de este momento el superíndice k.

Entonces $x_{refle} = \bar{x} + \rho(\bar{x} - x_{dim+1})$

Evaluamos la función objetivo $f(x_{refle})$

Caso I: El punto de reflexión ha mejorado al mejor

$$f(x_{refle}) < f(x_1)$$

Paso 3: Expansión

Calculamos el punto de expansión respecto al centro de gravedad para ver si podemos mejorar aún más.

$$x_{expan} = \bar{x} + X(x_{refle} - \bar{x})$$

De nuevo evaluamos la función objetivo $f(x_{expan})$

Si hemos mejorado, i.e. $f(x_{expan}) < f(x_{refle})$ aceptamos el punto de expansión y sacamos el peor punto para formar el nuevo simplex.

Si no hemos mejorado, i.e $f(x_{expan}) \ge f(x_{refle})$ aceptamos el punto reflejado y sacamos el peor punto para formar el nuevo simplex. Fin de la iteración.

<u>Caso II:</u> El punto de reflexión no ha mejorado al mejor pero sí ha mejorado a alguno de los n mejores.

$$f(x_1) \leq f(x_{refle}) < f(x_{dim})$$

Aceptamos el punto reflejado y sacamos al peor punto para formar el nuevo simplex. Fin de la iteración.

Caso III: El punto de reflexión no ha mejorado a ninguno de los n mejores.

$$f(x_{refle}) \ge f(x_{dim})$$

Paso 4: Contracción

La contracción se hace hacia el punto reflejado o hacia el peor punto dependiendo de cuál sea mejor de los dos.

-Hacia fuera: Si el punto reflejado es mejor que el peor i.e.

$$f(x_{refle}) < f(x_{dim+1})$$
$$x_{con-f} = \bar{x} + \gamma (x_{refle} - \bar{x})$$

Evaluamos la función objetivo en el punto contraído $f(x_{con-f})$

Si hemos mejorado, i.e., $f(x_{con-f}) < f(x_{refle})$ aceptamos el punto contraído y sacamos al peor para formar el nuevo simplex. Fin de la iteración.

Si no hemos mejorado, i.e. $f(x_{con-f}) \ge f(x_{refle})$ vamos al paso 5.

- Hacia dentro: Si el punto reflejado iguala o empeora el peor i.e.

$$f(x_{refle}) \ge f(x_{dim+1})$$
$$x_{con-d} = \bar{x} + \gamma(\bar{x} - x_{dim+1})$$

Evaluamos la función objetivo en el punto contraído $f(x_{con-d})$

Si hemos mejorado, i.e., $f(x_{con-d}) < f(x_{dim+1})$ aceptamos el punto contraído y sacamos al peor para formar el nuevo simplex. Fin de la iteración.

Si no hemos mejorado, i.e. $f(x_{con-d}) \ge f(x_{dim+1})$ vamos al paso 5.

Paso 5: Encogimiento

Tomamos n puntos nuevos de la forma

$$v_i = x_1 + \sigma(x_i - x_1)$$
 $i = 2, ..., dim + 1$

El nuevo simplex tiene como vértices $x_1, v_2, ..., v_{dim+1}$ Fin de la iteración.

En la figura siguiente, obtenida de Lagarias 1998, tenemos cinco gráficos de simplex: en el primero vemos cómo ha variado tras una reflexión, en el segundo tras una reflexión – expansión (figura 25), en el tercero y cuarto tras una contracción hacia afuera y hacia dentro respectivamente (figura 26) y en el último tras un encogimiento o shrink (figura 27). En todos los casos el simplex inicial aparece con líneas punteadas.

Figura 25. Transformación de los simplex tras una (a) reflexión, b) reflexiónexpansión.

Figura 26. Transformación de los simplex (a) tras una contracción hacia afuera, (b) tras una contracción hacia adentro.

Figura 27. Transformación de los simplex tras un encogimiento.

RESULTADOS

Análisis de Resultados

Se implementó un equipo de monitoreo de intercambio de energía calorífica entre dos fluidos agua fría y aire caliente, para evaluar el gradiente de temperatura entre ambos fluidos y su comportamiento. Con la instrumentación necesaria se obtuvieron los datos experimentales principales para realizar los cálculos correspondientes y establecer una metodología para determinar el coeficiente de transferencia de calor por convección forzada, los números adimensionales y el coeficiente global de transferencia de calor y así evaluar el comportamiento de la tubería en diferentes condiciones.

4.1 Tubería de prueba - condiciones normales de operación

Se caracterizó el comportamiento de transferencia de energía calorífica de la tubería, que es el medio de transferencia el cual debe de ser un buen conductor. Se utilizaron diferentes materiales en condiciones óptimas (nuevo), que fueron el cobre (*Cu*), el acero *1018* y el acero inoxidable *316L*. Se puede observar la conductividad térmica de la tubería de prueba, (tabla 4.1) establecida en tablas, las cuales nos predicen el comportamiento que las pruebas experimentales deben confirmar, ya que el cobre es el mejor conductor térmico y por eso el más utilizado.

Material	Conductividad térmica (W/m°K)
Cobre	401
Acero 1018	50.85
Acero inox. 316L	16.2

Tabla 4.1. Conductividad térmica de los materiales.

Se realizan las pruebas experimentales variando los nueve flujos de forma gradual y se obtiene el comportamiento de la velocidad del aire, como sus diferentes temperaturas y el flujo volumétrico en cada uno de ellos.

Para simplificar el análisis se realiza una programación en Matlab en donde se integran todas las variables obtenidas para cada uno de los flujos y las ecuaciones mencionadas para poder establecer su comportamiento.

Se grafica el coeficiente global de transferencia de calor contra el número de Reynolds para observar cómo es que cambia la cantidad de calor que podrá transferirse por la diferencia de temperaturas en función del cambio en el movimiento del fluido frío (agua). Se grafican los resultados obtenidos para las tuberías de diferentes materiales, cobre, acero 1018 y acero inoxidable respectivamente, con su línea de tendencia lineal (gráfica 4.1, 4.2 y 4.3).

Gráfica 4.1 Comportamiento de la tubería de cobre en condiciones normales de operación.

Gráfica 4.2 Comportamiento de la tubería de acero 1018 en condiciones normales de operación.

Gráfica 4.3 Comportamiento de la tubería de acero inoxidable 316L en condiciones normales de operación.

Donde podemos observar que la tubería de cobre, que es nuestro punto de comparación por ser el mejor conductor, presenta un comportamiento

ascendente, indicando que conforme aumenta el flujo volumétrico en el interior de la tubería, se realiza una mejor transferencia de energía calorífica del aire caliente a la tubería y de ésta al agua fría. La tubería de acero inoxidable 316L presenta una tendencia similar ascendente pero el acero 1018 presenta un comportamiento contrario, descendente conforme aumenta el flujo volumétrico.

Se colocan los tres materiales en conjunto para observar su comportamiento entre ellos y se realiza un énfasis a la última sección con un mayor flujo volumétrico (gráfica 4.4 y 4.5).

Gráfica 4.4 Comparativo del comportamiento de las tuberías en condiciones normales de operación.

Gráfica 4.5 Comparativo del comportamiento de las tuberías en condiciones normales de operación con énfasis con mayor flujo volumétrico.

Con el comparativo de las tres tuberías, se puede observar que la tubería de cobre presenta un mejor comportamiento en cuanto a la conductividad térmica como se indicaba según la tabla de conductividad térmica, influyendo directamente en la transferencia de calor, que conforme el flujo de agua aumenta, pero se mantiene de manera laminar, esta conductividad se ve aún más reflejada, a diferencia de la tubería de acero inoxidable tipo *316L*, que a pesar de que el flujo aumente el incremento en la transmisión de calor de la superficie no aumenta considerablemente, teniendo una diferencia entre ellos en su flujo más alto de aproximadamente 5%. Y la tubería de cobre con respecto al acero *1018*, una diferencia en su flujo más alto del *11%*.

4.2 Tubería de prueba – con presencia de oxidación

Se caracterizó el comportamiento con los dos materiales al desgaste y deterioro con presencia de oxidación, el cobre y el acero *1018*, previamente

sometidos a una corrosión forzada, (figura 4.1). La tubería de acero inoxidable 316L, no se sometió a corrosión forzada por su resistencia a la misma.

Figura 4.1 Tubería de cobre y acero *1018* con presencia de oxidación.

Se realizan las pruebas experimentales variando los nueve flujos de forma gradual y se obtiene el comportamiento, como sus diferentes temperaturas y el flujo volumétrico en cada uno de ellos.

Se utiliza la programación en Matlab para realizar los cálculos donde se integran todas las variables obtenidas para cada uno de los flujos y las ecuaciones mencionadas para poder establecer su comportamiento de manera general en una gráfica representada con la variación del número de Reynols vs el número de Nusselt.

Para poder observar su comportamiento se grafica con presencia de corrosión para la tubería de cobre con su línea de tendencia lineal (gráfica 4.6).

Gráfica 4.6 Comportamiento de la tubería de cobre en condiciones de oxidación forzada.

Se observa el comportamiento y se coloca el comparativo de la tubería en estado normal y con presencia de corrosión para la tubería de cobre (gráfica 4.7).

Gráfica 4.7 Comportamiento de la tubería de cobre en condiciones normales y de oxidación forzada.

Se puede observar que la tubería en condiciones normales presenta una mejor conductividad térmica muy notable por sus condiciones óptimas a diferencia de la que presenta corrosión, teniendo una diferencia del 10%.

Se tiene que tener un control de la oxidación que se desea debido a que el cobre de manera particular forma diferentes tipos de óxidos por tener valencia *1* y 2, hay dos oxidaciones en su evolución, primero empieza con valencia uno y se forma un tipo de óxido y posteriormente con valencia 2 y forma otro tipo de óxido, de ahí depende de los medios en los que tenga contacto, el cobre tiene óxidos múltiples complejos.

Para poder observar su comportamiento se coloca el comportamiento en estado normal y con presencia de corrosión para la tubería de acero *1018*, (gráfica 4.8).

Gráfica 4.8 Comportamiento de la tubería de acero 1018 en condiciones de corrosión forzada.

En la gráfica se puede observar que en los tubos de acero 1018 en condiciones, se presenta el mismo comportamiento, el aumento del flujo volumétrico es de manera ascendente al aumento en la transferencia de calor.

Teniendo el comportamiento en condiciones ideales de la tubería de acero 1018, podemos tener un punto de comparación con la tubería con presencia de oxidación (gráfica 4.9).

Gráfica 4.9 Comportamiento de la tubería de acero *1018* en condiciones normales y de corrosión forzada.

Por lo que se muestra el tubo de acero 1018 al presentar la capa de oxidación tuvo un comportamiento más bajo de transferencia de calor como se esperaba por la capa gruesa de óxido y en algunas zonas con corrosión, teniendo una diferencia del 14%. Se debe tener un control de la oxidación que se desea debido a que al colocar el acero en un medio neutro se puede formar hidróxidos primero con fierro valencia 2⁺ y 3⁺, como la forma más básica de oxidación. Si se pone en presencia de sulfatos, que son medios ácidos, con presencia de oxígeno de forma sulfato de hierro, óxidos de hierro. Si se pone en medio básico el hierro forma hidróxido de hierro en su primera oxidación y

empieza a cambiar hasta formar hematita y magnetita, que es forma más estable de óxido y la más protectora, es una capa pareja y homogénea, y puede tener mejoras en sus propiedades. Esta sería la forma más fácil de obtener en medio básico este tipo de óxido, porque en los otros medio reaccionan principalmente con el ambiente.

4.3 Tubería de prueba - con recubrimiento de níquel-electroless

Se aplicó un recubrimiento uniforme por inmersión de níquel-electroless (aleación de níquel-fosforo, *Ni-P*) de 5 micras de espesor, sobre los materiales cobre y acero *1018*, (figura 4.2), como solución viable para abatir el problema a la corrosión y evitar el deterioro en medios químicos. Se aplicó este tipo de recubrimiento por tener un bajo factor de corrosión en ambientes alcalinos comparado con aleaciones de alto costo y con un acero inoxidable *316L*.

Se realizan las pruebas experimentales variando los nueve flujos de forma gradual y se obtiene el comportamiento, como sus diferentes temperaturas y el flujo volumétrico en cada uno de ellos.

Se utiliza la programación en Matlab para realizar los cálculos donde se integran todas las variables obtenidas para cada uno de los flujos y las ecuaciones mencionadas para poder establecer su comportamiento de manera general en una gráfica representada con la variación del número de Reynols vs el número de Nusselt.

Para poder observar su comportamiento se coloca el comportamiento con el recubrimiento para la tubería de cobre, con su línea de tendencia lineal (gráfica 4.10).

Gráfica 4.10 Comportamiento de la tubería de cobre con el recubrimiento.

Se observa el comportamiento y se coloca el comparativo de la tubería en estado normal y con el recubrimiento para la tubería de cobre (gráfica 4.11).

Gráfica 4.11 Comportamiento de la tubería de cobre en condiciones normales y con el recubrimiento.

En los tubos de cobre ambas condiciones, se presenta el mismo comportamiento de manera ascendente, el aumento del flujo volumétrico es proporcional al aumento en la transferencia de calor.

Comparando las condiciones ideales con la tubería con el recubrimiento, observamos que se comporta muy similar con un flujo volumétrico bajo pero con forme aumenta el flujo, la transferencia aumenta proporcionalmente en ambas tuberías, pero con el recubrimiento en un rango mejor con una diferencia del 2% hasta casi coincidir, observando que dicho recubrimiento le ayuda a protegerlo de la corrosión pero no afecta en gran medida su conductividad térmica pudiendo validar que con él, se puede tener una solución viable al problema con los intercambiadores de calor en la hidroeléctrica por la utilización del agua contaminada para su enfriamiento del generador.

Para poder tener un análisis de igual manera en la parte de los tanques y espejos de los intercambiadores se observa su comportamiento y se coloca con el recubrimiento para la tubería de acero *1018* (gráfica 4.12).

Gráfica 4.12 Comportamiento de la tubería de acero *1018* con el recubrimiento.

Se observa el comportamiento y se coloca el comparativo de la tubería en estado normal y con el recubrimiento para la tubería de acero 1018 (gráfica 4.13).

Gráfica 4.13 Comportamiento de la tubería de acero 1018 en condiciones normales y con el recubrimiento.

En los tubos de acero 1018 tuvieron un comportamiento inverso, debido a que en condiciones normales tiene un comportamiento descendente y con el recubrimiento ascendente a razón del aumento del flujo volumétrico con la transferencia de calor.

Comparando las condiciones ideales con la tubería con el recubrimiento, observamos un comportamiento mejor pero con el recubrimiento en un rango mayor del *4%*, observando que dicho recubrimiento le ayuda a protegerlo de la corrosión pero no afecta en gran medida su conductividad térmica, por el contrario le ayuda, aunque no es de manera esencial la utilización de este material, por ser lo que constituye los tanques y espejo de los intercambiadores tiene el beneficio del recubrimiento para la prevención de corrosión y proliferación de la misma.

Con los valores ya obtenidos de las tuberías con el recubrimiento, se mantienen las condiciones de operación para ambos fluidos. Se grafica el número de Reynolds con respecto al número de Nusselt para observar el comportamiento de la tubería de cobre con recubrimiento contra la tubería de acero *1018* con recubrimiento y el acero inoxidable 316L, para tenerlo como punto de comparación siendo este material uno de los más utilizados para esta problemática, pero implicando un alto costo por el material y el rediseño del intercambiador por su baja conductividad térmica (gráfica 4.14).

Gráfica 4.14 Comportamiento de la tubería de cobre y acero 1018 con el recubrimiento contra el acero inoxidable tipo 316L.

Con estas tuberías tenemos dos maneras diferentes de prevenir la corrosión, y en ellos se presenta el mismo comportamiento, el aumento del flujo volumétrico es directamente proporcional al aumento en la transferencia de calor, solo que el cobre es el único que trabaja mejor desde flujos laminares bajos.

El acero inoxidable es esencialmente un acero de bajo carbono (C) con un contenido de cromo (Cr) y níquel (Ni), haciéndolo muy resistente a la corrosión frente a diversos agentes químicos, ácidos y atmosferas salinas, reflejando esto en un alto costo, y en cuanto a su uso en intercambiadores de calor, una propiedad fundamental es su baja conductividad térmica que se observa en la

gráfica que a pesar de aumentar el flujo volumétrico la trasferencia de calor hay una diferencia del 7% en su flujo más alto con respecto al cobre. Como observamos anteriormente, a pesar de que el cobre con recubrimiento presenta una menor transferencia de calor contra el cobre en condiciones ideales, aun así, presenta una transferencia mayor que el del acero inoxidable *136L* y aun mayor del acero 1018.

4.4 Cálculos realizados

En base a los parámetros obtenidos en la experimentación en cuanto a los valores de los flujos de agua, las velocidades del aire y las temperaturas de trabajos de todo el sistema, se realizaron los cálculos correspondientes para poder establecer el comportamiento numérico del intercambiador para las diferentes tuberías de prueba.

Condiciones de operación y cálculos obtenidos pata la tubería de cobre respectivamente (tabla 4.2 y 4.3).

	Tubo de cobre												
	Flujo de Agua	Velocidad Aire	T. Entrada Aire	T. Salida Aire	T. Entrada Agua	T. Salida Agua							
1	0.118	2.527	58.571	39.212	20.515	21.349							
2	0.123	2.576	59.795	35.036	19.134	20.733							
3	0.138	2.526	58.094	34.416	19.808	20.623							
4	0.224	2.506	56.979	35.623	19.731	20.318							
5	0.247	2.675	58.462	37.476	19.339	19.973							
6	0.337	2.706	59.229	35.780	20.440	20.930							
7	0.401	2.963	60.847	34.285	19.656	20.168							
8	0.465	2.979	58.954	34.849	21.252	21.361							
9	0.494	2.979	58.598	34.159	19.465	19.613							

Tabla 4.2 Condiciones de operación para la tubería de cobre.

	Tubo de cobre												
	Re Int	Pr Int	Nu Int	Q Int	h Int	Re Ext	Pr Ext	Nu Ext	h Ext	U	Е		
1	1.8585	6.8168	4.3640	10.3161	245.1400	3858.013	0.7590	26.6693	50.3987	39.6462	50.8688		

2	1.8885	7.0046	4.3640	20.5850	244.4770	3933.360	0.7590	26.9285	50.8885	39.9277	60.8972
3	2.1200	6.9543	4.3640	11.7191	244.4770	3856.018	0.7590	26.6624	50.3857	39.6175	61.8309
4	1.8184	6.9870	4.3640	7.2601	244.5341	3826.568	0.7590	26.5604	50.1929	39.5000	57.3355
5	1.8021	7.0581	4.3640	7.8493	244.2859	4083.617	0.7590	27.4380	51.8514	40.5119	53.6399
6	5.2888	6.8168	4.3640	29.3568	245.1400	4130.842	0.7590	27.5962	52.1503	40.7222	50.8688
7	6.2972	6.8168	4.3640	34.9539	245.1400	4522.813	0.7590	28.8758	54.5685	42.1818	50.8688
8	7.2947	6.8168	4.3640	40.4910	245.1400	4547.557	0.7590	28.9547	54.7176	42.2708	50.8688
9	7.7562	6.8168	4.3640	43.0524	245.1400	4547.557	0.7590	28.9547	54.7176	42.2708	50.8688
	Tala		1	والمقام والمالية		tul anta a	المعامية	-			

Tabla 4.3 Cálculos obtenidos para la tubería de cobre.

Condiciones de operación y cálculos obtenidos pata la tubería de cobre con oxidación respectivamente (tabla 4.4 y 4.5).

	Tubo de cobre con oxidación												
	Flujo de	Velocidad	T. Entrada	T. Salida	T. Entrada	T. Salida							
	Agua	Aire	Aire	Aire	Agua	Agua							
1	0.175	1.350	58.037	35.813	18.643	19.492							
2	0.201	1.317	58.772	33.961	20.352	21.075							
3	0.217	1.264	60.362	35.204	18.766	19.306							
4	0.281	1.317	58.106	35.989	22.689	23.066							
5	0.308	1.300	59.845	34.291	20.194	20.596							
6	0.379	1.368	58.402	34.392	21.638	21.908							
7	0.447	1.324	58.321	34.102	21.156	21.410							
8	0.460	1.311	58.068	34.142	21.149	21.430							
9	0.484	1.297	57.489	33.381	20.815	21.014							

Tabla 4.4 Condiciones de operación para la tubería de cobre con oxidación.

	Tubo de cobre con oxidación												
	Re Int	Pr Int	Nu Int	Q Int	h Int	Re Ext	Pr Ext	Nu Ext	h Ext	U			
1	2.62501	7.17390	4.36400	15.53314	243.88851	2061.607	0.75900	19.49544	36.84177	30.72268			
2	3.14009	6.85657	4.36400	15.18603	244.99679	2010.464	0.75900	19.25210	36.38193	30.42260			
3	3.24784	7.17965	4.36400	12.24027	244.99679	1930.314	0.75900	18.86445	35.64935	29.90866			
4	2.87578	6.47189	4.36400	6.87724	246.41832	2011.380	0.75900	19.25649	36.39022	30.45429			
5	2.71161	6.91592	4.36400	7.33475	244.78442	1984.969	0.75900	19.12964	36.15051	30.25676			
6	5.68919	7.17390	4.36400	33.66504	243.88851	2088.934	0.75900	19.62422	37.08514	30.89173			
7	6.69971	7.17390	4.36400	39.64460	243.88851	2020.845	0.75900	19.30175	36.47574	30.46771			
8	6.89246	7.17390	4.36400	40.78521	243.88851	2001.304	0.75900	19.20820	36.29895	30.34427			
9	7.25247	7.17390	4.36400	42.91549	243.88851	1980.541	0.75900	19.10830	36.11017	30.21223			

Tabla 4.5 Cálculos obtenidos para la tubería de cobre con oxidación.

Condiciones de operación y cálculos obtenidos pata la tubería de cobre con recubrimiento de Ni-P respectivamente (tabla 4.6 y 4.7).

	Tubo de cobre con recubrimiento Ni-P												
	Flujo de Agua	Velocidad Aire	T. Entrada Aire	T. Salida Aire	T. Entrada Agua	T. Salida Agua							
1	0.052	0.826	58.127	38.299	20.550	21.802							
2	0.176	0.815	59.121	35.672	21.721	22.679							
3	0.221	2.061	59.167	34.766	20.281	21.006							
4	0.218	2.042	59.206	35.172	21.481	21.982							
5	0.288	2.708	59.368	34.964	21.585	21.981							
6	0.352	2.413	55.978	37.715	21.219	21.603							
7	0.437	1.697	57.408	34.733	21.409	21.661							
8	0.474	3.164	56.583	37.313	21.219	21.428							
9	0.497	2.472	55.806	37.200	21.335	21.708							

Tabla 4.6 Condiciones de operación para la tubería de cobre con recubrimiento

de Ni-P.

	Tubo de cobre con recubrimiento Ni-P												
	Re Int	Pr Int	Nu Int	Q Int	h Int	Re Ext	Pr Ext	Nu Ext	h Ext	U	E		
1	0.8173	6.7729	4.3640	6.7692	245.3007	1261.4524	0.7590	15.2498	28.8186	24.9514	52.7672		
2	2.8424	6.5896	4.3640	17.5797	245.9748	1244.3357	0.7590	15.1460	28.6224	24.8123	62.6981		
3	3.4390	6.8703	4.3640	16.7015	245.9748	3146.8108	0.7590	24.0860	45.5169	36.5835	62.7499		
4	0.8283	6.6717	4.3640	2.7095	245.6685	3117.8137	0.7590	23.9748	45.3067	36.4396	63.7097		
5	0.8293	6.6625	4.3640	2.1428	245.7022	4134.8683	0.7590	27.6096	52.1757	40.7561	64.5878		
6	5.5558	6.7729	4.3640	46.0124	245.3007	3683.2684	0.7590	26.0583	49.2441	38.9330	52.7672		
7	6.8982	6.7729	4.3640	57.1304	245.3007	2591.5056	0.7590	21.8578	41.3060	33.7979	52.7672		
8	7.4721	6.7729	4.3640	61.8835	245.3007	4829.6465	0.7590	29.8392	56.3891	43.2675	52.7672		
9	7.8408	6.7729	4.3640	64.9372	245.3007	3774.3715	0.7590	26.3786	49.8494	39.3104	52.7672		

Tabla 4.7 Cálculos obtenidos para la tubería de cobre con recubrimiento de Ni-

Ρ.

Condiciones de operación y cálculos obtenidos pata la tubería de acero 1018 respectivamente (tabla 4.8 y 4.9).

	Tubo de ac. 1018												
	Flujo de Agua	Velocidad Aire	T. Entrada Aire	T. Salida Aire	DT	T. Entrada Agua	T. Salida Agua						
1	0.065	2.679	56.831	33.682	23.150	19.109	20.408						
2	0.123	2.640	58.129	34.223	23.906	19.780	20.924						
3	0.159	2.666	57.067	32.234	24.833	18.282	18.991						
4	0.205	2.610	58.864	33.944	24.921	19.841	20.332						
5	0.256	2.430	59.049	32.031	27.018	19.001	19.455						
6	0.359	2.447	60.287	34.045	26.242	20.304	20.583						
7	0.464	2.400	58.774	34.376	24.398	21.287	21.567						
8	0.470	2.407	59.792	34.770	25.023	20.079	20.390						
9	0.495	2.281	59.039	33.926	25.113	19.724	19.950						

					Tu	bo de ac. 10	18				
	Re Int	Pr Int	Nu Int	Q Int	h Int	Re Ext	Pr Ext	Nu Ext	h Ext	U	Е
1	0.9843	7.0394	4.3640	8.7539	269.5449	4716.4641	0.7590	29.4875	51.6570	39.6429	61.3687
2	1.9000	6.9256	4.3640	14.6633	269.9848	4647.1189	0.7590	29.2699	51.2758	39.4313	62.3379
3	2.3667	7.2608	4.3640	11.8111	269.9848	4693.3676	0.7590	29.4152	51.5303	39.5816	64.0277
4	0.9924	6.9750	4.3640	3.3061	269.7898	4594.1006	0.7590	29.1025	50.9825	39.2518	63.8610
5	0.9718	7.1419	4.3640	3.0582	269.1510	4277.5762	0.7590	28.0821	49.1948	38.1654	67.4638
6	5.4695	7.0394	4.3640	48.6426	269.5449	4306.8948	0.7590	28.1781	49.3631	38.2778	61.3687
7	7.0681	7.0394	4.3640	62.8595	269.5449	4225.2476	0.7590	27.9098	48.8930	37.9945	61.3687
8	7.1689	7.0394	4.3640	63.7566	269.5449	4236.8528	0.7590	27.9481	48.9601	38.0351	61.3687
9	7.5456	7.0394	4.3640	67.1063	269.5449	4014.4918	0.7590	27.2048	47.6580	37.2445	61.3687

Tabla 4.8 Condiciones de operación para la tubería de acero 1018.

Tabla 4.9 Cálculos obtenidos para la tubería de acero 1018.

Condiciones de operación y cálculos obtenidos pata la tubería de acero 1018 con oxidación respectivamente (tabla 4.10 y 4.11).

	Tubo de ac. 1018 con oxidación												
	Flujo de Agua	Velocidad Aire	T. Entrada Aire	T. Salida Aire	DT	T. Entrada Agua	T. Salida Agua						
1	0.160	1.513	58.752	37.715	21.037	21.855	22.618						
2	0.230	1.285	59.881	35.292	24.589	20.501	21.136						
3	0.235	1.558	61.582	35.202	26.380	20.173	20.783						
4	0.263	1.516	59.839	33.944	25.896	19.968	20.457						
5	0.277	1.505	57.525	34.776	22.749	20.813	21.260						
6	0.361	1.533	57.354	33.579	23.775	20.586	20.919						
7	0.438	1.521	58.037	33.667	24.369	20.465	20.870						
8	0.453	1.546	56.525	33.524	23.001	20.779	21.135						
9	0.487	1.556	56.501	33.037	23.464	20.007	20.316						

Tabla 4.10 Condiciones de operación para la tubería de acero 1018 con

oxidación.

	Tubo de ac. 1018 con oxidación													
	Re Int	Pr Int	Nu Int	Q Int	h Int	Re Ext	Pr Ext	Nu Ext	h Ext	U				
1	2.5961	6.5827	4.3640	12.7758	271.3611	2663.7857	0.7590	22.1605	38.8213	31.6549				
2	3.5972	6.8371	4.3640	15.2191	270.3312	2261.7735	0.7590	20.4199	35.7722	29.5804				
3	3.6486	6.9005	4.3640	14.9683	270.3312	2741.7668	0.7590	22.4825	39.3855	32.0086				
4	2.4740	6.9506	4.3640	8.1938	269.8848	2668.5092	0.7590	22.1801	38.8557	31.6492				
5	2.5235	6.7969	4.3640	7.4772	270.4905	2650.0261	0.7590	22.1032	38.7209	31.5714				
6	5.8371	6.5827	4.3640	28.7257	271.3611	2699.0112	0.7590	22.3065	39.0772	31.8248				
7	7.0887	6.5827	4.3640	34.8849	271.3611	2678.0539	0.7590	22.2198	38.9252	31.7239				
8	7.3318	6.5827	4.3640	36.0814	271.3611	2720.6139	0.7590	22.3956	39.2332	31.9282				

9 7.8760 6.5827 4.3640 38.7598 271.3611 2739.6349 0.7590 22.4738 39.3702 32.0188 Tabla 4.11 Cálculos obtenidos para la tubería de acero 1018 con oxidación.

Condiciones de operación y cálculos obtenidos pata la tubería de acero 1018 con recubrimiento de Ni-P respectivamente (tabla 4.12 y 4.13).

	Tubo de ac. 1018 con recubrimiento Ni-P												
	Flujo de Agua	Velocidad Aire	T. Entrada Aire	T. Salida Aire	DT	T. Entrada Agua	T. Salida Agua						
1	0.202	1.605	60.201	33.795	26.405	19.819	20.552						
2	0.200	1.813	61.565	34.059	27.506	20.075	20.782						
3	0.220	2.476	62.570	31.903	30.667	20.051	20.656						
4	0.220	2.493	60.732	31.605	29.127	20.067	20.572						
5	0.249	2.567	60.279	35.068	25.211	21.648	22.140						
6	0.367	2.560	60.467	35.039	25.428	21.358	21.668						
7	0.399	2.576	60.765	38.340	22.425	21.073	21.327						
8	0.461	2.515	61.171	38.973	22.198	22.844	23.079						
9	0.484	2.509	60.962	35.208	25.755	21.413	21.579						

Tabla 4.12 Condiciones de operación para la tubería de acero 1018 con

recubrimiento de Ni-P.

Tubo de ac. 1018 con recubrimiento Ni-P											
	Re Int	Pr Int	Nu Int	Q Int	h Int	Re Ext	Pr Ext	Nu Ext	h Ext	U	Е
1	3.1055	6.9564	4.3640	15.4153	269.8627	2824.9295	0.7590	22.8210	39.9783	32.3896	1.8138
2	3.1063	6.9105	4.3640	14.7989	270.0420	3192.1596	0.7590	24.2590	42.4975	34.0276	1.7044
3	3.3991	6.9244	4.3640	13.8783	270.0420	4359.0381	0.7590	28.3482	49.6611	38.4710	1.4228
4	3.1157	6.9307	4.3640	10.6259	269.9623	4387.8343	0.7590	28.4417	49.8248	38.5669	1.2416
5	3.2351	6.6429	4.3640	10.3487	271.1129	4518.4364	0.7590	28.8618	50.5609	39.0403	1.2736
6	5.6617	6.9564	4.3640	28.1040	269.8627	4505.6339	0.7590	28.8209	50.4892	38.9609	1.8138
7	6.1472	6.9564	4.3640	30.5137	269.8627	4534.4188	0.7590	28.9128	50.6502	39.0567	1.8138
8	7.0955	6.9564	4.3640	35.2208	269.8627	4426.4599	0.7590	28.5666	50.0437	38.6950	1.8138
9	7.4620	6.9564	4.3640	37.0404	269.8627	4416.3512	0.7590	28.5339	49.9865	38.6608	1.8138

Tabla 4.13 Cálculos obtenidos para la tubería de acero 1018 con recubrimiento

de Ni-P.

Condiciones de operación y cálculos obtenidos pata la tubería de acero inoxidable 316L respectivamente (tabla 4.14 y 4.15).

Tubo de ac. inoxidable 316L										
	Flujo de Agua	Velocidad Aire	T. Entrada Aire	T. Salida Aire	T. Entrada Agua	T. Salida Agua				
1	0.202	1.490	59.942	43.841	18.670	19.557				
2	0.204	1.428	59.928	32.114	19.246	19.837				

3	0.226	1.476	60.178	34.521	19.181	19.860				
4	0.237	2.717	59.171	32.452	20.099	20.526				
5	0.258	2.703	60.393	32.904	22.750	23.143				
6	0.339	2.641	61.595	34.715	22.041	22.280				
7	0.442	2.733	59.004	34.356	21.787	22.033				
8	0.456	2.689	59.029	33.691	20.880	21.080				
9	0.483	1.975	58.956	33.085	21.052	21.336				

Tabla 4.14 Condiciones de operación para la tubería de acero inoxidable 316L.

Tubo de ac. inoxidable 316L											
	Re Int	Pr Int	Nu Int	Q Int	h Int	Re Ext	Pr Ext	Nu Ext	h Ext	U	Е
1	3.0294	7.1652	4.3640	18.7035	243.9184	2274.7033	0.7590	20.4782	38.6990	31.9382	39.0117
2	3.0897	7.0803	4.3640	12.5735	244.2090	2180.3853	0.7590	20.0492	37.8882	31.3896	68.3693
3	3.4237	7.0845	4.3640	16.0219	244.2090	2253.2934	0.7590	20.3816	38.5165	31.8196	62.5816
4	3.1196	6.9320	4.3640	8.9983	244.7274	4147.8650	0.7590	27.6530	52.2577	40.6672	68.3833
5	3.3204	6.4606	4.3640	8.2780	246.4613	4126.4402	0.7590	27.5815	52.1225	40.6415	73.0265
6	5.0953	7.1652	4.3640	31.4581	243.9184	4032.0661	0.7590	27.2643	51.5230	40.1949	39.0117
7	6.6403	7.1652	4.3640	40.9966	243.9184	4172.8383	0.7590	27.7361	52.4147	40.7355	39.0117
8	6.8482	7.1652	4.3640	42.2801	243.9184	4105.7413	0.7590	27.5122	51.9916	40.4795	39.0117
9	7.2433	7.1652	4.3640	44.7194	243.9184	3014.5723	0.7590	23.5745	44.5503	35.8210	39.0117
9	7.2433	7.1652	4.3640	44.7194	243.9184	3014.5723	0.7590	23.5745	44.5503	35.8210	39.0117

Tabla 4.15 Cálculos obtenidos para la tubería de acero inoxidable 316L.

CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

Con la construcción de un equipo de monitoreo a escala para el laboratorio se pueden realizar monitoreos sobre el comportamiento de estos equipos utilizados en las hidroeléctricas, bajo diferentes condiciones, pero desafortunadamente no se pueden mantener en su totalidad variables controladas, debido a que tienen fluctuaciones debido al sistema de ingreso de aire por un ventilador y a las válvulas para el paso de agua con las que cuenta.

A pesar de ello se pudo estandarizar el comportamiento de las condiciones de operación para la tubería de cobre que se toma como punto de comparación para los diferentes materiales utilizados.

Con la ayuda de métodos estadísticos se realiza la validación de los resultados experimentales obtenidos por los termopares, el flujómetro y el anemómetro, pudiendo quitar los datos atípicos, las observaciones influyentes, y por medio de la distribución normal se hace un histograma para elegir los valores en función de la mejor desviación estándar y con la mejor forma de campana de Gauss.

En la gráfica 4.4 se observa el comportamiento de las tuberías de prueba validando que el cobre presenta el mejor comportamiento de transferencia de calor durante el cambio de flujo volumétrico del agua en el interior de la tubería, por tener el coeficiente de transferencia de calor más alto, seguido del acero 1018 que presenta un comportamiento descendiente y permanece, y el acero inoxidable 316L con un comportamiento menor pero en flujos bajos, y conforme aumenta el flujo, presenta una mejor transferencia de calor, pero por debajo del cobre.

En las gráficas 4.7 y 4.9 se observa el comportamiento de la tubería de cobre y de acero 1018 por separado como su transferencia de calor se ve disminuida debido a la presencia de oxidación y un poco de corrosión en su parte externa e interna, corroborando de esta manera, como es que esta problemática afecta la eficiencia del intercambiador.

De los recubrimientos y la forma de aplicarlos, ninguno presenta una buena adherencia por la forma de aplicación. El recubrimiento de níquel-electroless es el recubrimiento que presenta una mayor dureza y resistencia a la abrasión que pudiera tener debido a la presión ejercida en el interior de la tubería y la posible arena contenida en el agua. Se recubre la tubería de prueba con él.

En la gráfica 4.10 se observa que con la aplicación del recubrimiento de níquelelectroless a la tubería de cobre, esta presenta una transferencia de calor similar a las condiciones normales por debajo de ella-

En la gráfica 4.12 se observa el comportamiento de la aplicación del recubrimiento al acero 1018 en comparación de uno en condiciones normales, observando que con el recubrimiento se aumenta su transferencia de calor conforme aumenta el flujo. Aunque la importancia del análisis de este material solo radica en su protección contra la corrosión, ya que el tanque y el espejo del intercambiador son de este material susceptible a esta problemática, pero que tiene un soporte mayor debido al espesor que se maneja en su diseño, pero ayudaría a evitar la propagación en su interior de los óxidos e incrustaciones.

En la gráfica 4.13 podemos observar la comparación del comportamiento de las tuberías de prueba de cobre y acero 1018 con el recubrimiento y el acero inoxidable 316L, obteniendo que el cobre a pesar de la disminución de transferencia por el recubrimiento esta un por encima de la tubería de inoxidable y hasta la parte inferior el acero 1018.

87

Concluyendo que, en sistemas abiertos de intercambio de calor como el intercambiador, podemos utilizar materiales de bajo costo, alta conductividad térmica, disminuir el problema de corrosión y obtener una mejor transferencia de calor que con un acero inoxidable de alta calidad. Siendo una solución viable para utilizar en las hidroeléctricas.

5.2 Recomendaciones

Para poder obtener datos experimentales sin tanto ruido por medio de variables controladas, se recomienda la implementación de un sistema de entrada de aire forzado que no tenga pérdidas ni bajas de energía por uso, además de mantener el flujo en un régimen laminar o transitorio. Se pueden agregar deflectores en el ducto de aire para ayudar a su linealización, se pueden realizar estudios se simulación para lograrlo.

Mejorar el sistema de control para la temperatura de las resistencias para calentar el aire sin tanta fluctuación, cambiando el controlador por uno con un rango más corto de variación.

Mejorar el control del paso de agua, por medio del cambio de las válvulas de globo por electroválvulas y así poder mantener el mismo flujo si es que se requiere que tenga variaciones y tener la veracidad de ello con un flujómetro con menor incertidumbre.

Se podría aumentar el número de termopares en las zonas críticas de estudio para aumentar el mapeo de temperaturas para el flujo de aire caliente y por el interior de la tubería para conocer cómo es que se va comportando la transferencia a lo largo de él, y no solo a la entrada y la salida.

REFERENCIAS

ARTÍCULOS

A. Szabo[´], K. Varga, Z. Ne[´]meth *et al.* Effect of a chemical decontamination procedure on the corrosion state of the heat exchanger tubes of steam generators. Corrosion Science. 48 (2006) 2727–2749.

K. D. Demadis, Combating heat exchanger fouling and corrosion phenomena in process waters. Department of Chemistry, University of Crete (2003) 483-491.

Y.H. Wu, T. M. Liu, S. X. Luo, Corrosion characteristics of electroless Ni-P coating in dichloropropanol (DCP) solution. Corrosion engineering science technology. 46 (2011) 245-248.

T. Hodgkiess, G. Vassiliou, Complexities in the erosion corrosion of coppernickel alloys in saline water. Desalination 183 (2005) 235–247.

V. Subramanian, P. Chandramohan, M. P. Srinivasan, Corrosion of cupronickel alloy in permanganate under acidic condition. Corrosion Science 49 (2007) 620–636.

B. Kuz´nicka, Erosion–corrosion of heat exchanger tubes. Engineering Failure Analysis 16 (2009) 2382–2387.

J. M. Maciel, R. F. Vera, V. Jaimes *et al*, The characterisation of the protective film formed by benzotriazole on the 90/10 copper–nickel alloy surface in H₂SO₄ Media. Corrosion Science 50 (2008) 879–886.

L. Despènes, S. Elgue, C. Gourdon et al, Impact of the material on the thermal behaviour of heat exchangers-reactors. Chemical Engineering and Processing. 52 (2012) 102–111.

Y. Zhao, Z. Qi, Q. Wang et al, Effect of corrosion on performance of fin-andtube heat exchangers with different fin materials. Experimental Thermal and Fluid Science. 37 (2012) 98–103.

I. Betova, M. Bojinov, O. Hyökyvirta, Effect of sulphide on the corrosion behavior of AISI 316L stainless steel and its constituent elements in simulated Kraft digester conditions. Corrosion science 52 (2010) 1499-1507.

K. Hwang, S. H. Song, K. Saito, Experimental study on titanium heat exchanger used in a gas fired water heater for latent heat recovery. Applied Thermal Engineering 30 (2010) 2730-2737.

F. Pineda, Evaluación de benzotriazol benzotriazoles sustituidos como inhibidores de la corrosión de cobre. Asociación Chilena de corrosión. ACHCORR-2008.

M. Finsgar, I. Milosev, Inhibition of copper corrosion by 1,2,3-benzotriazole: A review. Corrosion Science 52 (2010) 2737–2749.

A. Lazaro, P. Dolado, J. M. Marín, B. Zalba, PCM–air heat exchangers for freecooling applications in buildings: Experimental results of two real-scale prototypes, Energy Conversion and Management. 50 (2009) 439-443.

S. Bai, H. Lu, T. Wu *et al*, Numerical and experimental analysis for exhaust heat exchangers in automobile thermoelectric generators. Case Studies in Thermal Engineering. 4 (2014) 99–112.

J. Fernandez-Seara, F. J. Uhía, J. Sieres, A. Campo, A general review of the Wilson plot method and its modifications to determine convection coefficients in heat exchange devices. Applied Thermal Engineering. 27 (2007) 2745–2757.

S. Sanitjai, R. J. Goldstein, Forced convection heat transfer from a circular cylinder in crossflow to air and liquids. International Journal of Heat and Mass Transfer. 47 (2004) 4795–4805.

J. A. W. Gut, J. M. Pinto, Modeling of plate heat exchangers with generalized configurations. International Journal of Heat and Mass Transfer. 46 (2003) 2571–2585.

W. A. Khan. J. R. Culham, M. M. Yovanivich, Convection heat transfer from tube Banks in crossflow: Analytical approach. International Journal of Heat and Mass Transfer. 49 (2006) 4831–4838.

R. Chengqiang, L. Daoxin, B. Zhenquan, Corrosion behavior of oil tube steel in simulant solution with hydrogen sulfide and carbon dioxide. Materials chemistry and Physics 93 (2005) 305-309.

K. Foli, T. Okabe, M. Olhofer *et al.* Optimization of Micro Heat Exchanger: CFD, analytical approach and multi-objective evolutionary algorithms. International Journal of Heat and Mass Transfer 49 (2006)1090-1099.

B. Freeland, J. Tobin, G. Foley. A Project and competition to Design and Build a simple Heat Exchanger. International Symposium for Enginnering Education (2007) 201-206.

V. Garcia, J. Alvarez, M. Amaya. H2S and O2 influence on the corrosion of carbon Steel immersed in a solution containing 3 M diethanolamine. Corrosion science 52 (2010) 2268-2279.

A. Muhamad, G. Turnad. Design and Construction smoke wire apparatus for wind tunnel flow visualization. J. of Mechanical computational and manufacturing research (2012) 79-86.

S. Sharul, A. Mohd, K. Muhamad. An improved smoke-wire flow visualization technique. WSEAS international conference on fluid mechanics and aerodynamics, (2006) 231-236.

J. Tang, Y. Shao, J. Guo. The effect of H2S concentration on the corrosion behavior of carbon steel at 90°C. Corrosion science 52 (2010) 1050-1058.

T. Tran, C. Fiaud, E. Sutter. Oxide and sulfide layers on cooper exposed to H2S containing most air. Corrosion science 47 (2005) 1724-1737.

C. Zhou, S. Zheng, C. Chen. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel. Corrosion science 67 (2013) 184-192.

I. Bell, E. Groll, H. Konig. Experimental Analysis of the Effects of Particulate Fouling on Heat Exchanger Heat Transfer and Air-Side Pressure Drop for a Hybrid Dry Cooler. Heat transfer engineering 32 (2011) 264-271.

J. Blanco, J. Urchueguía, J. Corberán *et al.* Optimized design of a heat exchanger for an air-to-water reversible heat pup working with propane (R290) as refrigerant: Modelling analysis and experimental observations. Applied Thermal Engineering 25 (2005) 2450-2462.

F. Coletti, S. Macchietto, G. Polley. Effects of fouling on performance of retrofitted heat exchanger networks: A thermo-hydraulic based analysis. Computers and Chemical Engineering 35 (2011) 907-917.

A. Costa, E. Queiroz. Design optimization of shell-and-tube heat exchangers. Applied Thermal Engineering 28 (2008) 1798-1805.

X. Deng, F. Jiang. Temperature difference deviation analysis for baffle flow area at inlet and outlet in shell side of heat exchangers. Chemical Engineering 38 (2010) 73-77.

92

X. Deng, H. Xian, F. Jiang. Analyses of flow path in shell side of heat exchangers and heat transfer deviation of baffling flow from counter flow. Journal of south china University o Technology 38 (2010) 12-16.

K. Foli, T. Okabe, M. Olhofer *et al.* Optimization of Micro Heat Exchanger: CFD, analytical approach and multi-objective evolutionary algorithms. International Journal of Heat and Mass Transfer 49 (2006) 1090-1099.

B. Freeland, J. Tobin, G. Foley. A Project and competition to Design and Build a simple Heat Exchanger. International Symposium for Enginnering Education (2007) 201-206.

J. Gunnarsson, I. Sinclair, F. Alanis. Compact Heat Exchangers: Improving Heat Recovery. Chemical Engineering 116 (2009) 44-47.

O. A. Jaramillo, Notas-Curso de Intercambiadores de calor, Centro de Investigación en Energía-Departamento de Sistemas Energéticos. (2007) UNAM.

V. Kumar, S. Saini, M. Sharma. Pressure drop and heat transfer study in tubein-tube helical heat exchanger. Chemical Engineering Science 61 (2006) 4403-4416.

M. T. Martinez. Evaluación de Intercambiadores de Calor Compactos de tubos aletados. Información Tecnológica 15 (2004), 47-54.

E. Ozden, I. Tari, Shell side CFD analisys of a small shell-and-tube heat exchanger. Energy Conversion and Management 51 (2010) 1004-1014.

J. Ponce, M. Serna, A. Jiménez. Desing and optimization of multipass heat exchangers. Chemical Engineering and Processing 47 (2008) 906-913.

R. Byrne, Standards of the tubular exchanger manufactures association, 9a Ed., 2007.

M. Saber, H. Mazaher, Simulation and CFD analisys of heat pipe heat exchanger using Fluent to increase of the thermal efficiency. Continuum mechanics, fluids and heat (2008) 183-189.

B. Sunden. Simulation of compact heat exchanger performance. International journal of numerical methods for heat & fluid flow 20 (2010) 551-569.

U. Vengateson, Desing of multiple shell and tube heat exchangers in series: E shell and F shell. Transactions of the Institucion of chemical Engineers Part A: Chemical Engineering Research and Desing 88 (2010) 725-736.

F. Vera, J. García, J. Gonzálvez *et al*, A simplified model for shell-and-tubes heat exchangers: Practical application. Applied Thermal Engineering 30 (2010) 1231-1241.

K. Wipplinger, T. Harms, A. Taylor. Stainlees steel finned tube heat exchanger design for waste heat recovery. Journal of Energy in Souther Africa 17 (2006) 47-56.

TESIS

V. M. Zezatti, Diseño y construcción de un prototipo de intercambiador de calor con aplicaciones en centrales hidroeléctricas. UAEM-CIICAp 2012.

E. O. Castañeda, Simulación numérica y construcción de un intercambiador de calor experimental. UAEM-CIICAp 2014.

F. J. Orona, Evaluación térmica del condensador principal de una unidad de 160MW de una central termoeléctrica, IPN, 2009.

L. Uribe, C. A. Gómez, Diseño y construcción de un banco de pruebas para determinar expresiones de coeficientes de transferencia de calor por convección promedio, UPB, 2008.

94

LIBROS

Y. çengel, Transferencia de calor, Editorial McGraw Hill. Cap. 13 p.p. 736, p.p. 730, 2^a Ed., 2001.

J. Holman, Transferencia de calor, Editorial McGraw Hill. Cap. 10, 8ª Ed., 1998.

P. Milella, Fatigue and corrosion in metals, Editorial Springer. Cap. 13, p.p. 651-686, 2013.

J. Howell, R. Buckius, Principios de termodinámica para Ingenieros, Editorial McGraw Hill. Cap.2, 1^a Ed., 1990.

S. Kacaς, H. Liu, Heat exchangers: selection rating and thermal design, Editorial CRC press. Cap. 1, 2 y 8, 2^a Ed., 2002.

D. Kern, Procesos de transferencia de calor, Editorial McGraw Hill. Cap. 1 y 7, 33ª Ed., 2001.

ANEXO 1

ANEXO 2

Cálculos detallados realizados en el programa de Matlab.

clear all close all clc

%% PARAMETROS GEOMETRICOS DEL INTERCAMBIADOR %Cu Modificación Uglobal con Incrustaciones %PRUEBA ESTADÍSTICA

Long=517/1000;% Longitud [m] Pt=20.32/1000;%Paso entre filas 4 (SI) [m] St=28.22/1000;%Paso entre columnas 10, (paso transversal) [m]

% Parte interna del tubo

Diamint=10.7/1000; % Diámetro interno [m] rint=Diamint/2; %radio interno [m] Sint2=pi*Diamint*Long; % Sección donde cruza el fluido por la longitud [m^2]

% Parte externa del tubo Diamext=12.7/1000; % Diámetro externo [m] rext=Diamext/2; %radio externo Sext2=pi*Diamext*Long; % Seccion donde cruza el fluido externo por la longitud [m^2]

%% Prueba 1 load flujo1.txt z1=flujo1;

% escogiendo datos muestreoP1=z1(:,1); % scan [s] TempinintP1=z1(:,4);% Temperatura de entrada agua TempinextP1=z1(:,5);%Temperatura de salida agua TempoutextP1=z1(:,2);%Temperatura de entrada aire TempoutextP1=z1(:,3);%Temperatura de salida aire TfcP1=(TempinintP1+TempoutintP1)/2; TsP1=(TempinextP1+TempoutextP1)/2;

%% propiedades del tubo internas Pr=1.02;% Presión atmosférica [Bar] ThKinP1 = XSteam('tc_pT',Pr,mean(TempinintP1));% Conductividad térmica del agua a la entrada[W/mk]

ThKoutP1 = XSteam('tc_pT',Pr,mean(TempoutintP1));% Conductividad térmica del agua a la salida [W/mk]

ThKaguaP1=(ThKoutP1+ThKinP1)/2;

VisinP1= XSteam('my_pT',Pr,mean(TempinintP1));% Viscosidad dinámica del agua a la entrada [Pa. s =Ns/m2]

VisoutP1= XSteam('my_pT',Pr,mean(TempoutintP1));% Viscosidad dinámica del agua a la salida [Pa. s =Ns/m2]

VisaguaP1=(VisinP1+VisoutP1)/2;

DensinP1=XSteam('rho_pT',Pr,mean(TempinintP1));% Densidad del agua a la entrada [kg/m^3]

DensoutP1=XSteam('rho_pT',Pr,mean(TempoutintP1));% Densidad del agua a la entrada [kg/m^3]

DensaguaP1=(DensinP1+DensoutP1)/2; % Densidad del agua [kg/m^3]

CpinP1=XSteam('Cp_pT',Pr,mean(TempinintP1))*1000;% Cp del agua a la entrada [J/kg?] CpoutP1=XSteam('Cp_pT',Pr,mean(TempoutintP1))*1000;% Cp del agua a la salida [J/kg?] CpaguaP1=(CpinP1+CpoutP1)/2;

HtInP1=XSteam('h_pT',Pr,mean(TempinintP1))*1000; % Entalpia del agua a la entrada [J/kg] HtOutP1=XSteam('h_pT',Pr,mean(TempoutintP1))*1000;% Entalpia del agua a la salida [J/kg]

load flujoagua.txt %Flujo de agua z1b=flujoagua; muestreoaguaP1=z1b(:,1); %scan FluaguaP1=z1b(:,2); %Flujo de agua 1

WmaguaP1=((FluaguaP1/1000)*DensaguaP1)/40; % Flujo masico de agua [kg/s] Para un solo tubo

QintP1=WmaguaP1*(HtOutP1-HtInP1);% Potencia interna [W] Para un solo tubo QintP1a=WmaguaP1*CpaguaP1*(mean(TempoutintP1)-mean(TempinintP1)); WsintP1=QintP1/(CpaguaP1*(mean(TempoutintP1)-mean(TempinintP1)));% Flujo masico del agua [kg/s] WvintP1=WsintP1/DensaguaP1; % Flujo volumétrico [m^3/s]

VelintP1=WvintP1/Sint2;% velocidad del agua [m/s]

%numeros adimensionales para el agua de enfriamiento PrndtlintP1=(CpaguaP1*VisaguaP1)/ThKaguaP1;% numero de Prandtl adimensional ReintP1=(DensaguaP1*VelintP1*Diamint)/VisaguaP1;% numero de Reynolds adimensional

% Temperatura media logarítmica DT1P1=mean(TempinintP1)-mean(TempoutintP1); DT2P1=mean(TempoutextP1)-mean(TempinextP1); LMTDP1=(DT1P1-DT2P1)/log(DT2P1/DT1P1);

% Resistencia térmica RovP1=LMTDP1/QintP1;

% Resistencia de la pared
RsWallP1=(rext*log(rext/rint))/Kwall;

PrVec=[PrndtlintP1 PrndtlintP2 PrndtlintP3 PrndtlintP4 PrndtlintP5 PrndtlintP6 PrndtlintP7 PrndtlintP8 PrndtlintP9];

QVec=[QintP1 QintP2 QintP3 QintP4 QintP5 QintP6 QintP7 QintP8 QintP9];

%-----

%% Coeficiente convectivo externo prueba 1 ThKaire=0.024;%Conductividad térmica del aire[W/mk] Cpaire=1012;% calor especifico del aire [J/kg?] Visaire=1.8e-5;% Viscosidad dinámica del aire [Pa. s =Ns/m2] Densaire=1.19;% Densidad del aire [kg/m^3]

load flujoaire.txt za=flujoaire; muestraairePa=za(:,1); %scan

```
VelaireP1=za(:,2); %Velocidad del aire 1
VelaireP2=za(:,3); %Velocidad del aire 2
VelaireP3=za(:,4); %Velocidad del aire 3
VelaireP4=za(:,5); %Velocidad del aire 4
VelaireP5=za(:,6); %Velocidad del aire 5
VelaireP6=za(:,7); %Velocidad del aire 6
VelaireP7=za(:,8); %Velocidad del aire 7
VelaireP8=za(:,9); %Velocidad del aire 8
VelaireP9=za(:,10); %Velocidad del aire 9
VelaireVec=[VelaireP1 VelaireP2 VelaireP3 VelaireP4 VelaireP5 VelaireP6 VelaireP7
VelaireP8 VelaireP9];% velocidad del aire [m/s]
```

```
VelaireP1max=((St/(St-Diamext))*VelaireP1) ;% velocidad máxima del aire1 [m/s]
VelaireP2max=((St/(St-Diamext))*VelaireP2) ;% velocidad máxima del aire2 [m/s]
VelaireP3max=((St/(St-Diamext))*VelaireP3) ;% velocidad máxima del aire3 [m/s]
VelaireP4max=((St/(St-Diamext))*VelaireP4) ;% velocidad máxima del aire4 [m/s]
VelaireP5max=((St/(St-Diamext))*VelaireP5) ;% velocidad máxima del aire5 [m/s]
VelaireP6max=((St/(St-Diamext))*VelaireP6) ;% velocidad máxima del aire6 [m/s]
VelaireP7max=((St/(St-Diamext))*VelaireP7) ;% velocidad máxima del aire7 [m/s]
VelaireP8max=((St/(St-Diamext))*VelaireP8) ;% velocidad máxima del aire8 [m/s]
VelaireP9max=((St/(St-Diamext))*VelaireP8) ;% velocidad máxima del aire8 [m/s]
```

%Igual para todos os flujos

PrExt= (Cpaire*Visaire)/ThKaire;%numero de Prandtl adimensional PrExtW=0.7202 %numero de Prandtl adimensional en la pared a 60°C ReExtP1max=(Densaire*VelaireP1max*Diamext)/Visaire; %Reynodls maximo1 ReExtP2max=(Densaire*VelaireP2max*Diamext)/Visaire; %Reynodls maximo2 ReExtP3max=(Densaire*VelaireP3max*Diamext)/Visaire; %Reynodls maximo3 ReExtP4max=(Densaire*VelaireP4max*Diamext)/Visaire; %Reynodls maximo4 ReExtP5max=(Densaire*VelaireP5max*Diamext)/Visaire; %Reynodls maximo5 ReExtP6max=(Densaire*VelaireP6max*Diamext)/Visaire; %Reynodls maximo6 ReExtP7max=(Densaire*VelaireP6max*Diamext)/Visaire; %Reynodls maximo6 ReExtP7max=(Densaire*VelaireP7max*Diamext)/Visaire; %Reynodls maximo7 ReExtP8max=(Densaire*VelaireP8max*Diamext)/Visaire; %Reynodls maximo8 ReExtP9max=(Densaire*VelaireP8max*Diamext)/Visaire; %Reynodls maximo8

%%Nussel basado en el arreglo de tubos y el rango Raynolds Re= 1000-10000 %%según Zacauscas, kaka flujo cruzado tubos alineados %%Nu=0.52*Cn*Re^0.5*Pr^0.36*((Prb/Prw)^0.25)

Cn=0.9 % factor corrección según gráfica por número de filas (4)

 $\label{eq:spectral_$

hExtP1max=(NuextP1max*ThKaire)/Diamext; %coeficiente del aire1 hExtP2max=(NuextP2max*ThKaire)/Diamext; %coeficiente del aire2 hExtP3max=(NuextP3max*ThKaire)/Diamext; %coeficiente del aire3 hExtP4max=(NuextP4max*ThKaire)/Diamext; %coeficiente del aire4 hExtP5max=(NuextP5max*ThKaire)/Diamext; %coeficiente del aire5 hExtP6max=(NuextP6max*ThKaire)/Diamext; %coeficiente del aire6 hExtP7max=(NuextP7max*ThKaire)/Diamext; %coeficiente del aire7 hExtP8max=(NuextP8max*ThKaire)/Diamext; %coeficiente del aire8 hExtP9max=(NuextP8max*ThKaire)/Diamext; %coeficiente del aire8

% Resistecia de la pared

RsWallT=(log(rext/rint))/(2*pi*Kwall*Long);

 $\label{eq:update} UglobalP1max=1/(((1/(hintP2max*Sint2))+(RsWallT)+(1/(hExtP1max*Sext2)))*Sext2);\\ UglobalP2max=1/(((1/(hintP2max*Sint2))+(RsWallT)+(1/(hExtP2max*Sext2)))*Sext2);\\ UglobalP3max=1/(((1/(hintP3max*Sint2))+(RsWallT)+(1/(hExtP3max*Sext2)))*Sext2);\\ UglobalP4max=1/(((1/(hintP4max*Sint2))+(RsWallT)+(1/(hExtP4max*Sext2)))*Sext2);\\ UglobalP5max=1/(((1/(hintP5max*Sint2))+(RsWallT)+(1/(hExtP5max*Sext2)))*Sext2);\\ UglobalP6max=1/(((1/(hintP6max*Sint2))+(RsWallT)+(1/(hExtP6max*Sext2)))*Sext2);\\ UglobalP7max=1/(((1/(hintP6max*Sint2))+(RsWallT)+(1/(hExtP6max*Sext2)))*Sext2);\\ UglobalP7max=1/(((1/(hintP7max*Sint2))+(RsWallT)+(1/(hExtP7max*Sext2)))*Sext2);\\ UglobalP8max=1/(((1/(hintP8max*Sint2))+(RsWallT)+(1/(hExtP8max*Sext2)))*Sext2);\\ UglobalP9max=1/(((1/(hintP8max*Sint2))+(RsWallT)+(1/(hExtP8max*Sext2)))*Sext2);\\ UglobalP9max=1/(((1/(hintP8max*Sint2)))+(RsWallT)+(1/(hExtP8max*Sext2)))*Sext2);\\ UglobalP9max=1/(((1/(hintP8max*Sint2)))+(RsWallT)+(1/(hExtP8max*Sext2)))*Sext2);\\ UglobalP9max=1/(((1/(hintP8max*Sint2))))*Sext2);\\ UglobalP9max=1/(((1/(hintP8max$

UVec=[UglobalP1max UglobalP2max UglobalP3max UglobalP4max UglobalP5max UglobalP6max UglobalP7max UglobalP8max UglobalP9max];

%Con factor de incrustación del agua (interno) y del aire (externo) y de la conductividad de la capa de 5 Micrómetros de recubrimiento de NiP

 $Rfi{=}0.0001~\%~m2^\circ C/W$ - Factor de incrustación representativo para el AGUA c/temp menor a 50°C

Rfo=0.0004 % m2°C/W - Factor de incrustación representativo para el AIRE KwallNi=60.7 %W/m°C % Conductividad térmica del Níquel WallNi=0.000005 %Micrómetros

RsWallTNi=(log((rext+WallNi)/(rint-WallNi)))/(2*pi*KwallNi*Long);

UglobalP1max2=1/(((1/(hintP1max*Sint2))+(Rfi/Sint2)+(RsWallT)+(RsWallTNi)+(Rfo/Sext2)+(1/(hExtP1max*Sext2)))*Sext2);

UglobalP2max2=1/(((1/(hintP2max*Sint2))+(Rfi/Sint2)+(RsWallT)+(RsWallTNi)+(Rfo/Sext2)+(1/(hExtP2max*Sext2)))*Sext2);

UglobalP3max2=1/(((1/(hintP3max*Sint2))+(Rfi/Sint2)+(RsWallT)+(RsWallTNi)+(Rfo/Sext2)+(1/(hExtP3max*Sext2)))*Sext2);

UglobalP4max2=1/(((1/(hintP4max*Sint2))+(Rfi/Sint2)+(RsWallT)+(RsWallTNi)+(Rfo/Sext2)+(1/(hExtP4max*Sext2)))*Sext2);

UglobalP5max2=1/(((1/(hintP5max*Sint2))+(Rfi/Sint2)+(RsWallT)+(RsWallTNi)+(Rfo/Sext2)+(1/(hExtP5max*Sext2)))*Sext2);

UglobalP6max2=1/(((1/(hintP6max*Sint2))+(Rfi/Sint2)+(RsWallT)+(RsWallTNi)+(Rfo/Sext2)+(1/(hExtP6max*Sext2)))*Sext2);

UglobalP7max2=1/(((1/(hintP7max*Sint2))+(Rfi/Sint2)+(RsWallT)+(RsWallTNi)+(Rfo/Sext2)+(1/(hExtP7max*Sext2)))*Sext2);

UglobalP8max2=1/(((1/(hintP8max*Sint2))+(Rfi/Sint2)+(RsWallT)+(RsWallTNi)+(Rfo/Sext2)+(1/(hExtP8max*Sext2)))*Sext2);

UglobalP9max2=1/(((1/(hintP9max*Sint2))+(Rfi/Sint2)+(RsWallT)+(RsWallTNi)+(Rfo/Sext2)+(1/(hExtP9max*Sext2)))*Sext2);

%UglobalP5max2=1/(((1/(hintP5max*Sint2))+(Rfi/Sint2)+(RsWallT)+(RsWallTNi)+(Rfo/Sext2))+(1/(hExtP5max*Sext2)))*Sext2);

%_-----

%SE CALCULA LA EFECTIVIDAD

L=0.305 %m Ancho del Intercambiador W=0.48 %m Alto del Intercambiador VolAireP1=VelaireP1*(L*W);%Volumen de Aire=Velocidad aire*Aent (área de flujo) [m^3/s] VolAireP2=VelaireP2*(L*W); VolAireP3=VelaireP3*(L*W); VolAireP4=VelaireP4*(L*W); VolAireP5=VelaireP5*(L*W); VolAireP6=VelaireP6*(L*W); VolAireP7=VelaireP7*(L*W); VolAireP8=VelaireP8*(L*W); VolAireP9=VelaireP9*(L*W);

FluMasAireP1=VolAireP1*Densaire;%Flujo Másico=Volumen Aire*Densidad [kg/s]

FluMasAireP2=VolAireP2*Densaire; FluMasAireP3=VolAireP3*Densaire; FluMasAireP4=VolAireP4*Densaire; FluMasAireP5=VolAireP5*Densaire; FluMasAireP6=VolAireP6*Densaire; FluMasAireP7=VolAireP7*Densaire; FluMasAireP8=VolAireP8*Densaire; FluMasAireP9=VolAireP9*Densaire;

ChP1=FluMasAireP1*Cpaire;%CcAire=Flujo Másico*Calor específico [W/°C] ChP2=FluMasAireP2*Cpaire; ChP3=FluMasAireP3*Cpaire; ChP4=FluMasAireP4*Cpaire; ChP5=FluMasAireP5*Cpaire; ChP6=FluMasAireP6*Cpaire; ChP7=FluMasAireP7*Cpaire; ChP8=FluMasAireP8*Cpaire; ChP9=FluMasAireP9*Cpaire;

CcP1=((FluaguaP1/1000)*DensaguaP1)*CpinP1;%CcAgua=(Flujo Vol. en m3/s * densidad)*Calor específico entrada [W/°C] CcP2=((FluaguaP2/1000)*DensaguaP2)*CpinP2; CcP3=((FluaguaP3/1000)*DensaguaP3)*CpinP3; CcP4=((FluaguaP4/1000)*DensaguaP4)*CpinP4; CcP5=((FluaguaP5/1000)*DensaguaP5)*CpinP5; CcP6=((FluaguaP6/1000)*DensaguaP6)*CpinP6; CcP7=((FluaguaP7/1000)*DensaguaP7)*CpinP7; CcP8=((FluaguaP8/1000)*DensaguaP8)*CpinP8; CcP9=((FluaguaP9/1000)*DensaguaP9)*CpinP9;

CP1=ChP1/CcP1;%C=Cmin/Cmax Relación de Capacidades CP2=ChP2/CcP2; CP3=ChP3/CcP3; CP4=ChP4/CcP4; CP5=ChP5/CcP5; CP6=ChP6/CcP6; CP7=ChP7/CcP7; CP8=ChP8/CcP8; CP9=ChP9/CcP9;

QmaxP1=ChP1*(mean(TempinextP1)-mean(TempinintP1));%Qmax=Ch min)*(Thent-Tcent) [W] aire QmaxP2=ChP2*(mean(TempinextP2)-mean(TempinintP2)); QmaxP3=ChP3*(mean(TempinextP3)-mean(TempinintP3)); QmaxP4=ChP4*(mean(TempinextP4)-mean(TempinintP4)); QmaxP5=ChP5*(mean(TempinextP5)-mean(TempinintP5)); QmaxP6=ChP6*(mean(TempinextP6)-mean(TempinintP6)); QmaxP7=ChP7*(mean(TempinextP7)-mean(TempinintP7)); QmaxP8=ChP8*(mean(TempinextP8)-mean(TempinintP8)); QmaxP9=ChP9*(mean(TempinextP9)-mean(TempinintP9));

```
QrealP1=ChP1*(mean(TempinextP1)-mean(TempoutextP1));%Qreal=Ch(min)*(Tent-Tsal)
[W] aire
QrealP2=ChP2*(mean(TempinextP2)-mean(TempoutextP2));
QrealP3=ChP3*(mean(TempinextP3)-mean(TempoutextP3));
QrealP4=ChP4*(mean(TempinextP4)-mean(TempoutextP4));
QrealP5=ChP5*(mean(TempinextP5)-mean(TempoutextP5));
QrealP6=ChP6*(mean(TempinextP6)-mean(TempoutextP6));
QrealP7=ChP7*(mean(TempinextP7)-mean(TempoutextP7));
QrealP8=ChP8*(mean(TempinextP8)-mean(TempoutextP8));
QrealP9=ChP9*(mean(TempinextP9)-mean(TempoutextP9));
EP1=(QrealP1/QmaxP1)*100;%Efectividad*100 (de un solo tubo)
EP2=(QrealP2/QmaxP2)*100;
EP3=(QrealP3/QmaxP3)*100;
EP4=(QrealP4/QmaxP4)*100;
EP5=(QrealP5/QmaxP5)*100;
EP6=(QrealP6/QmaxP6)*100;
EP7=(QrealP7/QmaxP7)*100;
EP8=(QrealP8/QmaxP8)*100:
```

%%Se guardan los valores obtenidos en un archivo de Excel

%Se grafica figure (200) hold on plot(ReVec,UVec,'*k') xlabel('Re_agua') ylabel('U_global')

EP9=(QrealP9/QmaxP9)*100;