

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MORELOS

INSTITUTO DE INVESTIGACIÓN EN CIENCIAS BÁSICAS Y APLICADAS

CENTRO DE INVESTIGACIONES QUÍMICAS

"Estudio químico y encapsulación de extractos del hongo ancestral huitlacoche *Ustilago maydis* como potencial nutracéutico"

TESIS PROFESIONAL PARA OBTENER EL GRADO DE: MAESTRO EN CIENCIAS

PRESENTA:

CARLOS AXEL ESPÍNDOLA GOROSTIETA

DIRECTOR: DRA. MAYRA YANETH ANTÚNEZ MOJICA

CODIRECTOR: DRA. AMÉRICA IVETTE BARRERA MOLINA

SINODALES: DRA. LAURA PATRICIA ALVAREZ BERBER DR. MARIO ALFONSO MURILLO TOVAR DRA. ZORMY NACARY CORREA PACHECO DR. DANIEL TAPIA MARURI DRA. MARÍA LUISA DEL CARMEN GARDUÑO RAMÍREZ

CUERNAVACA, MORELOS

OCTUBRE, 2024

JURADO

Asignación	Nombre	Adscripción
PRESEIDENTA	Dra. Laura Patricia Alvarez Berber	CIQ-UAEM
SECRETARIO	Dr. Mario Alfonso Murillo Tovar	CIQ-UAEM
VOCAL	Dra. Zormy Nacary Correa Pacheco	CEPROBI-IPN
SUPLENTE	Dr. Daniel Tapia Maruri	CEPROBI-IPN
SUPLENTE	Dra. Maria Luisa del Carmen Garduño Ramírez	CIQ-UAEM

Universidad Autónoma del Estado de Morelos

Página **Z**

El presente trabajo se realizó en el laboratorio de biomoléculas del Centro de Investigaciones Químicas del Instituto de Investigación de Ciencias Básicas y Aplicadas de la Universidad Autónoma del Estado de Morelos (IICBA-CIQ-UAEM), bajo la dirección de la Dra. Mayra Yaneth Antunez Mojica y codirección de la Dra. América Ivette Barrera Molina, con el apoyo de la beca No. **824915** otorgado por el Consejo Nacional de Ciencia y Tecnología (CONACYT)

Lugar de realización de tesis

La realización de la presente tesis se llevó a cabo en las siguientes instancias de la Universidad Autónoma del Estado de Morelos:

- Centro de Investigaciones Químicas.
 - o Laboratorio 321
 - Dra. Laura Patricia Alvarez Berber
 - Dra. Mayra Yaneth Antunez Mojica (Directora de tésis)
 - Laboratorio Nacional de Estructura de Macromoléculas (LANEM)
 - Tec. Ind. Maria Gregoria Medina Pintor
 - CG-MS
 - IR
 - Dra. Ma. de los Ángeles Ramírez Cisneros
 - Dra. Iris Janet Montoya Balbas
 - HPLC
 - Mtra. Victoria Labastida Galván
 - Espectrometría de Masas de Alta Resolución
 - Mtra. Cristina Margarita Rodríguez Narváez
 - RMN
- Universidad Autónoma del Estado de Morelos
 - Facultad de Nutrición

- Dra. América Ivette Barrera Molina (Codirectora)
 - o Microencapsulación
 - o Nanoencapsulación

CENTRO DE

Además, se contó con la colaboración en las siguientes instituciones:

- Universidad Nacional Autónoma de México
 - o Instituto de Biotecnología
 - Dr. Raúl Dávila Delgado
 - Dra. Rosana Sánchez López
 - o Laboratorio Nacional de Microscopía Avanzada

Instituto de Biotecnología universidad nacional autónoma de méxico

Instituto Politécnico Nacional

o Centro Desarrollo de Productos Bióticos

- Dra. María Antonia Hernández Aguirre
 - Liofilización encapsulados
 - Dra. Zormy Nacary Correa Pacheco
- o Laboratorio de Microscopía Avanzada
 - Dr. Daniel Tapia Maruri
 - Microscopía Electrónica de Barrido Ambiental
 - Microscopía Confocal de Barrido Laser
- CINVESTAV-Zacatenco
 - Dr. Jaime Santoyo Salazar
 - Microscopía Electrónica de Transmisión

Cinvestav

Listado de presentaciones en congresos del trabajo

- Asociación Mexicana de Productos Naturales (AMIPRONAT)
 - o 18ª Reunión Internacional de Investigación en Productos Naturales
 - Universidad Michoacana de San Nicolás de Hidalgo
 - Caracterización y cuantificación de polifenoles en tres extractos de huitlacoche comercializado en el Estado de Morelos

Espíndola-Gorostieta, C., Sánchez-Mendoza, J., Barrera-Molina, A.I., & Antúnez Mojica, M. (2023). Caracterización y cuantificación de polifenoles en tres extractos de huitlacoche comercializado en el Estado de Morelos. Revista Mexicana de Investigación en Productos Naturales, 1(1), 232. https://www.amipronat.org.mx

- Instituto en Ciencias Básicas y Aplicadas UAEM
 - o Jornada IICBA
 - Universidad Autónoma del Estado de Morelos
 - Estudio polifenólico en extractos del hongo *Ustilago Maydis* (huitlacoche) comercializado en el Estado de Morelos.

- Asociación Mexicana de Productos Naturales (AMIPRONAT)
 - o 19ª Reunión Internacional de Investigación en Productos Naturales
 - Universidad Autónoma del Estado de Morelos
 - Estudio micoquímico de dos extractos etanólicos de huitlacoche (Ustilago maydis) y su microencapsulación

Espíndola-Gorostieta, C., Alvarez-Berber, L., Dávila-Delgado, R., Barrera-Molina, A.I., & Antunez Mojica, M. (2024). Estudio micoquímico de dos extractos etanólicos de huitlacoche (*Ustilago maydis*) y su microencapsulación. Revista Mexicana de Investigación en Productos Naturales, 1(1), 291. https://www.amipronat.org.mx

Agradecimientos

Mi especial agradecimiento a la Dra. Mayra Antunez quien una vez más a depositado su confianza para la realización del presente proyecto, su apoyo, orientación y su siempre oportuna participación que han sido invaluables tanto en el desarrollo de esta tesis como en mi formación como investigador.

Esta tesis es también fruto de una codirección, agradezco a la Dra. Ivette Barrera por su constante apoyo para la realización y caracterización de los encapsulados.

De igual forma, debo agradecer a la Dra. Mayra y a la Dra. Ivette por haberme brindado siempre los medios suficientes para llevar en marcha las actividades propuestas durante el desarrollo de esta tesis.

Gracias a los miembros de mi comité tutoral (Dra. Sandra Olimpia, Dra. Maria Luisa Garduño) por sus observaciones y orientación que emitían cada en cada semestre para hacer de este un mejor trabajo.

A los miembros del comité revisor (Dra. Laura Alvarez, Dr. Mario Murillo, Dra. Zormy Correa, Dr. Daniel Tapia, Dra. Maria Luisa Garduño) les agradezco sus observaciones que enriquecieron mi manuscrito de tesis.

Mi mayor reconocimiento y agradecimiento a mis padres Mtra. Ma. del Carmen Gorostieta Rodríguez y M. en. C. José Luis Espíndola García que una vez más me enorgullece decir que son el pilar maestro de todo lo que soy. Gracias por ser los principales promotores de mis metas pero sobre todo su apoyo incondicional a lo largo de este camino.

De igual forma, mis hermanos Mtra. Edmee Espíndola e Ing. Dennis Espíndola debo darles las gracias por brindarme esa motivación para continuar en este camino.

A mis mejores amigos el Lic. DMNQ Maximiliano Rojas y Lic. DMNQ Ivan Ortega, les agradezco por estar presente a lo largo de estos años, su apoyo, confianza, motivación y soporte, son invaluables.

Asimismo, agradezco a mi mejor amigo Martynas Dvylaitis por su apoyo y motivación durante la realización de la maestría pero en especial cuando el barco parecía naufragar.

Gracias a la Dra. Araceli Guerrero por su amistad, apoyo y orientación cuando algunas dudas existenciales aparecían en escena para la realización de mi proyecto, de igual forma mi gratitud a Kytzia Alcalá, Mathiu Jiménez, Marlon Espínosa, Melissa González, Pamela Rangel, por brindarme su amistad, confianza y apoyo durante mi periodo de maestría pero sobretodo, gracias por hacer del tiempo en el laboratorio más ameno.

Además agradezco a mis amigos y compañeros de la Facultad de Nutrición (M. en C. Mónica Villanueva, L.N. Narda Aguilar, Antonio Rosales, Sahian Nava, Mónica Jacobo) por brindarme su amistad durante mi estadía en el laboratorio, su asistencia en la elaboración de los encapsulados y en los ensayos.

Asimismo, quisiera expresar mi gratitud a todos los que han estado involucrados tanto directa como indirectamente en el desarrollo de mi investigación, de mi formación universitaria y personal.

Página **8**

Lugar de realización de tesis	4
Listado de presentaciones en congresos del trabajo	6
Agradecimientos	7
Índice	9
Índice de Diagramas	13
Índice de Espectros	14
Índice de Figuras	15
Índice de Gráficas	
Índice de Tablas	19
Abreviaturas	21
Resumen	25
1. Introducción	27
2. Antecedentes	
2.1 Nutracéuticos	
2.2 Hongos	
2.3 Generalidades del Género <i>Ustilago</i>	
2.4 Generalidades de la Especie Ustilago maydis	
2.4.1 Ciclo de Vida	
2.4.1 Contenido Nutricional	
2.4.2 Estudios Químicos	
2.5 Encapsulación	51
2.5.1 Microencapsulación	51
2.5.1.1 Alginato.	
2.5.1.2 Quitosano	54
2.5.1.2 Quitosano-Alginato	55
3. Justificación	
4. Hipótesis	
5. Objetivo General	57
5.1 Objetivos Particulares	57
6. Materiales y Métodos	
6.1 Obtención del Material Fúngico	59
6.2 Obtención del Extracto	59

Índice

6.2.1 Huitlacoche Fresco (HF)	59
6.2.2 Huitlacoche Cocido (HC)	59
6.3 Bipartición de los Extractos	60
6.4 Cuantificación de Polifenoles Totales	61
6.4.1 Preparación de las Soluciones	61
6.5 Técnicas Cromatográficas	62
6.5.1 Cromatografía en Columna Abierta	62
6.5.2 Cromatografía en Capa Fina	62
6.5.3 Cromatografía Líquida de Alta Eficacia	62
6.5.4 Cromatografía de Gases	63
6.6 Técnicas de Elucidación	64
6.6.1 Resonancia Magnética Nuclear	64
6.7 Micoquímica	64
6.7.1 Fraccionamiento Primario Fases de DCM	64
6.7.1.1 Huitlacoche Cocido	64
6.7.1.2 Huitlacoche Fresco.	65
6.7.2 Fraccionamiento Secundario de las Fases de DCM	67
6.5.2.1 Huitlacoche Cocido: Reunión Λ05.	67
6.5.2.1 Huitlacoche Fresco: Reunión Q02.	68
6.5.2.1 Huitlacoche Fresco: Reunión Q09.	68
6.8 Microencapsulación de Extractos	69
6.8.1 Alginato de Sodio	69
6.8.1.1 Preparación de las Soluciones	69
6.8.1.2 Desarrollo del Método.	69
6.8.2 Quitosano	70
6.8.2.1 Preparación de las Soluciones	70
6.8.2.2 Desarrollo del Método.	70
6.8.3 Quitosano-Alginato-Extractos Etanólicos Huitlacoche	71
6.8.3.1 Preparación de las Soluciones	71
6.8.3.2 Desarrollo del Método.	71
6.9 Microscopia Estereoscópica	73
6.10 Microscopía Electrónica de Barrido Ambiental (ESEM)	73
6.11 Microscopía Confocal de Barrido Láser (CLSM)	73

6.12 Microscopía Electrónica de Transmisión (TEM)	74
6.13 Análisis de Imágenes Estáticas de Microscopía y Estereoscopía	74
6.14 Análisis estático ANOVA	74
7. Resultados y Discusión	75
7.1 Rendimientos de Extractos y Fases de Bipartición	75
7.2 Análisis Químico de los Extractos Etanólicos de Huitlacoche	78
7.2.1 Cuantificación de Polifenoles Totales	78
7.2.2 Detección de Polifenoles Mediante Cromatografía de Líquidos de Alt	a 80
7 2 Análisis Químico do los Escos Obtonidos Modionto Rinartición	00
7.3 Allansis Quínico de las rases Oblenidas Mediante Dipartición	02 02
7.3.1 Identificación de Compusatos en la Fases de Dislavemetano	02
7.3.2 Identificación de Compuestos en la Fases de Diciorometano	
7.3.2.1 Analisis del Perfil Micoquímico de las Fases de DCM por CG-EM.	80
7.3.2.2 Identificación de Compuestos Polifenolicos en la Fase de DCM	90
7.3.2.3 Perfil Químico de la Fase de DCM Basado en RMN	92
7.3.2.4 Purificación de las Fases de DCM Mediante Cromatografia en Columna.	93
7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión Λ05	y Q09 99
7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión Λ05 7.3.3 Identificación de compuestos en las fases Hidroalcohólicas	y Q09 99 102
 7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión Λ05 7.3.3 Identificación de compuestos en las fases Hidroalcohólicas 7.3.3.1 Análisis por CLAE de Polifenoles en las Fases Hidroalcohólicas. 	y Q09 99 102 102
 7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión Λ05 7.3.3 Identificación de compuestos en las fases Hidroalcohólicas 7.3.3.1 Análisis por CLAE de Polifenoles en las Fases Hidroalcohólicas. 7.4 Caracterización de Compuestos Aislados 	y Q09 99 102 102 102
 7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión Λ05 7.3.3 Identificación de compuestos en las fases Hidroalcohólicas 7.3.3.1 Análisis por CLAE de Polifenoles en las Fases Hidroalcohólicas. 7.4 Caracterización de Compuestos Aislados 7.4.1 Caracterización de 6-Metoxi-2-Benzoxazolinona (Coixol) 	y Q09 99 102 102 104 104
 7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión Λ05 7.3.3 Identificación de compuestos en las fases Hidroalcohólicas 7.3.3.1 Análisis por CLAE de Polifenoles en las Fases Hidroalcohólicas. 7.4 Caracterización de Compuestos Aislados 7.4.1 Caracterización de 6-Metoxi-2-Benzoxazolinona (Coixol) 7.4.2 Caracterización del Ácido 4-Hidroxibenzoico 	y Q09 99 102 102 104 104 109
 7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión Λ05 7.3.3 Identificación de compuestos en las fases Hidroalcohólicas 7.3.3.1 Análisis por CLAE de Polifenoles en las Fases Hidroalcohólicas. 7.4 Caracterización de Compuestos Aislados 7.4.1 Caracterización de 6-Metoxi-2-Benzoxazolinona (Coixol) 7.4.2 Caracterización del Ácido 4-Hidroxibenzoico 7.5 Análisis y Caracterización de Encapsulados 	y Q09 99 102 102 104 104 109 114
 7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión Λ05 7.3.3 Identificación de compuestos en las fases Hidroalcohólicas. 7.3.3.1 Análisis por CLAE de Polifenoles en las Fases Hidroalcohólicas. 7.4 Caracterización de Compuestos Aislados 7.4.1 Caracterización de 6-Metoxi-2-Benzoxazolinona (Coixol) 7.4.2 Caracterización del Ácido 4-Hidroxibenzoico 7.5 Análisis y Caracterización de Encapsulados 7.5.1 Microcápsulas de Alginato de Sodio 	y Q09 99 102 102 104 104 109 114 114
 7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión Λ05 7.3.3 Identificación de compuestos en las fases Hidroalcohólicas 7.3.3.1 Análisis por CLAE de Polifenoles en las Fases Hidroalcohólicas. 7.4 Caracterización de Compuestos Aislados 7.4.1 Caracterización de 6-Metoxi-2-Benzoxazolinona (Coixol) 7.4.2 Caracterización del Ácido 4-Hidroxibenzoico 7.5 Análisis y Caracterización de Encapsulados 7.5.1 Microcápsulas de Alginato de Sodio 7.5.1.1 Caracterización Morfológica Mediante Microscopia Óptica. 	y Q09 99 102 102 104 104 109 114 114 116
 7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión Λ05 7.3.3 Identificación de compuestos en las fases Hidroalcohólicas. 7.3.3.1 Análisis por CLAE de Polifenoles en las Fases Hidroalcohólicas. 7.4 Caracterización de Compuestos Aislados 7.4.1 Caracterización de 6-Metoxi-2-Benzoxazolinona (Coixol) 7.4.2 Caracterización del Ácido 4-Hidroxibenzoico 7.5 Análisis y Caracterización de Encapsulados 7.5.1 Microcápsulas de Alginato de Sodio 7.5.1.1 Caracterización Morfológica Mediante Microscopia Óptica. 7.5.1.2 Determinación de Tamaño Mediante Microscopia Estereoscópica 	y Q09 99 102 102 104 104 109 114 116 I118
 7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión A05 7.3.3 Identificación de compuestos en las fases Hidroalcohólicas 7.3.3.1 Análisis por CLAE de Polifenoles en las Fases Hidroalcohólicas. 7.4 Caracterización de Compuestos Aislados 7.4.1 Caracterización de 6-Metoxi-2-Benzoxazolinona (Coixol) 7.4.2 Caracterización del Ácido 4-Hidroxibenzoico 7.5 Análisis y Caracterización de Encapsulados 7.5.1 Microcápsulas de Alginato de Sodio 7.5.1.1 Caracterización Morfológica Mediante Microscopia Óptica. 7.5.2 Determinación de Tamaño Mediante Microscopia Estereoscópica 	y Q09 99 102 102 104 104 109 114 116 118 124
 7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión A05 7.3.3 Identificación de compuestos en las fases Hidroalcohólicas 7.3.3.1 Análisis por CLAE de Polifenoles en las Fases Hidroalcohólicas. 7.4 Caracterización de Compuestos Aislados 7.4.1 Caracterización de 6-Metoxi-2-Benzoxazolinona (Coixol) 7.4.2 Caracterización del Ácido 4-Hidroxibenzoico 7.5 Análisis y Caracterización de Encapsulados 7.5.1 Microcápsulas de Alginato de Sodio 7.5.1.2 Determinación de Tamaño Mediante Microscopia Éstereoscópica 7.5.2 Microcápsulas de Quitosano 7.5.1 Microcápsulas de Quitosano 	y Q09 99 102 102 104 104 104 114 114 116 . 118 124 124
 7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión A05 7.3.3 Identificación de compuestos en las fases Hidroalcohólicas 7.3.3.1 Análisis por CLAE de Polifenoles en las Fases Hidroalcohólicas. 7.4 Caracterización de Compuestos Aislados 7.4.1 Caracterización de 6-Metoxi-2-Benzoxazolinona (Coixol) 7.4.2 Caracterización del Ácido 4-Hidroxibenzoico 7.5 Análisis y Caracterización de Encapsulados 7.5.1 Microcápsulas de Alginato de Sodio 7.5.1.1 Caracterización Morfológica Mediante Microscopia Óptica. 7.5.2 Determinación de Tamaño Mediante Microscopia Estereoscópica 7.5.2.1 Microscopia Electrónica de Barrido. 7.5.2.2 Microscopía Confocal de Barrido Láser (CLSM) 	y Q09 99 102 102 104 104 104 114 114 116 118 124 124 126
 7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión Λ05 7.3.3 Identificación de compuestos en las fases Hidroalcohólicas. 7.3.3.1 Análisis por CLAE de Polifenoles en las Fases Hidroalcohólicas. 7.4 Caracterización de Compuestos Aislados 7.4.1 Caracterización de 6-Metoxi-2-Benzoxazolinona (Coixol) 7.4.2 Caracterización del Ácido 4-Hidroxibenzoico 7.5 Análisis y Caracterización de Encapsulados 7.5.1 Microcápsulas de Alginato de Sodio 7.5.1.2 Determinación de Tamaño Mediante Microscopia Óptica. 7.5.2 Microcápsulas de Quitosano 7.5.2.1 Microscopía Confocal de Barrido 7.5.3 Nanocápsulas de Quitosano 	y Q09 99 102 102 104 104 104 114 114 116 . 118 124 124 126 129
 7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión A05 7.3.3 Identificación de compuestos en las fases Hidroalcohólicas. 7.3.3.1 Análisis por CLAE de Polifenoles en las Fases Hidroalcohólicas. 7.4 Caracterización de Compuestos Aislados 7.4.1 Caracterización de 6-Metoxi-2-Benzoxazolinona (Coixol) 7.4.2 Caracterización del Ácido 4-Hidroxibenzoico 7.5 Análisis y Caracterización de Encapsulados 7.5.1 Microcápsulas de Alginato de Sodio. 7.5.1.2 Determinación de Tamaño Mediante Microscopia Óptica. 7.5.2.1 Microscopia Electrónica de Barrido. 7.5.2.2 Microscopía Confocal de Barrido Láser (CLSM) 7.5.3 Nanocápsulas de Quitosano 7.5.3.1 Microscopia Electrónica de Transmisión (MET). 	y Q09 99 102 102 102 104 104 109 114 114 116 118 124 124 124 126 129 129

7.5.3.1 Microscopia Electrónica de Barrido.	130
7.5.2.2 Microscopía confocal de barrido láser (CLSM).	132
8.Conclusiones	138
9.Perspectivas	139
10. ANEXOS	140
10.1 Tiempos de Retención de los Estándares de Polifenoles	140
10.2 Espectros de UV: Estándares	141
10.3 CG-EM Reunión Λ01	142
10.4 CG-EM Reunión Λ02	143
10.5 CG-EM Reunión Q01	144
10.6 CG-EM Reunión Λ-R05	145
10.7 CG-EM Reunión Q-V01	146
10.8 CG-EM Reunión Q-S04	147
10.9 Diagramas de Flujo Encapsulación	148
10.10 CLSM	149
Referencias	150

Página 12

Índice de Diagramas

Diagrama 1. Metodología general del proyecto.	58
Diagrama 2. Condiciones de bipartición para los extractos etanólicos de huitlacoche	60
Diagrama 3. Reuniones del fraccionamiento mediante cromatografía en columna de la	
fase de DCM extracto etanólico de huitlacoche cocido	95
Diagrama 4. Reuniones del fraccionamiento primario del extracto etanólico de huitlacocl	he
cocido	97
Diagrama 5. Diagramas de flujo de micro y nanoencapsulación1	48

Índice de Espectros

Espectro 1. Espectro ¹ H-RMN, 500 MHz,CD3OD-MeOD; fase DCM huitlacoche a) fresco,
b) cocido
Espectro 2. ¹ H RMN (600 MHz, Metanol-d4) del 6-metoxi-2-benzoxazolinona104
Espectro 3. ¹³ C RMN (150 MHz, Metanol-d4) del 6-metoxi-2-benzoxazolinona104
Espectro 4. HSQC RMN (600 MHz, Metanol-d4) del 6-metoxi-2-benzoxazolinona105
Espectro 5. HMBC RMN (600 MHz, Metanol-d4) del 6-metoxi-2-benzoxazolinona106
Espectro 6. Espectrometría de masas de alta resolución del MBOA108
Espectro 7. ¹ H RMN (600 MHz, Metanol-d4) del ácido 4-hidroxibenzoico110
Espectro 8. ¹³ C RMN (150 MHz, Metanol-d4) del ácido 4-hidroxibenzoico110
Espectro 9. HSQC RMN (600 MHz, Metanol-d4 del ácido 4-hidroxibenzoico111
Espectro 10. HMBC RMN (600 MHz, Metanol-d4) del ácido 4-hidroxibenzoico
Espectro 11. COSY RMN (600 MHz, Metanol-d4) del ácido 4-hidroxibenzoico112
Espectro 12. UV-Vis de los estándares de polifenoles analizados por HPLC141

Página 14

Índice de Figuras

Figura 1. Relaciones filogenéticas entre 2 subfilos de Basidiomicota y entre taxones en
Ustilaginomycetes de Ustilaginomycotina, tomado y modificado de (Boekhout et al., 2011)
Figura 2. Diferentes nombres del U. maydis (huitlacoche) en distintos dialectos de
México
Figura 3. Ciclo del U. maydis, tomado de (Seville et al., 2012)
Figura 4. Morfologías de los microencapsulados, tomado y modificado de (Agnihotri et al.,
2012)
Figura 5. Estructura de cadena de alginato, tomado y modificado de (Martau et al., 2019)
Figura 6. Estructura de caja de huevo producida por alginato
Figura 7. Estructura del quitosano
Figura 8. Interacción entrecruzamiento de quitosano-alginato, tomado y modificado de
(Feyissa et al., 2023)
Figura 9. Materia prima de huitlacoche59
Figura 10. Placas de CCF: a) Extractos etanólicos, b) Fases hexánicas, c) fases de DCM,
d) fases hidroalcohólicas77
Figura 11. Cromatogramas a λ = 270 nm del extracto etanólico de a) huitlacoche fresco y
b) Huitlacoche Cocido
Figura 12. Cromatogramas de las fases de hexano del extracto etanólico del
a)huitlacoche cocido y b) huitlacoche fresco82
Figura 13. Cromatogramas de las fases hexánicas del extracto etanólico del a)huitlacoche
cocido y b) huitlacoche fresco
Figura 14. Cromatogramas a λ = 270 nm de la fase de DCM del extracto etanólico de a)
huitlacoche cocido y b) Huitlacoche fresco90
Figura 15. Placas de CCF de las reuniones del fraccionamiento de la fase de DCM del
extracto etanólico de huitlacoche cocido vistas en onda corta y larga93
Figura 16. a) Sólido blanco de la reunión Λ03, b) Sólido pastoso de la reunión Λ-R03 c)
placa CCF comparativa de la fase de DCM del huitlacoche cocido (H.C.), reunión (Λ03),
reunión (Λ-R03), ác 4-hidroxibenzoico (4-hb), ác. p-cumárico (p-c), Acido vainillico (V)94
Figura 17. Placa CCF reuniones fraccionamiento Λ05
Figura 18. Placas de CCF de las reuniones del fraccionamiento de la fase de DCM del
extracto etanólico de huitlacoche fresco vistas en onda corta y larga
Figura 19. Placa comparativa de CCF del compuesto obtenido en el fraccionamiento de
las fases de DCM de ambos extractos
Figura 20. Placa CCF reuniones fraccionamiento Q02 en un sistema hexano: AcOEt: Ac.
Fórmico (6:4:0.1)
Figura 21 . Placa CCF reuniones fraccionamiento Q09 en un sistema hexano: AcOEt: Ac.
Pórmico (6:4:0.1)
Figura 22. Cromatograma de la reunión Λ05 y reunión Q0999

Figura 23. Cromatogramas a λ = 270 nm de la fase hidroalcohólica del extracto etanólico
de a) huitlacoche fresco y b) Huitlacoche Cocido103
Figura 24. CG-EM del 6-Metoxi-2-benzoxazolinona107
Figura 25. Cromatograma de gases de la reunión Q04 (superior) y cromatograma de
masas del ácido 4-hidroxibenzoico (inferior)109
Figura 26. Cápsulas de alginato a una concentración de a) 1%, b) 1.5 %, c) 2% 114
Figura 27. Cápsulas de alginato-extracto de huitlacoche
Figura 28. Tomas de microscopia óptica de las microcápsulas de alginato de sodio –
extracto etanólico de huitlacoche cocido y alginato de sodio – extracto etanólico de
huitlacoche fresco a distintas concentraciones de extracto (1%, 1.8%, 2.5%) y alginato de
sodio (1%, 1.5%,2%); magnificación de 10x
Figura 29. Tomas de microscopia estereoscópica de las microcápsulas de alginato de
sodio – extracto etanólico de huitlacoche cocido y alginato de sodio – extracto etanólico
de huitlacoche fresco a distintas concentraciones de extracto (1%, 1.8%, 2.5%) y alginato
de sodio (1%, 1.5%,2%); magnificación de 10x, enfoque 0.63 119
Figura 30. Micrografías de microscopía electrónica de barrido de microcápsulas de a)
Quitosano – Extracto Etanólico de Huitlacoche Fresco (ΛF) (0.01%-2.5%), b) Quitosano –
Extracto Etanólico de Huitlacoche Cocido (βC) (0.01%-2.5%); a una magnificación de
200x y 500x y una barra de escala de 20 µm 125
Figura 31. Micrografías de microscopía confocal de barrido láser de los
microencapsulados de a) Quitosano-E.E.H.C (AC) 0.01%:1.8%, b) Quitosano-E.E.H.F.
(AF) 0.01%:1.8%; mediante 3 canales espectrales: color azul con el láser a 405 nm al 5 %
de excitación en un intervalo de 400 – 500 nm; color verde con el láser a 488 nm al 5 %
de excitación en un intervalo de 480 – 617 nm; color rojo con el láser a 640 nm al 5 % de
excitación en un intervalo de 650 – 700 nm, con una barra de escala de 100 µm 127
Figura 32. Micrografías de microscopía confocal de barrido láser de los
microencapsulados de a) Quitosano-E.E.H.C (βC) 0.05%:1.8%, b) Quitosano-E.E.H.F.
(β F) 0.05%:1.8%; mediante 3 canales espectrales: color azul con el láser a 405 nm al 5 %
de excitación en un intervalo de 400 – 500 nm; color verde con el láser a 488 nm al 5 %
de excitación en un intervalo de 480 – 617 nm; color rojo con el láser a 640 nm al 5 % de
excitación en un intervalo de 650 – 700 nm, con una barra de escala de 100 µm 128
Figura 33. Micrografías de microscopía electrónica de transmisión (MET) de los
nanocapsulados de a) Quitosano-E.E.H.C (βC) 0.05%:1.8%, b) Quitosano-E.E.H.F (βF)
0.05%:1.8%, con una barra de escala de 100 μm129
Figura 34. Micrografías de microscopía electrónica de barrido de microcápsulas de a)
Alginato de sodio-quitosano-extracto (0.01:1.5:1.8) ΛQF, b) Alginato de sodio-quitosano-
extracto (0.01:2.5:1.8) ΛSF; a una magnificación de 200x y 500x y una barra de escala de
10 y 20 μm
Figura 35 Micrografías de microscopía confocal de los encapsulados de a)
Qtn/A.S./E.E.H.C (0.01-1.8.) y b) quitosano-E.E.H.F
Figura 36. Micrografías de microscopía confocal de barrido láser de los
microencapsulados de a) Quitosano-A.SE.E.H.C (AQC) 0.01%:1.5%:1.8% b) Quitosano-
A.SE.E.H.C (ASC) 0.01%:2.5%:1.8%, c) Quitosano-A.SE.E.H.F (ASF),
0.01%:2.5%:1.8%, mediante 3 canales espectrales: color azul con el láser a 405 nm al 5

% de excitación en un intervalo de 400 – 500 nm; color verde con el láser a 488 nm al 5 %
de excitación en un intervalo de 480 – 617 nm; color rojo con el láser a 640 nm al 5 % de
excitación en un intervalo de 650 – 700 nm, con una barra de escala de 100 µm
Figura 37. Micrografías de microscopía confocal de barrido láser de los
microencapsulados de a) Quitosano-A.SE.E.H.C (βQC) 0.05%:1.5%:1.8% b) Quitosano-
A.SE.E.H.C (βSC) 0.05%:2.5%:1.8%, c) Quitosano-A.SE.E.H.F (βQF),
0.05%:1.5%:1.8%, mediante 3 canales espectrales: color azul con el láser a 405 nm al 5
% de excitación en un intervalo de 400 – 500 nm; color verde con el láser a 488 nm al 5 %
de excitación en un intervalo de 480 – 617 nm; color rojo con el láser a 640 nm al 5 % de
excitación en un intervalo de 650 – 700 nm, con una barra de escala de 100 μ m 136
Figura 38. Cromatograma de gases de la reunión A01142
Figura 39. Cromatograma de gases de la reunión A02143
Figura 40. Cromatograma de gases de la reunión Q1144
Figura 41. Cromatograma de gases de la reunión Λ-R05
Figura 42. Cromatograma de gases de la reunión Q-V01
Figura 43. Cromatograma de gases de la reunión Q-S04
Figura 44. Sobreposicionamiento de micrografías de microscopía confocal de barrido
láser a λ= 405 nm a 488 nm 640 nm

Página 17

Índice de Gráficas

Gráfica 1. Curva de calibración de ácido gálico para el ensayo de Folin-Ciocalteu
Gráfica 2. Comparación de polifenoles totales para Extracto etanólico y metanólico de
huitlacoche cocido y fresco
Gráfica 3. Ácidos grasos más abundantes en la fase hexánica de huitlacoche cocido y
huitlacoche fresco
Gráfica 4. Micoesteroles más abundantes en la fase de DCM de huitlacoche cocido y
huitlacoche fresco
Gráfica 5. Metabolitos más abundantes en la fase de DCM de huitlacoche cocido y
huitlacoche fresco
Gráfica 6. Carbohidratos más abundantes en la fase de DCM de huitlacoche cocido y
huitlacoche fresco
Gráfica 7. Metabolitos mayoritarios para la reunión A05 del huitlacoche cocido y Q09 del
huitlacoche fresco
Gráfica 8 Tamaños de las microcápsulas a diferentes concentraciones de A.S E.E.H
Gráfica 9. Comparativa de tamaños de microcápsulas a diferentes concentraciones de
CaCl ₂ y alginato
Gráfica 10. Tiempo de retención de los estándares empleados para HPLC

Página **18**

Índice de Tablas

Tabla 1. Contenido nutricional del huitlacoche, por (Aydoğdu & Gölükçü, 2017)33
Tabla 2. Contenido nutricional del huitlacoche acorde al sistema mexicano de alimentos
equivalentes
Tabla 3. Metabolitos reportados en la literatura para el hongo Ustilago maydis
(huitlacoche)
Tabla 4. Contenido de polifenoles totales reportado para huitlacoche en la literatura50
Tabla 5 . Métodos de microencapsulación de alimentos, modificado de (Jafari, 2017)51
Tabla 6. Condiciones de operación de HPLC 63
Tabla 7. Condiciones de operación para cromatografía de gases 63
Tabla 8. Fraccionamiento cromatográfico de la fase de DCM del extracto de huitlacoche
cocido
Tabla 9. Fraccionamiento cromatográfico fase de DCM del extracto de huitlacoche fresco. 66
Tabla 10 Fraccionamiento cromatográfico reunión A05 del extracto de buitlacoche cocido
67
Tabla 11. Fraccionamiento cromatográfico reunión Q02 del extracto de huitlacoche fresco
68
Tabla 12. Fraccionamiento cromatográfico reunión Q09 del extracto de huitlacoche fresco
68
Tabla 13. Formulaciones para los encapsulados con alginato de sodio
Tabla 14. Formulaciones para los encapsulados con quitosano 71
Tabla 15. Formulaciones para los encapsulados con quitosano-alginato de sodio
Tabla 16. Equivalencia de Pixeles/ Unidad por técnica de microscopía
Tabla 17. Rendimiento de las fases de los extractos de huitlacoche
Tabla 18. Resultados de cuantificación de polifenoles para los extractos etanólicos de
huitlacoche
Tabla 19. Tiempos de retención de los picos detectados a λ =270 nm para el Extracto
Etanólico de Huitlacoche Fresco (E.E.H.F.) y Huitlacoche Cocido (E.E.H.C.)
Tabla 20. Compuestos presentes en la fase hexánica de huitlacoche cocido y huitlacoche
fresco
Tabla 21. Compuestos presentes en la fase DCM de huitlacoche cocido y huitlacoche
fresco
Tabla 22 . Tiempos de retención de los picos detectados a λ =270 nm para la fase DCM del
Extracto Etanólico de Huitlacoche Fresco (E.E.H.F.) y Huitlacoche Cocido (E.E.H.C.)91
Tabla 23. Resultados de los compuestos detectados a λ =270 nm y λ =300 nm para la
fase DCM del E.E.H.F. y E.E.H.C. acorde a los estandares de referencia
Tabla 24 . Compuestos presentes en la reunión Λ05 y reunión Q09100
Tabla 25. Tiempos de retención de los picos detectados a λ =270 nm para la fase
hidroalcohólica del Extracto Etanólico de Huitlacoche Fresco (E.E.H.F.) y Huitlacoche
Cocido (E.E.H.C.)
Tabla 26. Resultados RMN 1D y 2D de 6-Metoxi-2-benzoxazolinona (coixol). 106
Tabla 27. Resultados RMN 1D y 2D del ácido 4-hidroxibenzoico. 113

Tabla 28.	Resultados del estudio de análisis de varianza unidireccional ANOVA1	20
Tabla 29.	Tamaño de los microencapsulados de los extractos de huitlacoche1	22
Tabla 30.	Compuestos presentes en la reunión A011	42
Tabla 31.	Compuestos presentes con porcentaje mayor a 1% en la reunión A021	43
Tabla 32.	Compuestos presentes con porcentaje mayor a 1% en la reunión Q011	44
Tabla 33.	Compuestos presentes en la reunión Λ -R051	45
Tabla 34.	Compuestos presentes en la reunión Q-V011	46
Tabla 35.	Compuestos presentes en la reunión Q-S041	47

Página 20

Abreviaturas

μ

Microgramo

µm Micrómetro

°C Centígrados

Α

ACN	Acetonitrilo
AcOEt	Acetato de Etilo

	/ 1001010 00	_
1	<i>'</i>	

- Ác. Ácido
- A.S. Alginato de sodio
- ASTM American Society for Testing and Materials

С

CaCl ₂	Cloruro de calcio
CAS	Chemical Abstracts Service
CCF	Cromatografía en Capa Fina
CD₃OD	Metanol deuterado
CF	Cloroformo
CG	Cromatografía de Gases
CLAE	Cromatografía de Líquidos de Alta Eficacia
cm	Centímetro(s)
COSY	Correlated Spectroscopy
	D
	Detector de Arregio de Diodos

DAD	Detector de Arregio de Diodos
DCM	Diclometano
DEPT	Distortionless Enhancement by Polarization Transfer

Ε

EAG	Equivalente de Ácido Gálico
E.E.H.	Extracto Etanólico de Huitlacoche
E.E.H.C.	Extracto Etanólico de Huitlacoche Cocido
E.E.H.F.	Extracto Etanólico de Huitlacoche Fresco
EtOH	Etanol
Et ₂ O	Dietil eter
Eq	Equivalente
	F
FAB	Fast atom bombardment
	G
g	Gramo
	н
h	Hora
H ₂ O	Agua
Hex	Hexano
HMBC	Heteronuclear Multiple Bond Correlation
HPLC	High Performance Liquid Chromatography
HSQC	Heteronuclear Single Quantum Coherence
	I
IR	Infrarrojo
	К
Kg	Kilogramos
	L
I	Litro

Μ

mBar	MiliBar
MBOA	6-Metoxi-2-benzoxazolinona
MeOD	Metanol deuterado
MeOH	Metanol
Ms	Masas
MSD	Mass Selective Detector
mL	Mililitro
MHz	MegaHertz
mg	Miligramo
m/z	Masa/carga

Ν

NaHCO ₃ (Carbonato	de	sodio
----------------------	-----------	----	-------

- NaOH Hidróxido de sodio
- nm Nanómetro
- NIST National Institute of Standards and Technology

Ρ

- pH Potencial de hidrógeno
- p/v Peso/Volumen

R

- RMN Resonancia Magnética Nuclear
- rpm Revoluciones por minuto

Т

t_R Tiempo de retención

U

- U. Ustilago
- Uv Ultravioleta

V

- v/v Volumen/Volumen
- V.A.S. Vehículos de Alginato de Sodio

Resumen

Los hongos son un recurso alimentario importante y que a lo largo del mundo han sido integrados en la dieta de las personas, en el caso de México su riqueza biológica le ha permitido el aprovechamiento de sus recursos como lo es el huitlacoche (*Ustilago maydis*).

Este hongo tiene beneficios a la salud del ser humano por el alto contenido nutricional que posee, tales como minerales, vitaminas, ácidos grasos, carbohidratos prebióticos y metabolitos secundarios.

Por lo tanto, el presente trabajo tiene como fin el aislamiento y elucidación de metabolitos secundarios presentes en el extracto etanólico del huitlacoche cocido y huitlacoche fresco, la identificación y cuantificación de polifenoles, y el encapsulamiento de los extractos usando biopolímeros (quitosano, alginato de sodio, quitosano-alginato de sodio).

El huitlacoche se adquirió en un mercado local de la ciudad de Cuautla, Morelos; posteriormente, se realizó la maceración en etanol del huitlacoche en fresco y del huitlacoche después de su tratamiento térmico.

La determinación de polifenoles totales, se realizó mediante el método de Folin-Ciocâlteu, encontrándose que el extracto de huitlacoche fresco (10.18 $\frac{mgEqA.G.}{g}$) es el que presentó mayor abundancia de metabolitos respecto al huitlacoche cocido (08.38 $\frac{mgEqA.G.}{g}$).

Los extractos de huitlacoche en fresco y cocido se llevaron a bipartición empleando solventes de polaridad creciente (hexano, diclorometano y agua), sometiendo las fases de diclorometano a un fraccionamiento primario por cromatografía en columna abierta, logrando así el aislamiento y elucidación del 6-metoxi-2-benzoxazolinona (coixol) y al ácido 4-hidroxibenzoico, cuyas actividades biológicas reportadas incluyen poseer actividad antioxidante y eliminar los radicales libres.

Además de estos compuestos activos, se logró identificar mediante cromatografía de líquidos de alta resolución y cromatografía de gases acoplado a espectrometría de masas 4 polifenoles, dos ácidos benzoicos (ácido 4-hidroxibenzoico, ácido vanílico) y dos ácidos cinámicos (ácido p-cumárico, ácido ferúlico), ácidos grasos esterificados (etil linoleato, etil palmitato, oleato de etilo) y esteroles (espinasterona, γ-sitostenona).

Dentro de la microencapsulación de los extractos, las concentraciones favorables propuestas es de 1.5% de alginato de sodio, en su contraparte, la concentración para aquellos donde se empleó quitosano es de 0.05%.

Este trabajo contribuye al estudio micoquímico del *Ustilago maydis,* así mismo, por primera vez se llevó a cabo la micro y nanoencapsulación de los extractos etanólicos de huitlacoche. De este modo se enriquece su reconocimiento como posible alimento funcional del alto impacto en la dieta y salud humana.

1. Introducción

Ustilago maydis (U. maydis) es un hongo (basidiomiceto) que infecta al maíz (Zea mays), principalmente la planta joven, lo que genera malformaciones, inicialmente de color gris pálido, pero a medida que madura adquiere el color negro que lo caracteriza. A pesar de esto, en México se ha venido empleando como parte de la dieta culinaria desde la época de las antiguas civilizaciones mexicanas; su nombre popular, huitlacoche o cuitlacoche proviene del vocablo náhuatl (lengua de los mexicas o aztecas) "cuitlacochin" o "cuitlacuchtli" que significa "maíz en mazorca degenerado" (Juárez-Montiel et al., 2011), en otras latitudes se le refiere también como carbón del maíz.

En cuanto a su contenido nutricional incluye: a) ácidos grasos esenciales (oleico y linoleico que son fuentes de Ω -3 y Ω -6 respectivamente), b) aminoácidos esenciales, c) azúcares de fácil digestión d) fibra, y e) vitamina C y minerales. Así mismo, algunas propiedades terapéuticas que se han estudiado para el huitlacoche han sido hipocolesterolemiante, inmunomodulador, anticancerígeno, antiinflamatorio, antimicrobiano, antihipertensivo, (Valdez-Morales et al., 2010; Valverde et al., 2015). Aunado a esto, acorde a lo publicado por (Valdez-Morales et al., 2010), el huitlacoche posee una capacidad antimutagénica (41.0 a 76.0%), además de su posible alternativa como antidiabético (Salazar López, 2013) y actividad antioxidante (alrededor de 5151.37±48.2 $\frac{\mu mol \ trolox}{100 \ g}$). En cuanto a la fitoquímica de este hongo, se han reportado polifenoles totales de (661.45±20.56 $\frac{mgGAE}{100 \ g}$) (Aydoğdu & Gölükçü, 2017M. L. López & Baeza, 2018).

Por otro lado, los nutracéuticos son productos presentados como una alternativa farmacéutica, ya sea en forma concentrada o ser adicionado a un alimento natural para incrementar las propiedades funcionales en beneficio de la salud (Luengo-Fernández 2007).

Con base a lo expuesto, el presente proyecto tiene como objetivo conocer el contenido de metabolitos secundarios de extractos metanólicos, en particular polifenoles, para su encapsulación y su futura evaluación como potencial nutracéutico.

2. Antecedentes

2.1 Nutracéuticos

Hoy en día podemos apreciar el interés por un estilo de vida saludable para mejorar la calidad de vida de la persona tratando de prevenir o disminuir el riesgo de padecer una enfermedad adoptando el consumo de productos naturales, dando pie a un área de investigación relevante del papel de los compuestos activos de estos productos, (Nath, 2018)

Dentro de esto se encuentra un concepto denominado nutracéutico, que fue acuñado en 1989 por Stephen De Felice, definiéndolo como un alimento o partes de este que proporcionan beneficios a la salud, incluida la prevención y el tratamiento de enfermedades, (Kumar, 2018).

Dicho término se emplea para describir un grupo de alimentos que se encuentra en una brecha en la que son más que alimentos, pero menos que productos farmacéuticos, los cuales proporcionan beneficios adicionales a la salud, junto con el valor nutricional básico del alimento, que derivan de metabolitos secundarios provenientes de las plantas u hongos comestibles generados a través de diversas rutas metabólicas.

Dentro de estos alimentos, encontramos a los hongos como resultado de su alto contenido en proteínas de calidad que contienen una alta proporción de ácidos grasos insaturados como forma vegetal. Los hongos también son una fuente de fibra, particularmente la fibra soluble, el glucano. Los cuerpos fructíferos de los hongos se componen del 50 al 60% de carbohidratos en peso seco, con azúcares libres que representan el 11%.

2.2 Hongos

El planeta tierra es un ingente hontanar de vida con una diversidad de seres vivos, los cuales son divididos en 5 reinos dentro de los cuales se encuentra el reino fungí que se estima comprende entre 1.5 y 7.1 millones de especies (Dornburg et al., 2017), y está compuesto por siete "filos": Basidiomycota, Ascomycota, Glomeromycota, Neocallimastigomycota, Blastocladiomycota, Chytridiomycota y Microsporidia. Este reino comprende desde levaduras unicelulares hasta hongos filamentosos multicelulares que incluye hongos macroscópicos que forman grandes cuerpos fructíferos. A pesar de la cifra de especies, el total estimado de diversidad de hongos disponible para la ciencia es muy inferior, (Kaliyaperumal et al., 2018)

Hay que destacar que estos han sido reconocidos como un vasto venero de principios bioactivos con actividad biológicas como antioxidante (Matuszewska et al., 2018; Shaffique et al., 2021), anticancerígena,(Jeitler et al., 2020; Panda et al., 2022; H. J. Park, 2022), antimicrobiana (Matuszewska et al., 2018), entre otros.

Podemos mencionar que, desde la antigüedad, los hongos han sido una parte importante de la dieta humana. Los griegos creían que los hongos proporcionaban fuerza durante la batalla y, según los chinos, se consideraba un alimento saludable o "Elixir de la vida", (Chatterjee et al., 2021) estas referencias demuestran que la gran mayoría de hongos son benéficos para la salud humana además de su actividad biológica sino también por su extenso contenido nutricional, considerándose como nutracéuticos (Al-Obaidi et al., 2021; Rahi & Malik, 2016)

2.3 Generalidades del Género Ustilago

En la familia Ustilaginaceae encontramos al género *Ustilago*, del cual incluye 300 especies, (Boekhout et al., 2011). En la Figura 1 se presenta un árbol filogenético de Basidiomicota.

Figura 1. Relaciones filogenéticas entre 2 subfilos de Basidiomicota y entre taxones en Ustilaginomycetes de Ustilaginomycotina, tomado y modificado de (Boekhout et al., 2011)

2.4 Generalidades de la Especie Ustilago maydis

Ustilago maydis (U. maydis) es una especie perteneciente al género Ustilago, el cual es un patógeno que infecta al maíz produciendo un hongo particular denominado en México como huitlacoche o cuitlacoche. La particularidad de esta especie es que a diferencia de otros Ustilaginales responsables de epifitas severas, son escasas derivando en una afectación menor en plantíos de maíz del cual se registró una producción de 27 millones 503 mil toneladas alcanzadas el ciclo agrícola 2021 acorde a los datos de la Secretaría de Agricultura y Desarrollo Rural (SADER)

Es pertinente mencionar que a lo largo de la República Mexicana al *U. maydis* se le conoce bajo distintos nombres acorde al dialecto de cada región (Santiago et al., 2016) y (Valadez Azúa et al., 2011), (Quinonez-Martinez et al., 2014) ver Figura 2.

El huitlacoche ha sido empleado como un hongo medicinal en algunas regiones de México como se indica en el libro "Cuitlacoche: El huitlacoche" (Valadez Azúa et al., 2011) ya sea en presentación de té para tratar la diarrea, cólicos o el uso de sus ustilosporas mezcladas con aceite se usan como medicamento para suavizar y calmar la irritación, (Guzmán, 2008; Wołtczańska, 2018).

Por otro lado, la taxonomía del huitlacoche se describe a continuación, de acuerdo con los Datos del <u>Inventaire National du Patrimoine Naturel:</u>

Clasificación jerárquica

- Dominio: Biota
- Reinado: Fungi
- Sub-reinado: Dikarya Hibbett
- Filo: Basidiomycota
- Orden: Ustilaginales
- Familia: Ustilaginaceae
- Género: Ustilago (Pers.)
- Especie: Ustilago maydis (DC.)

2.4.1 Ciclo de Vida

De acuerdo con el libro "El huitlacoche, alimento prehispánico vigente en México. Historia, aprovechamiento y técnicas de producción" de (Salazar-Torres et al., 2021) menciona que el *Ustilago maydis* es un hongo biotrófico dimórfic*o,* por lo que su ciclo de vida se desarrolla en dos fases: saprofítica y micelial-patogénica. En la Figura 3 se ilustra el ciclo de vida de este hongo.

Su ciclo comienza con las teliosporas que en el periodo de germinación forman un tubo germinal, hacia el cual migra el núcleo diploide; el tubo crece formando un promicelio y el núcleo se divide por meiosis para dar origen a cuatro núcleos haploides. Posterior a que en el promicelio se forman tres septos, se desarrollan cuatro basidiosporas uninucleadas y haploides por gemación.

Estas son diseminadas por el viento y la lluvia, comenzando así el desarrollo patogénico en la epidermis de la hoja cuando dos esporidios o basidiosporas compatibles se reconocen entre sí, formándose un micelio dicarionte (filamento infectivo), esta estructura explora la superficie del maíz hasta encontrar aberturas naturales o puede penetrar también la epidermis.

Durante el proceso de infección, forma apresorios encargados de la penetración y colonización; estos se multiplican dentro y entre las células vegetales induciéndoles hiperplasia e hipertrofia, lo cual provoca la formación de una tumoración, asimismo el hongo produce una cubierta protectora (peridio) para evitar la deshidratación del micelio dicariótico.

En un inicio las agallas suelen presentar una coloración blanquecina donde en ellas se forman las teliosporas que conforme maduran adquieren una coloración grisácea-negra, por último, el tejido de las agallas se vuelve frágil sufriendo una ruptura y provocando la liberación de las esporas.

Figura 3. Ciclo del U. maydis, tomado de (Seville et al., 2012).

2.4.1 Contenido Nutricional

Acorde al estudio realizado por (Aydoğdu & Gölükçü, 2017) en los valores nutricionales de *Ustilago maydis* podemos encontrar un amplio espectro de nutrientes ya sea minerales o ácidos grasos, ver Tabla 1.

Ácidos gra		Minerales	
	Contenido		Contenido
	[mg/kg]		[mg/kg]
Ácido oleico	42.49 ± 0.12	Mn	1.91 ± 0.07
Ácido linoleico	26.97 ± 0.18	Zn	2.51 ± 0.06
Ácido palmítico	14.79 ± 0.17	Na	12.06 ± 0.08
11-Eicosenoic ácido	4.39 ± 0.10	Mg	262.69 ± 0.02
	Contenido	Ca	18.61 ± 0.01
	[mg/kg]	Р	342.07 ± 0.02
Proteína Cruda	12.0 ± 0.1	Fe	2.85 ± 0.08
Celulosa	11.0 ± 0.14		
Grasa total	1.80 ± 0.02		
Carbohidratos	45.0 ± 0.26		

Tabla 1. Contenido nutricional del huitlacoche, por (Aydoğdu & Gölükçü, 2017)

De igual forma los datos que indica el sistema mexicano de alimentos equivalentes para el huitlacoche cocido, reporta los siguientes datos condensados a continuación:

Tabla 2. Contenido nutricional del huitlacoche acorde al sistema mexicano de alimentos equivalentes

Proteína (g)	0.8	Vitamina A	0
Lípidos (g)	0.1	Ácido ascórbico (mg)	2.6
Hidratos de carbono (g)	4.1	Hierro NO HEM (mg)	0.3
Fibra (g)	1.2	Potasio (mg)	107.5

2.4.2 Estudios Químicos

A partir de la literatura se han recopilado algunos metabolitos secundarios presentes en *Ustilago maydis* los cuales se condensan en la siguiente tabla.

Ácidos grasos			
Tratamiento	Metabolito	Referencia	
Liofilizado Cocido Extracción Et ₂ O	Ácido butírico	(Lizárraga-Guerra et al., 1997)	
Liofilizado Cocido Extracción Et ₂ O	Ácido caproico	(Lizárraga-Guerra et al., 1997)	
Liofilizado Cocido Extracción Et₂O	Аcido enántico	(Lizárraga-Guerra et al., 1997)	
Seco	С	(Aydoğdu & Gölükçü, 2017)	
Liofilizado Extracto MeOH		(Valdez-Morales et al., 2016)	
Liofilizado	Ácido mirístico	(Vanegas et al., 1995)	
Seco		(Aydoğdu & Gölükçü, 2017)	
Liofilizado Extracto MeOH		(Valdez-Morales et al., 2016)	
Liofilizado		(Vanegas et al., 1995)	
Soxhlet		(Valverde & Paredes-López, 1993)	
Liofilizado	Ácido láurico	(Vanegas et al., 1995)	
Seco	Ácido esteárico	(Aydoğdu & Gölükçü, 2017)	
Liofilizado Extracto MeOH		(Valdez-Morales et al., 2016)	
Liofilizado		(Vanegas et al., 1995)	
Soxhlet		(Valverde & Paredes-López, 1993)	
Seco	ОН	(Aydoğdu & Gölükçü, 2017)	
Liofilizado Extracto MeOH		(Valdez-Morales et al., 2016)	
Liofilizado	Ácido araquídico	(Vanegas et al. 1995)	

Tabla 3. Metabolitos reportados en la literatura para el hongo Ustilago maydis (huitlacoche)

[continuación]

Ácidos grasos				
Tratamiento	Metabolito	Referencia		
Seco	ácido margárico	(Aydoğdu & Gölükçü, 2017)		
Seco		(Aydoğdu & Gölükçü, 2017)		
Liofilizado Extracto MeOH		(Valdez-Morales et al., 2016)		
Liofilizado	Ácido bahenico	(Vanegas et al., 1995)		
Liofilizado Extracto MeOH	AL	(Valdez-Morales et al., 2016)		
Liofilizado	Ácido Lignocerico	(Vanegas et al., 1995)		
Seco	ួ	(Aydoğdu & Gölükçü, 2017)		
Liofilizado Extracto MeOH	С С С С С С С С С С С С С С С С С С С	(Valdez-Morales et al., 2016)		
Liofilizado	Ácido oleico	(Vanegas et al., 1995)		
Seco		(Aydoğdu & Gölükçü, 2017)		
Liofilizado Extracto MeOH		(Valdez-Morales et al., 2016)		
Liofilizado	Ácido linoleico	(Vanegas et al., 1995)		
Soxhlet		(Valverde & Paredes-López, 1993)		
Seco		(Aydoğdu & Gölükçü, 2017)		
Liofilizado Extracto MeOH	\sim	(Valdez-Morales et al., 2016)		
Liofilizado	Ácido linolénico	(Vanegas et al., 1995)		
Soxhlet		(Valverde & Paredes-López, 1993)		
Seco	o II	(Aydoğdu & Gölükçü, 2017)		
Soxhlet	ácido palmitoleico	(Valverde & Paredes-López, 1993)		
Seco	Ácido 11-eicosenoico	(Aydoğdu & Gölükçü, 2017)		

Ácidos grasos				
Tratamiento	Metabolito	Referencia		
Fermentación		(Wu et al., 2023)		
Cultivo U.		(Packar at al. 2020)		
maydis MB215				
Cultivo U.	O II	(Coisor et al. 2016)		
maydis				
Cultivo U.	Т Т ОН	(Maassen et al. 2014)		
maydis	, "IIII"			
Cultivo <i>U.</i>	Acido itacónico	(Klement et al. 2012)		
maydis MB215				
Cultivo U.		(Guevarra & Tabuchi, 1990)		
maydis				
Trotomionto	Aldehidos grasos	Deferencia		
Iratamiento	Metabolito	Referencia		
Liofilizado	0			
	Propanal	(Lizarraga-Guerra et al., 1997)		
Extraccion Et ₂ O	riopundi			
Lioiilizado		(Lizárraga Cuarra at al. 1907)		
Extracción Et-O	Hexanal	(Lizanaga-Guerra et al., 1997)		
Cocido		(Lizárraga-Guerra et al. 1997)		
Extracción Et _a O	Octanal	(Lizanaga-Guerra et al., 1997)		
Liofilizado				
Cocido		(Lizárraga-Guerra et al. 1997)		
Extracción Et ₂ O	Nonanal			
Liofilizado				
Cocido		(Lizárraga-Guerra et al., 1997)		
Extracción Et ₂ O	Decanal	(
Liofilizado				
Cocido		(Lizárraga-Guerra et al., 1997)		
Extracción Et ₂ O	(E)-oct-2-enal	()		
Liofilizado				
Cocido		(Lizárraga-Guerra et al., 1997)		
Extracción Et ₂ O	(E)-non-2-enal			
Liofilizado				
Cocido		(Lizárraga-Guerra et al., 1997)		
Extracción Et ₂ O	(E)-dec-2-enai			
Liofilizado		<i></i>		
Cocido	(E) undoc-2-onal	(Lizárraga-Guerra et al., 1997)		
Extracción Et ₂ O	(E)-undec-2-enai			
Liofilizado				
	(F F)-nona-24-dienal	(Lizárraga-Guerra et al., 1997)		
Extraccion Et ₂ O				
LIOTIIIZADO		(Lizárraga-Guerra et al., 1997)		
	(E E)-deca 2 4-dienal			
Cocido		(Lizárraga-Guorra et al. 1007)		
Evtracción Et-O	(E.E)-undeca-2.4-dienal	(Lizarraga-Guerra et al., 1997)		
	(-,-, -, -, -, -, -, -, -, -, -, -, -, -,			
TratamientoMetabolitoReferenciaFrescoCongelación \downarrow (Martínez-Flores et al., 2008)Temp. Amb. \downarrow \downarrow (Lizárraga-Guerra & López, 1996)MeOH-CF-H2OAlanina(Martínez-Flores et al., 2008)SoxhiletCongelación(Lizárraga-Guerra & López, 1993)FrescoCongelación(Lizárraga-Guerra & López, 1993)Congelación μ_{NH} $\mu_{NH_{ch}}$ Liofilizado $\mu_{NH_{ch}}$ (Lizárraga-Guerra & López, 1993)SoxhiletArginina(Valverde & Paredes-López, 1993)FrescoCongelación(Lizárraga-Guerra & López, 1996)MeOH-CF-H2OAcido aspártico(Uatverde & Paredes-López, 1993)Soxhilet μ_{O} \downarrow (Lizárraga-Guerra & López, 1996)MeOH-CF-H2OAcido aspártico(Valverde & Paredes-López, 1996)Soxhilet μ_{O} \downarrow (Lizárraga-Guerra & López, 1996)Nethet μ_{O} \downarrow (Lizárraga-Guerra & López, 1996)Nethet μ_{O} \downarrow (Lizárraga-Guerra & López, 1996)Soxhilet μ_{O} \downarrow (Lizárraga-Guerra & López, 1996)Soxhilet μ_{O} \downarrow (Lizárraga-Guerra & López, 1996)MeOH-CF-H2OAcido glutámico(Martínez-Flores et al., 2008)Soxhilet μ_{N} \downarrow (Lizárraga-Guerra & López, 1996)Soxhilet μ_{N} \downarrow (Lizárraga-Guerra & López, 1996)MeOH-CF-H2OGlicina(Martínez-Flores et al., 2008)Temp. Amb. μ_{N} μ_{N} (Lizárraga-Guerra		Aminoácidos		
---	--------------------------	---------------------	---------------------------------------	
Fresco Congelación Temp. Amb. Liofilizado Soxhiet \downarrow μ_{H_2} μ_{H_3} μ_{H_3} $(Martínez-Flores et al., 2008)$ MeDH-CF-H ₄ O SoxhietAlanina(Martínez-Flores et al., 2008)(Lizárraga-Guerra & López, 1993)Fresco Congelación Temp. Amb. Liofilizado μ_{H_1} μ_{H_4} $(Martínez-Flores et al., 2008)$ MeDH-CF-H ₄ O MeOH-CF-H ₄ OArginina(Martínez-Flores et al., 2008)Soxhiet μ_{H_1} μ_{H_4} $(Martínez-Flores et al., 2008)$ Temp. Amb. Liofilizado μ_{O_4} $(Martínez-Flores et al., 2008)$ Soxhiet μ_{O_4} $(Martínez-Flores et al., 2008)$ Temp. Amb. Liofilizado μ_{O_4} $(Martínez-Flores et al., 2008)$ Temp. Amb. Liofilizado μ_{O_4} $(Martínez-Flores et al., 2008)$ MeOH-CF-H ₂ O Soxhiet μ_{H_1} $(Martínez-Flores et al., 2008)$ MeOH-CF-H ₂ O Soxhiet $\mu_{$	Tratamiento	Metabolito	Referencia	
$\begin{array}{c} \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_O} \\ \text{Alanina} \\ \text{Soxhiet} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_O} \\ \text{Soxhiet} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_O} \\ \text{Soxhiet} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_O} \\ \text{Soxhiet} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_O} \\ \text{Soxhiet} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_O} \\ \text{Soxhiet} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_O} \\ \text{Soxhiet} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_O} \\ \text{Soxhiet} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_O} \\ \text{Soxhiet} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{Soxhiet} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_O} \\ \text{Soxhiet} \\ \text{Cisteina} \\ \text{Cisteina} \\ \text{Cisteina} \\ \text{Cisteina} \\ \text{Ciatiraga-Guerra & López, 1993)} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_O} \\ \text{Soxhiet} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_O} \\ \text{Soxhiet} \\ \text{Cisteina} \\ \text{Cisteina} \\ \text{Cisteina} \\ \text{Citairaga-Guerra & López, 1993)} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_O} \\ \text{Soxhiet} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_O} \\ \text{Soxhiet} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp, Amb,} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_O} \\ \text{Soxhiet} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Fresco} \\ \text{Congelación} \\ \text{Fresco} $	Fresco	0		
Temp. Amb. Liofilizado Extracción $\downarrow \downarrow \downarrow_{ort}$ M_{track} $\downarrow \downarrow_{ort}$ M_{track} $(Lizárraga-Guerra & López, 1996)$ MeOH-CF-HoO SoxhietAlanina(Wartinez-Flores et al., 2008)Fresco Congelación Temp. Amb. Liofilizado Extracción $M_{trach} + \downarrow $	Congelación	U II	(Martínez-Flores et al., 2008)	
Liofilizado Extracción MeOH-CF-H ₂ O Soxhiet Liofilizado Extracción MeOH-CF-H ₂ O Soxhiet Liofilizado Extracción MeOH-CF-H ₂ O Soxhiet MeOH-CF-H ₂ O Soxhiet Ho $\downarrow \downarrow $	Temp. Amb.	\sim		
Extracción \mathbf{M}_{R_2} (Lizárraga-Guerra & López, 1996)MeOH-CF-H2OAlanina(Valverde & Paredes-López, 1993)FrescoCongelación \mathbf{M}_{H_2} (Martínez-Flores et al., 2008)Congelación \mathbf{M}_{H_2} (Valverde & Paredes-López, 1993)Temp, Amb. \mathbf{M}_{H_2} (Valverde & Paredes-López, 1993)Liofilizado \mathbf{M}_{H_2} (Valverde & Paredes-López, 1993)Congelación \mathbf{M}_{H_2} (Valverde & Paredes-López, 1993)Temp, Amb. \mathbf{M}_{H_2} (Valverde & Paredes-López, 1993)Liofilizado \mathbf{M}_{H_2} (Valverde & Paredes-López, 1993)Congelación \mathbf{M}_{H_2} (Valverde & Paredes-López, 1993)TrescoCongelación(Valverde & Paredes-López, 1996)Soxhlet \mathbf{M}_{H_2} (Valverde & Paredes-López, 1996)MeOH-CF-H2OÁcido glutámico(Valverde & Paredes-López, 1996)Soxhlet \mathbf{M}_{H_2} (Ualverde & Paredes-López, 1993)FrescoCongelación(Valverde & Paredes-López, 1993)	Liofilizado	С СН		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Extracción	∎ NH₂	(Lizárraga-Guerra & López, 1996)	
Soxhlet(Valverde & Paredes-López, 1993)FrescoCongelaciónCongelación $\mu_{i,N} + \mu_{i,N} $	MeOH-CF-H ₂ O	Alanina		
Fresco Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-H2O $\mu_{eN} + \mu_{\mu} $	Soxhlet		(Valverde & Paredes-López, 1993)	
$\begin{array}{c} \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \hline \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \hline \\ \text{Temp. Amb} \\ \text{Liofilizado} \\ \text{Extracción} \\ \hline \\ \text{MeOH-CF-H_2O} \\ \hline \\ \text{Soxhlet} \\ \hline \\ \hline \\ \text{Fresco} \\ \hline \\ \text{Congelación} \\ \hline \\ \hline \\ \hline \\ \text{Fresco} \\ \hline \\ \hline \\ \\ \text{Fresco} \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ $	Fresco			
Temp. Amb. Liofilizado Extracción MeOH-CF-H2O $H_{NN} + H_{2}$ (Lizárraga-Guerra & López, 1996)SoxhletArginina(Ualverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-H2O $Ho + \int \int H_{2} + \int H_$	Congelación	NH O	(Martínez-Flores et al., 2008)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Temp. Amb.			
Extracción MeOH-CF-H2OHI NH2(Lizárraga-Guerra & López, 1996)SoxhletArginina(Valverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado $Ho + \int \int Ho + \int H + \int $	Liofilizado	Н2N N ОН		
MeOH-CF-H2OArgininaSoxhletArgininaFresco(Valverde & Paredes-López, 1993)FrescoCongelaciónTemp. Amb.Ho \downarrow , \downarrow , \downarrow , \downarrow , \downarrow LiofilizadoLiofilizadoExtracciónÁcido aspárticoCongelación μ , \downarrow , \downarrow , \downarrow , \downarrow , \downarrow Tersco(Martínez-Flores et al., 2008)Congelación μ , \downarrow , \downarrow , \downarrow , \downarrow , \downarrow Temp. Amb. μ , μ , \downarrow , μ , μ , μ Liofilizado μ , μ , μ , μ , μ Extracción μ , μ , μ , μ , μ MeOH-CF-H2OÁcido glutámicoSoxhlet μ , μ , μ , μ , μ Congelación μ , μ , μ , μ , μ Temp. Amb.LiofilizadoLiofilizado μ , μ , μ , μ , μ Soxhlet(Martínez-Flores et al., 2008)Temp. Amb. μ , μ , μ , μ , μ Liofilizado μ Extracción μ MeOH-CF-H2OCisteínaSoxhlet(Valverde & Paredes-López, 1993)FrescoCongelaciónCongelación μ Temp. Amb. μ Liofilizado μ Extracción μ MeOH-CF-H2OGlicinaSoxhlet(Valverde & Paredes-López, 1993)FrescoCongelaciónCongelación μ Temp. Amb. μ Liofilizado μ Extracción μ MeOH-CF-H2OGlicinaSoxhlet(Valverde & Paredes-López, 1993)Fresco μ Congelación	Extracción	н	(Lizárraga-Guerra & López, 1996)	
SoxhletArgninna(Valverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado ExtracciónHO $(Martínez-Flores et al., 2008)$ MeOH-CF-H2O SoxhletÁcido aspártico(Ualverde & Paredes-López, 1996)MeOH-CF-H2O SoxhletÁcido glutámico(Ualverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción $(Martínez-Flores et al., 2008)$ (Ualverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción $(Martínez-Flores et al., 2008)$ (Ualverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción $(Martínez-Flores et al., 2008)$ (Ualverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción $(Martínez-Flores et al., 2008)$ (Ualverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción $(Martínez-Flores et al., 2008)$ (Ualverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción $(Martínez-Flores et al., 2008)$ (Ualverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Liofilizado Liofilizado Liofilizado Liofilizado Liofilizado Liofilizado 	MeOH-CF-H ₂ O	NH ₂		
Fresco Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-HzOHO HO HI, HA, Acido aspártico(Martínez-Flores et al., 2008)HO HO H-CF-HzO SoxhletHO Acido aspártico(Lizárraga-Guerra & López, 1996)MeOH-CF-HzO SoxhletÁcido aspártico(Valverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-HzO $\mu_O + \int_{NH_2}^{+} \int_{OH}^{+} \int_{NH_2}^{+} OH$ (Lizárraga-Guerra & López, 1996)MeOH-CF-HzO SoxhletÁcido glutámico(Valverde & Paredes-López, 1996)Fresco Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-HzO $\mu_S + \int_{NH_2}^{+} OH$ (Lizárraga-Guerra & López, 1996)MeOH-CF-HzO SoxhletGiscina(Martínez-Flores et al., 2008)(Ualverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-HzO $\mu_{2N} + \int_{OH}^{+} OH$ (Lizárraga-Guerra & López, 1996)MeOH-CF-HzO Soxhlet $\mu_{2N} + \int_{OH}^{+} OH$ (Ualverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-HzO $\mu_{2N} + \int_{OH}^{+} OH$ (Lizárraga-Guerra & López, 1996)MeOH-CF-HzO Soxhlet $\mu_{2N} + \int_{OH}^{+} OH$ (Lizárraga-Guerra & López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-HzO $\mu_{2N} + \int_{OH}^{+} OH$ (Lizárraga-Guerra & López, 1996)MeOH-CF-HzO Soxhlet $\mu_{2N} + \int_{OH}^{+} OH$ (Lizárraga-Guerra & López, 1996)(Valverde & Paredes-López, 1993)Temp. Amb Liofilizado Extracción MeOH-CF-HzO $\mu_{2N} $	Soxhlet	Arginina	(Valverde & Paredes-López, 1993)	
Congelación Temp. Amb. LiofilizadoHo Liofilizado(Martínez-Flores et al., 2008)MeOH-CF-H2OÁcido aspártico(Uizárraga-Guerra & López, 1996)Soxhlet \downarrow \downarrow (Uizárraga-Guerra & López, 1996)Temp. Amb. Liofilizado \downarrow \downarrow (Uizárraga-Guerra & López, 1996)MeOH-CF-H2OÁcido glutámico(Uizárraga-Guerra & López, 1996)Soxhlet \downarrow \downarrow (Uizárraga-Guerra & López, 1996)FrescoAcido glutámico(Valverde & Paredes-López, 1993)Fresco \downarrow \downarrow (Uizárraga-Guerra & López, 1996)Congelación Temp. Amb. Liofilizado \downarrow \downarrow Liofilizado \downarrow \downarrow (Uizárraga-Guerra & López, 1996)Kertacción MeOH-CF-H2OCisteína(Uizárraga-Guerra & López, 1996)Soxhlet \downarrow \downarrow \downarrow Congelación Temp. Amb. Liofilizado \downarrow \downarrow Liofilizado Extracción MeOH-CF-H2O \downarrow \downarrow Soxhlet \downarrow \downarrow \downarrow Congelación Temp. Amb. Liofilizado \downarrow \downarrow Liofilizado Extracción MeOH-CF-H2O \downarrow \downarrow Soxhlet \downarrow \downarrow \downarrow Congelación Temp. Amb \downarrow \downarrow Liofilizado Extracción Temp. Amb \downarrow \downarrow Liofilizado Extracción Temp. Amb \downarrow \downarrow Liofilizado Extracción Temp. Amb \downarrow \downarrow Liofilizado Extracción Temp. Amb \downarrow \downarrow Liofilizado Extracción MeOH-CF-H2O \downarrow	Fresco			
Temp. Amb. Liofilizado Extracción MeOH-CF-H2O $Ho + f + f + oH$ NH_2 (Lizárraga-Guerra & López, 1996)MeOH-CF-H2O SoxhletÁcido aspártico(Valverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-H2O $f + o + f + f + oH$ NH_2 (Martínez-Flores et al., 2008)MeOH-CF-H2O SoxhletÁcido glutámico(Valverde & Paredes-López, 1996)MeOH-CF-H2O SoxhletÁcido glutámico(Valverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-H2O $Hs + f + f + oH$ NH2(Lizárraga-Guerra & López, 1996)MeOH-CF-H2O SoxhletCisteina(Valverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-H2O $H_2N + f + oH$ $H_2N + f + oH$ $(Lizárraga-Guerra & López, 1996)$ MeOH-CF-H2O Soxhlet $H_2N + f + oH$ $H_2N + f + oH$ H_2	Congelación	O II	(Martínez-Flores et al., 2008)	
$\begin{array}{c c} \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{Soxhlet} \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \text{Soxhlet} \\ \hline \\ \hline \\ \hline \\ \text{Fresco} \\ \text{Congelación} \\ \text{Temp. Amb.} \\ \text{Liofilizado} \\ \text{Extracción} \\ \text{MeOH-CF-H_2O} \\ \hline \\ \hline \\ \text{Soxhlet} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{Fresco} \\ \hline \\ \hline \\ \text{Congelación} \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \text{Fresco} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ $	Temp. Amb.	но, , ,	· · ·	
ExtracciónI O NH2Icido aspártico(Lizárraga-Guerra & López, 1996)MeOH-CF-H2OÁcido aspártico(Valverde & Paredes-López, 1993)Soxhlet $\downarrow \downarrow $	Liofilizado	У У ОН		
MeOH-CF-H2OÁcido aspártico(Valverde & Paredes-López, 1993)FrescoCongelación $\mu o \downarrow \downarrow \downarrow \downarrow \downarrow o H$ (Martínez-Flores et al., 2008)Liofilizado $\mu o \downarrow \downarrow \downarrow \downarrow \downarrow \cup H$ (Lizárraga-Guerra & López, 1996)LiofilizadoÁcido glutámico(Valverde & Paredes-López, 1996)SoxhletÁcido glutámico(Valverde & Paredes-López, 1993)FrescoCongelación(Martínez-Flores et al., 2008)Congelación $\mu o \downarrow \downarrow \downarrow \downarrow \cup H$ (Lizárraga-Guerra & López, 1996)Liofilizado $\mu s \downarrow \downarrow \downarrow \cup H$ (Lizárraga-Guerra & López, 1996)Liofilizado $\mu s \downarrow \downarrow \downarrow \cup H$ (Lizárraga-Guerra & López, 1996)MeOH-CF-H2OCisteína(Valverde & Paredes-López, 1993)FrescoCongelación(Valverde & Paredes-López, 1993)FrescoCongelación(Valverde & Paredes-López, 1996)Liofilizado $\mu_2 N \downarrow \downarrow \cup OH$ (Lizárraga-Guerra & López, 1996)Liofilizado $\mu_2 N \downarrow \downarrow \cup OH$ (Lizárraga-Guerra & López, 1996)MeOH-CF-H2OGlicina(Valverde & Paredes-López, 1993)FrescoCongelación(Valverde & Paredes-López, 1993)FrescoCongelación(Valverde & Paredes-López, 1993)FrescoCongelación(Martínez-Flores et al., 2008)Temp. AmbIufilizado(Valverde & Paredes-López, 1993)FrescoCongelación(Lizárraga-Guerra & López, 1996)MeOH-CF-H2OProlina(Valverde & Paredes-López, 1993)	Extracción		(Lizárraga-Guerra & López, 1996)	
SoxhletNoted departed(Valverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción $\mu_{O} \downarrow \downarrow \downarrow \downarrow_{OH}$ (Martínez-Flores et al., 2008)MeOH-CF-H2O SoxhletÁcido glutámico(Ualverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-H2O $\mu_{O} \downarrow \downarrow \downarrow \downarrow_{OH}$ (Lizárraga-Guerra & López, 1993)Temp. Amb. Liofilizado Extracción MeOH-CF-H2O $\mu_{S} \downarrow \downarrow \downarrow_{OH}$ (Ualverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-H2O $\mu_{S} \downarrow \downarrow \downarrow_{OH}$ (Ualverde & Paredes-López, 1996)MeOH-CF-H2O Soxhlet $\mu_{2N} \downarrow \downarrow_{OH}$ (Ualverde & Paredes-López, 1993)(Martínez-Flores et al., 2008)Temp. Amb. Liofilizado Extracción MeOH-CF-H2O $\mu_{2N} \downarrow \downarrow_{OH}$ (Ualverde & Paredes-López, 1996)MeOH-CF-H2O Soxhlet $\mu_{2N} \downarrow \downarrow_{OH}$ $(\mu_{2N} \mu_{2N} \mu_{2N}$	MeOH-CF-H₂O	Ácido aspártico		
Fresco Congelación Temp. Amb. Idifilizado Liofilizado Acido glutámico Soxhlet (Lizárraga-Guerra & López, 1996) KeOH-CF-H2O Ácido glutámico Soxhlet (Valverde & Paredes-López, 1993) Fresco (Martínez-Flores et al., 2008) Congelación (Martínez-Flores et al., 2008) Temp. Amb. (Lizárraga-Guerra & López, 1993) Liofilizado (Martínez-Flores et al., 2008) Soxhlet (Lizárraga-Guerra & López, 1996) MeOH-CF-H2O Cisteína Soxhlet (Valverde & Paredes-López, 1993) Fresco (Valverde & Paredes-López, 1993) Fresco (Martínez-Flores et al., 2008) Liofilizado H2N Extracción Glicina MeOH-CF-H2O Glicina Soxhlet (Valverde & Paredes-López, 1993) Fresco (Valverde & Paredes-López, 1996) Congelación (Valverde & Paredes-López, 1993) Fresco (Valverde & Paredes-López, 1993) Fresco (Martínez-Flores et al., 2008) Temp. Amb ILiofilizado Extracción IL	Soxhlet		(Valverde & Paredes-López, 1993)	
Congelación Temp. Amb. Liofilizado Extracción MeCH-CF-H2O $\mu_{O} + \mu_{z} + \mu_{z}$ (Martínez-Flores et al., 2008)MeCH-CF-H2O SoxhletÁcido glutámico(Lizárraga-Guerra & López, 1996)MeCH-CF-H2O SoxhletÁcido glutámico(Valverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción MeCH-CF-H2O $\mu_{s} + \mu_{z} + \mu_{d}$ (Lizárraga-Guerra & López, 1996)MeCH-CF-H2O Congelación Temp. Amb. Liofilizado Extracción MeCH-CF-H2O $\mu_{z} + \mu_{z} + \mu_{d} + \mu_{d}$ (Lizárraga-Guerra & López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción MeCH-CF-H2O $\mu_{z} + \mu_{d} $	Fresco			
Temp. Amb. Liofilizado ExtracciónHOHI2Integration NH2MeOH-CF-H2O SoxhletÁcido glutámico(Lizárraga-Guerra & López, 1996)MeOH-CF-H2O SoxhletÁcido glutámico(Valverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-H2O $HS \rightarrow IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	Congelación		(Martínez-Flores et al., 2008)	
Liofilizado HO HO HI Extracción NH2 (Lizárraga-Guerra & López, 1996) MeOH-CF-H2O Ácido glutámico (Valverde & Paredes-López, 1993) Fresco (Martínez-Flores et al., 2008) Temp. Amb. HS (Lizárraga-Guerra & López, 1996) Liofilizado HS (Martínez-Flores et al., 2008) Extracción NH2 (Lizárraga-Guerra & López, 1996) MeOH-CF-H2O Cisteína (Valverde & Paredes-López, 1993) Fresco Congelación (Valverde & Paredes-López, 1993) Fresco (Valverde & Paredes-López, 1993) (Lizárraga-Guerra & López, 1996) MeOH-CF-H2O Glicina (Valverde & Paredes-López, 1993) Fresco Gorgelación (Valverde & Paredes-López, 1996) MeOH-CF-H2O Glicina (Valverde & Paredes-López, 1993) Fresco Congelación (Martínez-Flores et al., 2008) Temp. Amb Iofilizado (Martínez-Flores et al., 2008) Liofilizado Iofilizado (Lizárraga-Guerra & López, 1996) MeOH-CF-H2O Prolina (Lizárraga-Guerra & López, 1996)	Temp, Amb.		(,,	
Extracción MeOH-CF-H2O SoxhletÁcido glutámico(Lizárraga-Guerra & López, 1996)MeOH-CF-H2O SoxhletÁcido glutámico(Valverde & Paredes-López, 1993)Fresco Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-H2O $HS black (I) (I) (I) (I) (I) (I) (I) (I) (I) (I)$	Liofilizado	но он		
MeOH-CF-H2OÁcido glutámicoSoxhlet(Valverde & Paredes-López, 1993)Fresco(Martínez-Flores et al., 2008)Congelación $Hs \rightarrow H_2$ Liofilizado $Hs \rightarrow H_2$ Extracción(Lizárraga-Guerra & López, 1996)MeOH-CF-H2OCisteínaSoxhlet(Valverde & Paredes-López, 1993)Fresco(Martínez-Flores et al., 2008)Congelación(Martínez-Flores et al., 2008)Temp. Amb. $H_2N \rightarrow OH$ Liofilizado $H_2N \rightarrow OH$ Extracción(Martínez-Flores et al., 2008)Fresco(Martínez-Flores et al., 2008)Soxhlet(Valverde & Paredes-López, 1993)FrescoGlicinaCongelación(Valverde & Paredes-López, 1993)Fresco(Valverde & Paredes-López, 1993)Fresco(Martínez-Flores et al., 2008)Liofilizado $\downarrow \downarrow \downarrow \downarrow \to H_1$ Liofilizado $\downarrow \downarrow \downarrow \downarrow \to H_2$ Liofilizado $\downarrow \downarrow \downarrow \downarrow \to H_2$ Liofilizado $\downarrow \downarrow \downarrow \downarrow \to H_2$ Liofilizado $\downarrow \downarrow \downarrow \to H_2$ MeOH-CF-H2OProlinaMeOH-CF-H2OProlina	Extracción		(Lizárraga-Guerra & López, 1996)	
Soxhlet (Valverde & Paredes-López, 1993) Fresco (Martínez-Flores et al., 2008) Congelación (Martínez-Flores et al., 2008) Temp. Amb. (Lizárraga-Guerra & López, 1996) MeOH-CF-H2O Cisteína Soxhlet (Valverde & Paredes-López, 1993) Fresco (Valverde & Paredes-López, 1993) Congelación (Valverde & Paredes-López, 1993) Fresco (Martínez-Flores et al., 2008) Congelación (Martínez-Flores et al., 2008) Temp. Amb. (Lizárraga-Guerra & López, 1996) Liofilizado H2N Soxhlet (Valverde & Paredes-López, 1993) Fresco (Valverde & Paredes-López, 1996) MeOH-CF-H2O Glicina Liofilizado Image: Congelación Temp. Amb Image: Congelación Liofilizado Image: Congelación Temp. Amb Image: Congelación MeOH-CF-H2O	MeOH-CF-H ₂ O			
Fresco Congelación Temp. Amb. HS Liofilizado (Martínez-Flores et al., 2008) Extracción (Lizárraga-Guerra & López, 1996) MeOH-CF-H2O Cisteína Soxhlet (Valverde & Paredes-López, 1993) Fresco (Valverde & Paredes-López, 1993) Congelación (Martínez-Flores et al., 2008) Temp. Amb. (Valverde & Paredes-López, 1993) Liofilizado H2N Extracción Glicina MeOH-CF-H2O Glicina Congelación (Valverde & Paredes-López, 1996) MeOH-CF-H2O Glicina Liofilizado (Valverde & Paredes-López, 1993) Fresco (Valverde & Paredes-López, 1993) Congelación (Martínez-Flores et al., 2008) Temp. Amb (Valverde & Paredes-López, 1993) Liofilizado (Martínez-Flores et al., 2008) Temp. Amb (Lizárraga-Guerra & López, 1996) Liofilizado (Lizárraga-Guerra & López, 1996) MeOH-CF-H2O Prolina MeOH-CF-H2O Prolina	Soxhlet		(Valverde & Paredes-López, 1993)	
Congelación Image: Congelación (Martínez-Flores et al., 2008) Liofilizado Hs Image: Congelación Extracción Cisteína (Lizárraga-Guerra & López, 1996) MeOH-CF-H2O Cisteína (Valverde & Paredes-López, 1993) Fresco (Martínez-Flores et al., 2008) Congelación (Martínez-Flores et al., 2008) Temp. Amb. Image: Congelación Liofilizado H2N (Martínez-Flores et al., 2008) KeOH-CF-H2O Glicina Soxhlet (Valverde & Paredes-López, 1996) Fresco (Valverde & Paredes-López, 1996) Congelación (Valverde & Paredes-López, 1996) Fresco (Valverde & Paredes-López, 1993) Fresco (Martínez-Flores et al., 2008) Congelación (Martínez-Flores et al., 2008) Temp. Amb (Martínez-Flores et al., 2008) Liofilizado (Martínez-Flores et al., 2008) Temp. Amb (Lizárraga-Guerra & López, 1996) Liofilizado (Lizárraga-Guerra & López, 1996) MeOH-CF-H2O Prolina	Fresco			
Temp. Amb. Hs	Congelación	0	(Martínez-Flores et al., 2008)	
Liofilizado Extracción MeOH-CF-H ₂ O Soxhlet Cisteína Congelación Temp. Amb. Liofilizado Extracción MeOH-CF-H ₂ O Soxhlet Liofilizado Extracción MeOH-CF-H ₂ O Congelación Temp. Amb Liofilizado Extracción MeOH-CF-H ₂ O Congelación Temp. Amb Liofilizado Fresco Congelación Temp. Amb Liofilizado Fresco Congelación Temp. Amb Liofilizado Extracción MeOH-CF-H ₂ O Soxhlet Congelación Temp. Amb Liofilizado Extracción Congelación Temp. Amb Liofilizado Extracción Congelación Temp. Amb Liofilizado Extracción Congelación Temp. Amb Liofilizado Extracción MeOH-CF-H ₂ O Soxhlet Congelación Temp. Amb Liofilizado Extracción MeOH-CF-H ₂ O Congelación Congelación Temp. Amb Liofilizado Extracción MeOH-CF-H ₂ O Congelación Congelación Temp. Amb Liofilizado Extracción Congelación Temp. Amb Liofilizado Extracción MeOH-CF-H ₂ O Congelación Congela	Temp. Amb.			
Extracción NH2 (Lizárraga-Guerra & López, 1996) MeOH-CF-H2O Cisteína (Valverde & Paredes-López, 1993) Fresco (Valverde & Paredes-López, 1993) Congelación (Martínez-Flores et al., 2008) Temp. Amb. (Lizárraga-Guerra & López, 1996) Liofilizado H2N JOH Extracción Glicina MeOH-CF-H2O Glicina Soxhlet (Valverde & Paredes-López, 1993) Fresco (Valverde & Paredes-López, 1993) Fresco (Valverde & Paredes-López, 1993) Congelación (Martínez-Flores et al., 2008) Temp. Amb (Martínez-Flores et al., 2008) Liofilizado Intervente Extracción NH MeOH-CF-H2O Prolina MeOH-CF-H2O Prolina	Liofilizado	нѕ он		
MeOH-CF-H2O Cisteína Soxhlet (Valverde & Paredes-López, 1993) Fresco (Martínez-Flores et al., 2008) Congelación (Martínez-Flores et al., 2008) Temp. Amb. (Lizárraga-Guerra & López, 1996) Liofilizado (Valverde & Paredes-López, 1993) MeOH-CF-H2O Glicina Soxhlet (Valverde & Paredes-López, 1993) Fresco (Valverde & Paredes-López, 1993) Fresco (Martínez-Flores et al., 2008) Congelación (Martínez-Flores et al., 2008) Temp. Amb (Martínez-Flores et al., 2008) Liofilizado (Martínez-Flores et al., 2008) Extracción (Martínez-Flores et al., 2008) MeOH-CF-H2O Prolina Soxhlet (Valverde & Paredes-López, 1996)	Extracción		(Lizárraga-Guerra & López, 1996)	
Soxhlet (Valverde & Paredes-López, 1993) Fresco (Martínez-Flores et al., 2008) Temp. Amb. (Lizárraga-Guerra & López, 1996) Liofilizado H2N Extracción Glicina MeOH-CF-H2O Glicina Soxhlet (Valverde & Paredes-López, 1996) Fresco (Valverde & Paredes-López, 1993) Fresco (Valverde & Paredes-López, 1993) Fresco (Martínez-Flores et al., 2008) Temp. Amb (Martínez-Flores et al., 2008) Liofilizado Image: Compare the second	MeOH-CF-H ₂ O	Cisteína	(
Fresco (Martínez-Flores et al., 2008) Temp. Amb. Iciofilizado Liofilizado H2N Glicina MeOH-CF-H2O Glicina Soxhlet (Valverde & Paredes-López, 1996) Fresco (Martínez-Flores et al., 2008) Congelación (Valverde & Paredes-López, 1993) Fresco (Martínez-Flores et al., 2008) Congelación (Martínez-Flores et al., 2008) Temp. Amb (Martínez-Flores et al., 2008) Liofilizado (Martínez-Flores et al., 2008) Extracción NH MeOH-CF-H2O Prolina Soxhlet (Valverde & Paredes-López, 1996)	Soxhlet	Olstellind	(Valverde & Paredes-López, 1993)	
Congelación Temp. Amb.(Martínez-Flores et al., 2008)Liofilizado Extracción MeOH-CF-H2OH2N U OH Glicina(Lizárraga-Guerra & López, 1996)Soxhlet Fresco Congelación Temp. Amb Liofilizado Extracción MeOH-CF-H2O(Valverde & Paredes-López, 1993)Itofilizado Extracción MeOH-CF-H2OImage: Constant of the second	Fresco			
Temp. Amb. Liofilizado Extracción MeOH-CF-H2O Soxhlet Fresco Congelación Temp. Amb Liofilizado Extracción MeOH-CF-H2O Soxhlet (Valverde & Paredes-López, 1993) Image: Conservation of the second s	Congelación	0	(Martínez-Flores et al., 2008)	
Liofilizado H2N OH (Lizárraga-Guerra & López, 1996) MeOH-CF-H2O Glicina (Valverde & Paredes-López, 1993) Soxhlet (Valverde & Paredes-López, 1993) Fresco (Martínez-Flores et al., 2008) Congelación (Martínez-Flores et al., 2008) Temp. Amb (Lizárraga-Guerra & López, 1996) Liofilizado (Lizárraga-Guerra & López, 1996) MeOH-CF-H2O Prolina	Temp. Amb.	Ĭ	· · · · · · · · · · · · · · · · · · ·	
Extracción MeOH-CF-H2O OH Glicina (Lizárraga-Guerra & López, 1996) Soxhlet (Valverde & Paredes-López, 1993) Fresco Congelación Temp. Amb (Martínez-Flores et al., 2008) Liofilizado Extracción MeOH-CF-H2O Image: Comparison of the paredes de termination of terminatio of termination of termination of terminatio	Liofilizado	H ₂ N、 人		
MeOH-CF-H2O Glicina Soxhlet (Valverde & Paredes-López, 1993) Fresco Congelación Temp. Amb (Martínez-Flores et al., 2008) Liofilizado Image: Construction of the second secon	Extracción	- Сн	(Lizárraga-Guerra & López, 1996)	
Soxhlet (Valverde & Paredes-López, 1993) Fresco Congelación Congelación (Martínez-Flores et al., 2008) Temp. Amb Image: Construction of the second sec	MeOH-CF-H ₂ O	Glicina		
Fresco Congelación (Martínez-Flores et al., 2008) Temp. Amb Itiofilizado (Lizárraga-Guerra & López, 1996) Extracción Prolina (Valverde & Paredes-López, 1993)	Soxhlet		(Valverde & Paredes-López, 1993)	
Congelación Temp. Amb(Martínez-Flores et al., 2008)Liofilizado Extracción MeOH-CF-H2OImage: Construction of the sector	Fresco			
Temp. Amb Liofilizado Extracción MeOH-CF-H2O Soxblet (Lizárraga-Guerra & López, 1996) (Valverde & Paredes-López, 1993)	Congelación	0 0	(Martínez-Flores et al., 2008)	
Liofilizado Extracción MeOH-CF-H2O Soxblet	Temp. Amb	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
Extracción (Lizárraga-Guerra & López, 1996) <u>MeOH-CF-H2O</u> Prolina (Valverde & Paredes-López, 1993)	Liofilizado	ОН		
MeOH-CF-H ₂ O Prolina (Valverde & Paredes-López, 1993)	Extracción		(Lizárraga-Guerra & López. 1996)	
Soxhlet (\/alverde & Paredes-Lónez 1003)	MeOH-CF-H ₂ O	Prolina		
	Soxhlet		(Valverde & Paredes-López, 1993)	

	Aminoácidos	
Tratamiento	Metabolito	Referencia
Fresco	_	
Congelación	o II	(Martínez-Flores et al., 2008)
Temp. Amb	\sim	
Liofilizado	но у он	
Extracción	NH ₂	(Lizárraga-Guerra & López, 1996)
MeOH-CF-H ₂ O	Serina	
Soxhlet		(Valverde & Paredes-López, 1993)
Fresco	0	
Congelación		(Martínez-Flores et al., 2008)
Temp. Amb	ОН	
Liofilizado		
Extracción	NH ₂	(Lizárraga-Guerra & López, 1996)
MeOH-CF-H ₂ O	Tirosina	
Soxhlet	- Hooma	Valverde & Paredes-López, 1993)
Fresco	° I	
Congelación		(Martínez-Flores et al., 2008)
Temp. Amb.	И Т Т ОН	
Souplat	NH₂	(Valvordo 8 Parados Lápoz 1002)
Soxillet	Histidina	(Valvelue & Paleues-Lopez, 1995)
Fresco	Q	
Congelación		(Martínez-Flores et al., 2008)
Temp. Amb	ОН	
Liofilizado		
Extracción	NH ₂	(Lizárraga-Guerra & López, 1996)
MeOH-CF-H ₂ O	Fenilalanina	
Fresco		
Congelación		(Martínez-Flores et al., 2008)
Temp. Amb.	\sim	
Liofilizado	У У ЮН	
Extracción	NH ₂	(Lizárraga-Guerra & López, 1996)
MeOH-CF-H ₂ O	Isoleucina	
Soxhlet		(Valverde & Paredes-López, 1993)
Fresco	0	
Congelación	U U U U U U U U U U U U U U U U U U U	(Martínez-Flores et al., 2008)
Temp. Amb.	\searrow	
Liofilizado	Υ Υ ^{OH}	
Extracción	∣ [∎] NH ₂	(Lizárraga-Guerra & López, 1996)
MeOH-CF-H ₂ O	Leucina	
Soxhlet		(Valverde & Paredes-López, 1993)
Fresco	0	
Congelación	Ĭ	(Martínez-Flores et al., 2008)
Iemp. Amb.	H ₂ N	
Liofilizado	T OH	
Extracción	■ NH ₂	(Lizárraga-Guerra & López, 1996)
MeOH-CF-H ₂ O	Lisina	
Soxhlet		(Valverde & Paredes-López, 1993)

	Aminoácidos	
Tratamiento	Metabolito	Referencia
Fresco	0	
	Ĭ	(Martinez-Flores et al., 2008)
Liefilizede	^S → OH	
Extracción	0.11	(Lizárraga-Guerra & López, 1996)
MeOH-CF-H ₂ O	NH ₂	(Lizanaga-Odena & Lopez, 1990)
Soxhlet	Mellorina	(Valverde & Paredes-López, 1993)
Fresco		
Congelación	OH O ■ II	(Martínez-Flores et al., 2008)
Temp. Amb	\downarrow \downarrow	· · · ·
Liofilizado	Г Т ТОН	
Extracción	NH ₂	(Lizárraga-Guerra & López, 1996)
MeOH-CF-H ₂ O	Treonina	
Soxhlet		(Valverde & Paredes-López, 1993)
Fresco		(Martínez Flares et al. 2008)
Temp Amb		(Martinez-Fiores et al., 2008)
Liofilizado	L. INNO2	
Extracción		(Lizárraga-Guerra & López, 1996)
MeOH-CF-H ₂ O	ОН	(Lizanaga Baona a Lopoz, 1000)
	Triptófano	
Fresco		
Congelación	ı Ö	(Martínez-Flores et al., 2008)
Temp. Amb		
Congelado	ОН	
Liofilizado		(Lizárraga-Guerra & López, 1996)
	Valina	(
	Valina	Valvarda 8 Paradas Lápoz 1002)
Soxillet	HN—OO	
Liofilizado		
Evtracción	0 OH	(Lizárraga-Guerra & López, 1996)
MeOH-CE-H2O		(Lizanaga-Odena & Lopez, 1990)
	$\dot{\mathbf{A}}$ cido tricolómico	
	0	
Liofilizado		
	П2И	(Lizarraga-Guerra & Lopez, 1996)
	Ácido γ-aminobutírico	
	NH ₂ O	
Liofilizado		
Extracción	T ~ is T ioh	(Lizárraga-Guerra & López, 1996)
MeOH-CF-H ₂ O	U O NH₂	
	Cistina	

Página **4**

	Carbohidratos	
Tratamiento	Metabolito	Referencia
Liofilizado Extracto MeOH	HO HO Manosa	(Valdez-Morales et al., 2010)
Liofilizado Extracto MeOH		(Valdez-Morales et al., 2010)
Liofilizado Extracto EtOH	QH Q	(Rosalba Beas et al., 2011)
Liofilizado Extracto MeOH	но	(Valdez-Morales et al., 2010)
Liofilizado Extracto MeOH: CHCl ₃ :H ₂ O	≣ В он он Fructosa	(Lizárraga-Guerra & G. Lopez, 1998)
Liofilizado Extracto MeOH: CHCl ₃ :H ₂ O	но Glicerol	(Lizárraga-Guerra & G. Lopez, 1998)
Liofilizado Extracto MeOH: CHCl ₃ :H ₂ O	но Arabitol	(Lizárraga-Guerra & G. Lopez, 1998)
Liofilizado Extracto MeOH: CHCl ₃ :H ₂ O		(Lizárraga-Guerra & G. Lopez, 1998)
Liofilizado Extracto MeOH: CHCl ₃ :H ₂ O		(Lizárraga-Guerra & G. Lopez, 1998)
Liofilizado Extracto MeOH: CHCl ₃ :H ₂ O	но ОН ОН ОН ОН ОН ОН ОН ОН ОН ОН ОН ОН	(Lizárraga-Guerra & G. Lopez, 1998)
Liofilizado Extracto MeOH: CHCl ₃ :H ₂ O	HO HO Sorbitol	(Lizárraga-Guerra & G. Lopez, 1998)
Liofilizado Extracto MeOH: CHCl ₃ :H ₂ O	HO HO Treitol	(Lizárraga-Guerra & G. Lopez, 1998)

Página 43

	Carotenos	
Tratamiento	Metabolito	Referencia
Extracto EtOH Cocido y fresco	Ho Violavantina	(S. López et al., 2017)
Extracto EtOH Cocido y fresco		(S. López et al., 2017)
	Cumarinas	
Tratamiento	Metabolito	Referencia
Fermentado	HO HO HO HO HO HO HO HO HO HO HO HO HO H	R ₁ = Ácido carboxílico (Wu et al., 2023) R ₁ = (R)-3-hydroxybutanal
	Dihidrofuranos	
Tratamiento	Metabolito	Referencia
Liofilizado Cocido Extracción Et ₂ O	HO O Sotolon	(Lizárraga-Guerra et al., 1997)
	Fenoles	
Tratamiento	Metabolito	Referencia
Liofilizado Cocido Extracción Et ₂ O+	Fenol	(Lizárraga-Guerra et al., 1997)
Liofilizado Cocido Extracción Et ₂ O	HO (Lizárraga-Guerra et al., 7 guaiacol	
Liofilizado Cocido Extracción Et ₂ O	HO Vainillina	(Lizárraga-Guerra et al., 1997)

Página 46

Página 47

	Ácidos benzoicos y cinámicos	
Tratamiento	Metabolito	Referencia
Liofilizado Extracto EtOH	но но Ácido protocatecúico	(Rosalba Beas et al., 2011)
Liofilizado Extracto EtOH	но Ácido sirÍngico	(Rosalba Beas et al., 2011)
Liofilizado Extracto EtOH	но Ácido 4-hidroxibenzoico	(Rosalba Beas et al., 2011)
Fermentado	но Ácido orselínico	(Wu et al., 2023)
Liofilizado Extracto MeOH	но но Ácido cafeico	(Valdez-Morales et al., 2016)
Liofilizado Extracto MeOH		(Valdez-Morales et al., 2016)
Liofilizado Extracto EtOH	но Ácido ferúlico	(Rosalba Beas et al., 2011)
Liofilizado Extracto MeOH	но Ácido sinápico	(Valdez-Morales et al., 2016)

Acorde a la tabla previa, apreciamos que este hongo posee una variedad de metabolitos de tipo polifenólico, lo que ha llevado a su cuantificación mediante el método colorimétrico de Folin-Ciocâlteu en muestras de México y Turquía, realizado por diferentes grupos de investigación, (Tabla 4).

Origen	Tratamiento	Extracto	Concentración	Referencia	
			$3.11 \pm 0.07 \frac{mgEAG}{mg}$		
			$4.21 \pm 0.09 \frac{mgEAG}{mg}$	_	
			$2.49 \pm 0.03 \frac{mg}{mgEAG}$	_	
			$\frac{mg}{13.94 \pm 0.04 \frac{mgEAG}{2}}$	-	
			$\frac{mg}{7.63 \pm 0.02}$	_	
ando do Móvico	Saaa	Hidrootopálioo	$\frac{100 \pm 0.02}{mg}$	- (Lánaz Martínaz at al. 2022)	
Edu. de Mexico	Seco	Hidroetanolico	$\frac{4.9 \pm 0.03 - mg}{mg}$	(Lopez-maninez et al., 2022) –	
			$9.21 \pm 0.08 \frac{mg}{mg}$	_	
			$7.08 \pm 0.03 \frac{mg^{2113}}{mg}$	_	
			$6.95 \pm 0.02 \frac{mgEAG}{mg}$	_	
			$7.52 \pm 0.03 \frac{mgEAG}{mg}$	_	
			$7.63 \pm 0.04 \frac{mgEAG}{mg}$		
		Acuoso	222.19 +12.3 mgEAG		
^a Sonora	Liofilizado		100 <i>g</i>	– (M. L. López & Baeza, 2018)	
		Metanólico	$661.45 \pm 20.56 \frac{mgEAG}{100g}$		
	Fresco	_	$49.6 \pm 0.02 \frac{\mu g EAG}{mL}$	– – (S. López et al., 2017) –	
^a Cuanaiuato -	Cocido	- Etanólico	$70.9 \pm 0.1 \frac{\mu g EAG}{mL}$		
-Guanajualo –	Fresco		$182.7 \pm 0.2 \frac{\mu g EAG}{mL}$		
	Cocido		$161.7 \pm 0.1 \frac{\mu g EAG}{mL}$		
^a Turquía	Seco	Hidroalcohólico	113.11 ± 0.2 $\frac{mgEAG}{kg}$	(Aydoğdu & Gölükçü, 2017)	
bQuanaiuata	Crudo	Matanálian	$602.3 \frac{mgEAG}{100g}$		
-Guanajuato	Cocido		700.0 $\frac{mgEAG}{100g}$	- (valdez-ivlorales et al., 2016)	
Aguascalientes			$630 \pm 0.02 \frac{mgEAG}{100 g}$		
^a Jalisco			$450 \pm 0.02 \frac{mgEAG}{100 g}$	-	
^a Guanajuato			$450 \pm 0.03 \frac{mgEAG}{100 g}$	_	
aGuanaiuato			100 g 640 ± 0.03 $\frac{mgEAG}{mgEAG}$	_	
aPuebla	Liofilizado	Metanólico	$\frac{100 g}{480 \pm 0.02 \frac{mgEAG}{100 g}}$	-(Rosalba Beas et al., 2011	
^b Amarillo			$500 \pm 0.00 \frac{mgEAG}{100 z}$	_	
[⊳] Nearo			$460 \pm 0.01 \frac{mgEAG}{mgEAG}$	-	
^b Pipitillo			$\frac{100 g}{540 \pm 0.02 \frac{mgEAG}{2}}$		
Colectado: ^b lnocula	Ido		100 <i>g</i>		

2.5 Encapsulación

Es una tecnología que permite encapsular substancias sólidas, líquidas o gaseosas en matrices, las cuales pueden ser liberadas bajo ciertas condiciones controladas, (Jafari, 2017). El objetivo primordial es proteger el compuesto activo encapsulado (material central) contra entornos desfavorables o adversos (como la luz, la humedad, la temperatura y el oxígeno)

Dependiendo del tamaño de la partícula encapsulada resultante obtenida, el proceso de encapsulación puede denominarse macro, micro y nanoencapsulación. En general, las propiedades de los materiales encapsulados mejoran con el aumento de la relación superficie-volumen y, por lo tanto, se prefieren la micro y nanoencapsulación a la macroencapsulación (Vimala Bharathi et al., 2018).

2.5.1 Microencapsulación

La microencapsulación involucra un proceso de encapsulamiento donde la cubierta suele ser insoluble y no reactiva con el núcleo; y dependiendo de sus aplicaciones, puede estar hecho de gomas, proteínas, lípidos y polímeros sintéticos (Desai & Jin Park, 2005); como resultado se obtienen microcápsulas de diferentes tamaños que se encuentran dentro del rango de 100 nm a 1000 nm, (Gaonkar et al., 2014), dependiendo de la técnica de microencapsulación utilizada, (Tabla 5).

Teenelezía	Tamaño
	[µm]
Secado por aspersión	10–400
Recubrimiento de lecho fluido	20–200
Secado por congelación o al vacío	20–5000
Enfriamiento/refrigeración por aspersión	20–200
Inyección de fusión	200–2000
Extrusión por fusión	300–5000
Emulsificación	0.2–5000
Coacervación	10–800
Encapsulación por expansión rápida de fluido supercrítico	10–400
Atrapamiento de liposomas	10–1000
Complejización de inclusión	0,001–0,01
Preparación de microesferas vía emulsificación	10-1000

Tabla 5.	Métodos de	microencapsula	ación de alin	nentos, modific	ado de	(Jafari, 1	2017)
						100000000000000000000000000000000000000	,

En cuanto a la morfología de los microencapsulados se encuentran dos tipos, una de ellas son las microcápsulas caracterizadas por poseer un núcleo interior y una cubierta exterior definidos; en su contraparte, en el caso de las microesferas, el ingrediente activo está disperso dentro de la matriz generando una exposición del encapsulado al situarse cerca o en la superficie de la microesfera, (Arenas-Jal et al., 2020; Gaonkar et al., 2014), ver Figura 4.

Figura 4. Morfologías de los microencapsulados, tomado y modificado de (Agnihotri et al., 2012)

2.5.1.1 Alginato.

El alginato (ALG) es un polisacárido que consiste en unidades de ácido *d*manurónico con enlaces β -(1-4) y unidades de ácido *l*-gulurónico con enlaces β -(1-4), Figura 5.

Principalmente este compuesto se encuentra en algas marinas pardas como especies de ascophyllum, durvillaea , ecklonia, laminaria, lessonia, macrocystis, sargazo y turbinaria, (Alihosseini, 2016), sin embargo, también es producido por dos géneros de bacterias como son *Pseudomonas* y *Azotobacter vinelandii*, (Abdul Khalil, 2020; Martau et al., 2019).

Figura 5. Estructura de cadena de alginato, tomado y modificado de (Martau et al., 2019)

El ALG es un polímero aniónico que en presencia de cationes divalentes (Ca²⁺) se generan interacciones entre Ca²⁺ y los grupos carboxilo (COO⁻) de los bloques de ácido gulurónico, favoreciendo la formación de geles situación contraria que en aquellos ricos en bloques de manuronato, (Łętocha et al., 2022; Wilkerson, 2022)

Este apresamiento del ion Ca²⁺ por los bloques G crean regiones que forman una estructura denominada caja de huevo como se muestra en la Figura 6, (Hasnain et al., 2020; Wilkerson, 2022).

Figura 6. Estructura de caja de huevo producida por alginato

2.5.1.2 Quitosano.

El quitosano (QTS) es un polisacárido constituido por unidades de *D*-glucosamina y *N*acetil-*D*-glucosamina y el número de estos depende del grado de la *N*-desacetilación de la quitina, Figura 7.

Figura 7. Estructura del quitosano

Este polisacárido deriva de la quitina, la cual está presente en diversas fuentes naturales como es en el exoesqueleto de crustáceos, (Aranaz et al., 2021) insectos, algas y en la pared celular de hongos. El quitosano es menos frecuente en la naturaleza y se encuentra en algunos hongos (Mucoraceae).

Además, debido a los múltiples grupos funcionales (grupos hidroxilo, amino y carboxilo) que posee el QTS, estos pueden ser modificados químicamente lo que da pie a la variabilidad de sus propiedades físico-químicas mejorando así aspectos de solubilidad y mejorar la estabilidad, (Li et al., 2020)

Además, la naturaleza catiónica del QTS puede ser útil para mejor su estabilidad al combinarlo con otros polímeros aniónicos como el alginato, poli (L-lisina), poli(ácido γ-glutámico) (Niculescu & Grumezescu, 2022).

aqina 🕻

2.5.1.2 Quitosano-Alginato.

El empleo de más de un polímero como matriz encapsulante es un recurso que permite mejorar las características de liberación del compuesto de interés, es por ello, que una de las mezclas que se emplea es el alginato de sodio y el quitosano.

Sabemos que el ALG es un polímero aniónico, permitiendo así una interacción electrostática con polímeros catiónicos como es el caso del quitosano, por consiguiente, da origen a complejos polielectrolitos. Dicha interacción iónica, genera enlaces intramoleculares entre los grupos de ácido carboxílico (COO⁻) del ALG y los grupos amina protonados (NH³⁺) del QTS. Permitiendo así la obstrucción de los poros en las cápsulas de ALG por el QTS. (Lim et al., 2015)

Dicho polielectrolito ALG-QTS, (Figura 8), se caracteriza por una estabilidad térmica, química y mecánica mejorada de los polímeros constituyentes. Además, las formas de dosificación de fármacos basadas en los complejos ALG-QTS se caracterizan por un mayor grado de hinchamiento, fuerza mucoadhesiva y liberación prolongada del compuesto activo, (Szekalska et al., 2017).

Ambos polisacáridos son sensibles al pH, lo que puede ser útil para controlar la liberación del fármaco a niveles de pH específicos ajustando la proporción de ALG-QTS utilizada, (Wathoni et al., 2024)

Figura 8. Interacción entrecruzamiento de quitosano-alginato, tomado y modificado de (Feyissa et al., 2023)

3. Justificación

Los hongos se han convertido en objeto de gran interés en el sector alimentario gracias a sus propiedades nutricionales únicas y su sostenibilidad ambiental, por lo que su investigación, producción y promoción de este recurso, es vital para convertirlo en un componente esencial de nuestra dieta diaria.

Bajo este contexto, la comunidad científica y la industria alimentaria están en una permanente búsqueda de formas de mejorar la calidad de los alimentos, dirigiendo la investigación en técnicas de encapsulación basado en sistemas de administración con biopolímeros; abriendo así el camino hacia productos alimenticios más saludables, sin comprometer sus propiedades, como componentes bioactivos o funcionales.

Por lo que México se encuentra en un panorama favorable al ser un país megadiverso lo que confiere un pletórico de bondades por su riqueza biocultural, existiendo 400 especies de hongos que en los grupos étnicos tienen un uso como alimento y medicina tradicional. Así mismo, México tuvo una producción de 8 142 toneladas acorde al Servicio de Información Agroalimentaria y Pesquera en el 2023.

Dentro de los hongos consumidos tradicionalmente, están las patitas de pájaro (*Ramaria botrytis*), yemas (*Amanita caesarea*), xolete rosa (*Entoloma clypeatum*), huitlacoche (*Ustilago maydis*); este último, acorde a su investigación nutrimental, aporta macronutrientes (hidratos de carbono, lípidos, proteínas) y micronutrientes (fibra, minerales, vitaminas).

Sin embargo, también encontramos miconutrientes como ácidos grasos esenciales (ácido oleico y ácido linoleico) que son fuentes de ω -3 y ω -6, carotenos (α -tocoferol), esteroles, (ergosterol), polifenoles (catequina, ácido ferúlico) que han manifestado actividades antioxidantes y anticancerígenas; destacando la abundancia de aminoácidos esenciales.

Por lo que el presente proyecto, esta dirigido con el enfoque de una investigación del perfil micoquímico de los extractos etanólicos de este hongo tradicional mexicano, así como en la obtención y análisis de sus compuestos bioactivos de naturaleza fenólica.

De igual forma, se busca un material adecuado para la microencapsulación de los extractos etanólicos, y así en un futuro continuar con su aplicación como nutracéutico con propiedades farmacológicas. Además, con el fin de promover el consumo de un alimento autóctono bajo la alternativa de la microencapsulación debido a que nos brinda beneficios a la salud.

4. Hipótesis

Los extractos etanólicos del huitlacoche podrán incorporarse a un sistema de microencapsulación y contendrán micoquimicos bioactivos que sustentarán la propuesta de su posible uso nutracéutico.

5. Objetivo General

Analizar el contenido micoquímico en extractos etanólicos del hongo huitlacoche (*Ustilago maydis*) y llevar a cabo su encapsulación.

5.1 Objetivos Particulares

- Cuantificar y comparar el contenido de polifenoles totales de los extractos etanólicos de huitlacoche fresco y cocido.
- 2. Aislar y caracterizar los micoquímicos presentes en ambos extractos.
- 3. Encapsular los extractos de huitlacoche a base de alginato de sodio y quitosano, y analizar su tamaño y morfología.
- 4. Contribuir a la información del contenido micoquímico del U. maydis (Huitlacoche).

Página **57**

6. Materiales y Métodos

En el siguiente diagrama 1, se representa el esquema general de la metodología empleada en este proyecto, que consta de extracción, purificación y caracterización, así como microencapsulación de los extractos etanólicos de huitlacoche.

Diagrama 1. Metodología general del proyecto.

6.1 Obtención del Material Fúngico

El hongo huitlacoche fue adquirido en la central de abastos en Cuautla, Morelos, México; en el mes de Agosto de 2022. En su conjunto se emplearon 17 kg, de los cuales 8 kg fueron utilizados para la maceración de huitlacoche fresco y 9 kg para su tratamiento en cocción y posterior maceración de ambos, (Figura 9).

Figura 9. Materia prima de huitlacoche

6.2 Obtención del Extracto

6.2.1 Huitlacoche Fresco (HF)

La materia orgánica (huitlacoche) (8 kg) en fresco se cortó en trozos pequeños de alrededor de 1-2 cm, posteriormente se extrajo mediante maceración con etanol cada 72 horas por triplicado. Finalmente se eliminó el disolvente con el uso de un evaporador rotatorio (Buchi RII) para obtener el extracto etanólico del huitlacoche en fresco.

6.2.2 Huitlacoche Cocido (HC)

Se utilizaron 9 kg de huitlacoche, se cortó en trozos pequeños de alrededor de 1-2 cm, y se llevó bajo las condiciones de cocción en una olla peltre llevada a calentamiento a 130 °C por 20 minutos. Se extrajo mediante maceración con etanol cada 72 horas por triplicado. Finalmente se eliminó el disolvente con el uso de un evaporador rotatorio (Buchi RII) para obtener el extracto etanólico del huitlacoche cocido.

6.3 Bipartición de los Extractos

Una vez obtenidos los extractos, se realizó una extracción liquido-líquido empleando disolventes de distinta polaridad (hexano, diclorometano (DCM) y agua:etanol), ver diagrama 2.

En primera instancia, se pesó 20 g del extracto etanólico de huitlacoche fresco (E.E.H.F.) para disolverlo en 400 mL de etanol:agua (7:3) dicha solución se colocó en un embudo de separación de 1000 mL (Pyrex[®]), posteriormente, se adicionó 400 mL de hexano y se agitó vigorosamente el embudo, liberando presión en intervalos. La extracción con este disolvente se hizo por triplicado, apartando la fase hexánica del sistema para concentrarlo mediante el uso de un rotaevaporador y colocarlo en un vial para su almacenamiento.

Posteriormente, la solución de etanol:agua (7:3) pasó a una proporción 5:5 previo a la colocación de 400 mL de diclorometano en el embudo, se repitió el mismo procedimiento previo para separar, concentrar mediante un evaporador rotatorio la fase de DCM y la fase hidroalcohólica, se colocaron en un vial para su correcto etiquetado y almacenamiento.

Esto procedimiento se sigue para para el extracto etanólico de huitlacoche cocido (E.E.H.C.) y del E.E.H.F. hasta emplear 180 g de extractos.

Diagrama 2. Condiciones de bipartición para los extractos etanólicos de huitlacoche.

6.4 Cuantificación de Polifenoles Totales

6.4.1 Preparación de las Soluciones

El reactivo de Folin-Ciocâlteu 2 N (CAS 10377-48-7, Sigma- Aldrich) se preparó diluyendo en una relación 1:2 con agua destilada. Se preparó con 2.5 mL del reactivo de Folin-Ciocâlteu con 5 mL de agua destilada, se almacenó en un frasco ámbar y en un ambiente libre de luz. Posterior se preparó una solución de bicarbonato de sodio al 7.5% a partir de 1.5 g de NaHCO₃ y se adicionó 20 mL de agua destilada.

Por otro lado, se utilizó como control al ácido gálico (CAS 149-91-7, Sigma-Aldrich), a partir de una solución stock de $1 \frac{mg}{mL}$, se hicieron seis diluciones seriadas de 200, 100, 50, 25, 12.5, 6.25, 3.13 µg/mL.

6.4.2 Desarrollo del Método de Folin-Ciocâlteu

La metodología que se siguió fue con base a lo descrito por (Jurado et al., 2016), y se modificó para llevar a cabo la reacción directamente en placas de 96 pozos (Costar®). Los extractos etanólicos de huitlacoche fresco y cocido se prepararon a una concentración de 10 mg/mL

Posteriormente se colocaron 28 µL de cada extracto en cada pozo de la placa, a continuación, se adicionó 42 µL de la solución Folin-Ciocâlteu (diluida previamente 1:2 con agua), posterior a esto, se dejó reposar durante 5 minutos. Transcurrido lo anterior se vertieron 42 µL de NaHCO₃ 7.5 % y adicionalmente se colocaron 168 µL de agua destilada, por último, se agitaron las soluciones de las fracciones para almacenarlas en un ambiente sin luz por 30 minutos. Las absorbancias se midieron a 760 nm en un fotómetro de microplacas Multiskan[™] GO (Thermo Scientific[™]),

El análisis estadístico se hizo en Excel determinando la ecuación de la recta y por interpolación con los valores de las muestras problema. Los resultados de la cuantificación fueron expresados en mgEAG/g.

6.5 Técnicas Cromatográficas

La identificación de metabolitos presentes en los extractos etanólicos de HC y HF se llevó a cabo mediante técnicas de cromatografía de gases, cromatografía de líquidos de alta resolución y en columna fase normal y fase reversa, flash, así como cromatografía en capa fina

6.5.1 Cromatografía en Columna Abierta

La separación y purificación de metabolitos presentes en el extracto etanólico de huitlacoche cocido y huitlacoche fresco se aislaron por cromatografía en columna, empleando como fase estacionaria silica (230-40 mesh ASTM, cas 7631-86-9, Merk) que se empacó en columnas de vidrio de diámetros y longitudes según la cantidad de muestra a purificar con base a lo publicado por (Taber, 1982), en cuanto a la fase móvil se usó un gradiente hexano-AcOEt.

6.5.2 Cromatografía en Capa Fina

Por otro lado, para el monitoreo de las fracciones se empleó cromatografía en capa fina (CCF) de gel de sílice 60 F_{254} (1.05554, Merck), posterior a su elución las placas se observaron bajo una lampara de luz UV (CAMAG[®]) con un haz de luz en λ =254 nm y λ =366 nm, visualizando aquellos compuestos fluorescentes debido a sus grupos cromóforos (dobles enlaces conjugados). Para la visualización de las placas se utilizaron distintos reveladores como yodo y ácido sérico

6.5.3 Cromatografía Líquida de Alta Eficacia

Para conocer la composición química de los extractos etanólicos y sus respectivas fases de DCM e hidroalcohólico, se tomaron en cuenta los polifenoles reportados por (S. López et al., 2017; Rosalba Beas et al., 2011; Valdez-Morales et al., 2016) se seleccionaron 12 polifenoles (5 ácidos benzoicos, 4 ácidos cinámicos, 2 flavonoides, 1 flavonoide glucosilado) como estándares: ácido gálico (CAS 149-31-7, Sigma-Aldrich), ácido siríngico (S6881-10G, CAS 331-39-5, Sigma-Aldrich), ácido 4-hidroxibenzoico (CAS 99-96-7, Sigma-Aldrich), ácido vainíllico (H36001, CAS 121-34-6, Sigma-Aldrich), ácido protocatecuico (CAS 99-50-3, Sigma-Aldrich); ácido cafeico (CAS 331-39-5, Sigma-Aldrich), ácido ferúlico, ácido *p*-cumárico (C9008-25G, CAS 0198-4, Sigma-Aldrich), ácido cinámico; catequina (C1251, CAS 225937-10-0, Sigma-Aldrich), quercetina (Q0125-10G, CAS 117-39-5, Sigma-Aldrich), rutina (R-5143, CAS 207671-50-9, Sigma-Aldrich).

Los tiempos de retención y espectros de UV-Vis se pueden consultar en anexos 10.1 y 10.2. El equipo empleado fue un cromatógrafo de HPLC Agilent 6200 acoplado a un detector de arreglo de diodos (DAD) bajo las condiciones adaptadas con base a lo descrito por (Pati et al., 2014), (Tabla 6).

Técnica	Cromatografía Fase Reversa		
Columna	Chromolith® Performance RP-18 endcapped100-4.6 HPLC column		
T columna (°C)	20 °C		
Eaco Móvil	A) Agua:Ác. Fórmico 0.2%		
rase wovii	B) ACN		
	l) 0 – 10 min 98% A – 2 % B		
Gradiente	II) 10 – 25 min 87% A – 13 % B		
	III) 25- 65 min 85% A-15% B		
Vol. De inyección	2 µL y 3 µL		
Flujo	0.2 mL/min		
Detector	Detector de Arreglo de Diodos (DAD)		
Longitud de Onda	a 210 nm, 280 nm, 300 nm, 370 nm		
Tiempo	65 min		

Tabla 6. Condiciones de operación de HPLC

6.5.4 Cromatografía de Gases

El análisis de la composición química de las fases hexánicas de huitlacoche cocido y huitlacoche fresco se realizó mediante un cromatógrafo de gases Agilent Technology 6890 acoplado a un detector de masas 5973N con las condiciones descritas en la Tabla 7. Los espectros de masas se compararon con la Biblioteca NIST versión 14

Tabla 7. Condiciones de operación para cromatografía de gases

Impacto electrónico
HP-5ms 30m x 0.250mm x 0.25 µm
Helio 1 mL/min, flujo constante
40°C durante 1 min
10 °C/min hasta 250 °C durante 5 min
10 °C/min hasta 285 °C durante 10 min
250 °C, splitless
MSD
250 °C
NIST14

6.6 Técnicas de Elucidación

6.6.1 Resonancia Magnética Nuclear

La caracterización de los compuestos puros aislados y de las fases de DCM de los extractos etanólicos del huitlacoche cocido y fresco se llevó a cabo mediante Resonancia Magnética Nuclear (RMN) ¹H y ¹³C y 2D, en equipos, 80 MHz, 500 MHz (Bruker AVANCE III HD), 600 MHz (Jeol ECZ).

6.6.2 Espectrometría de Masas de Alta Resolución

Como parte de la caracterización de los compuestos aislados de los extractos etanólicos se analizaron por espectrometría de masas de alta resolución (JEOL MS-700) con la técnica de ionización de FAB⁺.

6.7 Micoquímica

6.7.1 Fraccionamiento Primario Fases de DCM

La fase de diclorometano del extracto de huitlacoche cocido y del extracto de huitlacoche fresco se fraccionaron a través de cromatografía en columna abierta.

6.7.1.1 Huitlacoche Cocido.

La fase de diclorometano (DCM) del huitlacoche cocido (500 mg) se sometió a un fraccionamiento primario por cromatografía en columna, empleando 50 g de silica , (230-40 mesh ASTM, cas 7631-86-9, Merk), en una columna de 45·3 cm con un gradiente de nhexano: AcOEt (90:10 \rightarrow 00:100) y una lavado de metanol. Recolectando fracciones de 15 mL cada uno, las cuales se concentraron con ayuda de un rotaevaporador y se agruparon en 06 reuniones acorde a su homogeneidad según lo visto por cromatografía en capa fina (CCF), ver Tabla 8.

Fracciones	Sistema Hex:AcOEt	Reunión	Peso
01-16	90:10 → 85:15	Λ01	1.4 mg
17-30	85:15 → 80:20	Λ02	2.6 mg
31-38	75:25	٨03	2 mg
39-50	75:25 → 70:30	Λ04	6.6 mg
51-73	$65:35 \rightarrow 55:45$	Λ05	51.4 mg
52-170	$55:45 \rightarrow 00:100$	٨06	28.2 mg
171	Lavado	Λ07	300 mg

Tabla 8. Fraccionamiento cromatográfico de la fase de DCM del extracto de huitlacoche cocido.

La reunión A05 presentó cristales blanquecinos en suspensión amorfos (3.5 mg), que al realizar un análisis por CCF (R.F.=0.6 hex:AcOEt:Ác. Fórmico 6:4:0.1) se observó una mancha única bajo luz UV, este compuesto se caracterizó por RMN 1D ¹H y ¹³C (**espectro 1**, **espectro 2**), RMN 2D HSQC, HMBC, espectrometría de masas FAB⁺, y CG-EM. Caracterizando este como 6-metoxi-2benzoxazolinona (coixol).

Cristal blanco con morfología de alfiler

 \succ FM: C₈H₇NO₃

> PM: 165.04 g/mol

- ➢ P.F.: 160°C
- R.f. : 0.7 (Hex:AcOEt:Ác. fórmico 6:4:0.1)

Página 6^L

RMN ¹**H (MeOD:CDCI₃, 500 MHz)** δ 6.94 (*d*, 1H, *J* = 8.6 Hz), 6.85 (*d*, 1H, *J* = 2.4 Hz), 6.72 (*dd*, 1H, *J* = 8.6, 2.5 Hz), 3.77 (*s*, 3H).

RMN ¹³**C (MeOD:CDCI₃, 125 MHz)** δ156.30, 156.29, 144.70, 123.57, 109.61, 106.28, 96.70, 55.06

FABMS m/z [M+H] *: 165 g/mol

Los resultados del análisis por cromatografía de gases-EM de las reuniones $\Lambda 01$, $\Lambda 02$, $\Lambda 05$ a 1 mg/mL en hexano, pueden ser consultados en la sección de anexo 10.3 ($\Lambda 01$) y 10.4 ($\Lambda 02$) y en la sección 7.3.2.4.1 para $\Lambda 05$.

6.7.1.2 Huitlacoche Fresco.

Por otro lado, en el fraccionamiento cromatográfico de la fase de DCM del huitlacoche fresco (3 g) se usó 115 g de silica, (230-40 mesh ASTM, cas 7631-86-9, Merk) en una columna de 45.5.5 cm, con un gradiente de n-hexano: AcOEt (90:10 \rightarrow 00:100). Recolectando fracciones de 25 mL cada uno, las cuales se concentraron con ayuda de un rotaevaporador y monitoreado por CCF se agruparon en 09 reuniones acorde a su homogeneidad según lo visto, ver Tabla 9.

Fracciones	Sistema Hex:AcOEt	Reunión	Peso
01-120	90:10 → 88:12	Q01	107.4 mg
121-205	88:12 → 80:20	Q02	9.3 mg
206-286	$80{:}20 \rightarrow 70{:}30$	Q03	4.7 mg
287-351	$70{:}30 \rightarrow 65{:}35$	Q04	6.1 mg
352-401	$65:35 \rightarrow 55:45$	Q05	7.9 mg
402-492	$55{:}45 \rightarrow 45{:}55$	Q06	93.4 mg
493-570	$45:55 \rightarrow 30:70$	Q07	152.9 mg
571-670	$30:70 \rightarrow 20:80$	Q08	172.6 mg
671-720	$20{:}80 \rightarrow 00{:}100$	Q09	57 mg

 Tabla 9. Fraccionamiento cromatográfico fase de DCM del extracto de huitlacoche fresco.

La reunión Q06 (93.4 mg), procedente del fraccionamiento de la fase DCM del HC, presentó cristales blanquecinos en suspensión amorfos, que al realizar un análisis por CCF (R.F.=0.6 hex:AcOEt:Ác. Fórmico 6:4:0.1) se observó una mancha única. Este compuesto fue identificado como el 6-metoxi-2-benzoxazolinona, aislado anteriormente de la reunión Λ05.

De las reunión Q01 a Q03 se prepararon muestras 1 mg/mL en hexano y Q04 a Q09 en DCM para analizarlos por cromatografía de gases. Los resultados que muestra la biblioteca NIST se pueden consultar en los anexos 10.5.

6.7.2 Fraccionamiento Secundario de las Fases de DCM

Determinadas reuniones obtenidas del fraccionamiento primario de las fases de DCM del extracto de huitlacoche cocido y del extracto de huitlacoche fresco se llevaron a un fraccionamiento secundario.

6.5.2.1 Huitlacoche Cocido: Reunión Λ05.

La reunión $\Lambda 05$ (51.4 mg) de la fase de DCM del huitlacoche cocido se fraccionó mediante cromatografía en columna, se usó 2.2 g de silica, (230-40 mesh ASTM, cas 7631-86-9, Merk) empacada en una columna de 44.5 · 1.2 cm; la muestra se absorbió en 103 mg de silica y se usó un gradiente de n-hexano: AcOEt (90:10 \rightarrow 00:100). Se obtuvieron 120 fracciones de 10 mL cada una, colectándolas con un rotaevaporador, las cuales se congregaron en 8 reuniones en base al monitoreo por CCF, ver Tabla 10.

Fracciones	Sistema Hex:AcOEt	Reunión	Peso
01-120	90:10 → 88:12	Λ05-R01	6 mg
121-205	88:12 → 80:20	Λ05-R02	1.7 mg
30-42	80:20 → 70:30	Λ05-R03	18.1 mg
287-351	$70:30 \rightarrow 65:35$	Λ05-R04	12.8 mg
352-401	$65:35 \rightarrow 55:45$	Λ05-R05	6.4 mg
402-492	$55:45 \rightarrow 45:55$	Λ05-R06	6.2 mg
493-570	$45:55 \rightarrow 30:70$	Λ05-R07	5.4 mg
571-670	$30:70 \rightarrow 20:80$	Λ05-R08	3.9 mg

Tabla 10. Fraccionamiento cromatográfico reunión A05 del extracto de huitlacoche cocido

En la reunión Λ 05-R03 se obtuvo un sólido de consistencia pastosa, se preparó una muestra de 1 mL/mg en acetona para su análisis por CG-EM, sugiriendo que es el ácido 4-hridoxibenzoico y se caracterizó por RMN 1D ¹H y ¹³C , RMN 2D HSQC, HMBC.

RMN ¹**H (500 MHz, MeOD:CDCI**₃) δ 7.87 (*d*, *J* = 8.7 Hz, 2H), 6.82 (*d*, *J* = 8.7 Hz, 2H).

RMN ¹³C (150 MHz, MeOD:CDCI₃) δ 170.06, 163.1, 132.95, 122.73, 115.98

6.5.2.1 Huitlacoche Fresco: Reunión Q02.

La reunión Q02 (9.3 mg) de la fase de DCM del huitlacoche fresco se fraccionó mediante cromatografía en columna, empacada con sílica flash, eluyendo con un gradiente de n-hexano-AcOEt (100:00:00 \rightarrow 00:00:100). Las 420 fracciones obtenidas de 10 mL cada una se concentraron y congregaron en 8 reuniones en base al monitoreo por CCF.

Fracciones Sistema Hex:AcOEt		Reunión	Peso
01-60	$100:00 \to 98:12$	Q02-V01	3.1 mg
61-123	$95:05 \rightarrow 90:10$	Q02-V02	3.5 mg
124-182	$90:20 \rightarrow 84:16$	Q02-V03	1.4 mg
183-240	84 - 16 → 80:20	Q02-V04	1.3 mg
241-256	76:24: → 76:24	Q02-V05	0.7 mg
257-302	76:24: → 67:33	Q02-V06	2.2 mg
303-343	$67:33 \rightarrow 50:50$	Q02-V07	1.0 mg
344-420	50:50 → 00:100	Q02-V08	5.1 mg

Tabla 11.	Fraccionamiento	cromatográfico	reunión Q02	del extracto	de huitlacoche fresco.
	1 raccionarmento	cionalogianeo			ac numacoune nesso.

Los resultados del análisis por cromatografía de gases acoplado a masas de la reunión V01 (1 mg/mL hexano) se describen en anexos 10.7.

6.5.2.1 Huitlacoche Fresco: Reunión Q09.

La reunión Q9 (57 mg) de la fase de DCM del huitlacoche fresco, se fraccionó mediante cromatografía en columna, empacada con sílica flash, eluyendo con un gradiente de n-hexano-AcOEt (95:00:00 \rightarrow 00:00:100). Se obtuvieron 230 fracciones de 10 mL cada una, las cuales se agruparon en 10 reuniones en base al monitoreo por CCF.

Fracciones Sistema Hex:AcOEt		Reunión	Peso
01-32	$95:05 \rightarrow 93:07$	Q09-S01	1.4 mg
33-65	93:07-90:10	Q09-S02	1.5 mg
66	90:10	Q09-S03	12.8 mg
67-110	90:10 → 84:16	Q09-S04	3.7 mg
111-147	$80{:}20 \rightarrow 75{:}25$	Q09-S05	5.2 mg
148-173	$75:25 \rightarrow 30:70$	Q09-S06	1.8 mg
174-197	30:70 → :15:85	Q09-S07	16.1 mg
198-230	15:85 → 00:100	Q09-S08	4.3 mg

Tabla 12. Fraccionamiento cromatográfico reunión Q09 del extracto de huitlacoche fresco

Mediante CG-EM se analizó una muestra de 1 mg/mL en hexano de la reunión S04, cuyos resultados se encuentran para su consulta en anexos 10.8.

6.8 Microencapsulación de Extractos

6.8.1 Alginato de Sodio

6.8.1.1 Preparación de las Soluciones.

El cloruro de calcio (grado comestible, marca "mi granero") se utilizó como agente quelante preparado una solución al 5% (se pesaron 5 g en 100 mL de agua destilada).

Para la solución de los extractos etanólicos de huitlacoche fresco y cocido se prepararon a concentraciones de 1%, 1.8% y 2.5% pesando 100 mg, 180 mg y 250 mg respectivamente y diluyéndolos en 10 mL de aguas destilada.

6.8.1.2 Desarrollo del Método.

Para la preparación de la formulación I, la solución de extracto de huitlacoche (E.H.) al 1% en agitación se adiciona lentamente 100 mg de alginato de sodio (A.S.). Posteriormente, para generar los encapsulados, mediante una bomba peristáltica se adicionó la solución de A.S.- E.H. sobre 100 mL de la solución de cloruro de calcio (CaCl₂) al 5%.

Una vez formados, se filtró con ayuda de un colador y se realizó varios lavados con agua destilada suficiente, posterior a ello se quitó el exceso de humedad para así colocarlos en una caja Petri para su correcto etiquetado y para almacenarlas en refrigeración a 4°C

Este procedimiento se siguió para los demás formulaciones (II, III, IV, V, VI, VII, VIII, IX) empleadas para la encapsulación de extracto de huitlacoche fresco como cocido, ver tabla 13.

Material	Formulación					
				Х	XI	XII
Extracto etanólico de huitlacoche 1% A	100 mg	100 mg	100 mg	100 mg	100 mg	100 mg
Alginato de Sodio	^B 100 mg	^C 150 mg	^D 200 mg	^B 100 mg	^C 150 mg	^D 200 mg
CaCl ₂ 5%	100 mL	100 mL	100 mL	100 mL	100 mL	100 mL
	IV	V	VI	XIV	XV	XVI
Extracto etanólico de huitlacoche 1.8 % ^A	180 mg	180 mg	180 mg	180 mg	180 mg	180 mg
Alginato de Sodio	^B 100 mg	^C 150 mg	^D 200 mg	^B 100 mg	^C 150 mg	^D 200 mg
CaCl ₂ 5%	100 mL	100 mL	100 mL	100 mL	100 mL	100 mL
	VII	VIII	IX	XVII	XVIII	XIX
Extracto etanólico de huitlacoche 2.5 % A	250 mg	250 mg	250 mg	250 mg	250 mg	250 mg
Alginato de Sodio	^B 100 mg	^C 150 mg	^D 200 mg	^B 100 mg	^C 150 mg	^D 200 mg
CaCl ₂ 5%	100 mL	100 mL	100 mL	100 mL	100 mL	100 mL
^A en 10 mL de agua, Alginato de sodio ^B 1 % (10	0mg), ^C 2% (180 mg), ^D 29	% (200 mg)			

Tabla 13.	Formulaciones	para los	encapsulados	con alginato de	e sodio
	1 011110100100100	para 100	onoupoulaaoo	oon aiginato at	<i>, 00010</i>

El diagrama de flujo se puede consultar en anexos 10.9

6.8.2 Quitosano

6.8.2.1 Preparación de las Soluciones.

La solución de ácido acético glacial (Cas 64-19-7, J. T. Baker[™]) al 1%(v/v) se preparó al adicionar 1 mL de ácido a 149 mL de agua destilada.

Las soluciones de quitosano (CAS 9012-76-4, Sigma-Aldrich) al 0.05% y 0.01%v (p/v), se realizaron pesando 50 mg y 10 mg para ser añadidas en agitación constante por 20 h. (Parrilla Heidolph MR-3001-K) en la solución de ácido acético glacial al 1%(v/v).

Esta solución de quitosano se ajustó a un pH=5 haciendo uso de una solución de hidróxido de sodio (CAS 1310-73-2) 1N (pesando 400 mg de NaOH y diluyéndolo en 10 mL de agua), esto con la ayuda de un potenciómetro (Hamilton, Arc[™] View Handheld).

Para la preparación de las soluciones de los extractos de huitlacoche al 1%, 1.8 % y 2.5% se emplearon 100 mg, 180 mg, 250 mg de cada uno de los extractos disueltos en 40 mL de EtOH:Agua (7:3).

6.8.2.2 Desarrollo del Método.

Se siguió la metodología descrita por (Chandirika et al., 2018) con algunas modificaciones.

A la solución del extracto de huitlacoche se adicionó al sistema 10 µL de *tween* 80, dejándolo en agitación constante por 30 min.

Una vez pasado este tiempo, empleando una bomba peristáltica y colocando la aguja situada dos centímetros por encima de la superficie se adicionó por goteo 5 mL de la solución de quitosano sobre la solución E.H/*Tween* 80 la cual se encuentraba en agitación (500 rpm) por 45 min.

Posterior a ello, la solución final que contiene las microparticulas de quitosano se vertieron en un tubo falcon para llevarla a centrifugación (Labnet Z100A) por 30 min a 2000 rpm, se enjuagó tres veces con agua destilada; tomando 1.5 mL en un tubo *Eppendorff* para llevarlo a ultracongelación -80 °C para después liofilizarlo en un equipo Thermo Micro Modulyo 115 Freeze Dryer System (-45°C, 1mBar).

Al término de la liofilización se almacenan en un desecador hasta su análisis por microscopía. Este procedimiento se aplicó para la realización de la microencapsulación del

extracto de huitlacoche cocido y extracto de huitlacoche fresco en sus distintas formulaciones (II, III, IV, V, VI, VII, VIII, IX, X, XI, XII), ver tabla 14.

Material	Formulación			
	Huitlacoche cocido Huitlacoche			
	I		VII	VIII
Extracto etanólico de huitlacoche 1%	^A 100 mg	^A 100 mg	^A 100 mg	^A 100 mg
Tween 80	10 µL	10 µL	10 µL	10 µL
Quitosano	[₿] 5 mL	^c 5 mL	[₿] 5 mL	^c 5 mL
		IV	IX	Х
Extracto etanólico de huitlacoche 1.8%	^A 180 mg	^A 180 mg	^A 180 mg	^A 180 mg
Tween 80	10 µL	10 µL	10 µL	10 µL
Quitosano	[₿] 5 mL	^c 5 mL	[₿] 5 mL	^c 5 mL
	V	VI	XI	XII
Extracto etanólico de huitlacoche 2.5%	^A 250 mg	^A 250 mg	^A 250 mg	^A 250 mg
Tween 80	10 µL	10 µL	10 µL	10 µL
Quitosano	[₿] 5 mL	^c 5 mL	[₿] 5 mL	^c 5 mL
^A en 10 mL de agua; ^B Quitosano 0.01%; ^C Quitosar	no 0.05 <mark>%</mark>			

Tabla 14. Formulaciones para los encapsulados con quitosano

El diagrama de flujo se puede consultar en la anexos 10.9

6.8.3 Quitosano-Alginato-Extractos Etanólicos Huitlacoche

6.8.3.1 Preparación de las Soluciones.

Para la preparación de la solución de quitosano, se siguió la metodología descrita en la sección anterior (6.8.2 Quitosano).

Las soluciones de los extractos de huitlacoche cocido y fresco, se emplearon 100 mg, 180 mg, 250 mg de cada uno y se disolvieron en 40 mL de EtOH:Agua (7:3).

6.8.3.2 Desarrollo del Método.

La microencapsulación Quitosano-Alginato-Extractos Etanólicos Huitlacoche se realizó acorde a lo descrito por (Hosseini & Varidi, 2021) con ciertas modificaciones.

Se adicionó lentamente 150 mg de alginato de sodio (CAS 9005-38-3, Sigma-aldrich) a la solución de extracto de huitlacoche al 1% y se dejó en agitación 15 min a <100 rpm, después de eso, se añade 1.5 mL de solución de CaCl₂ al 5% a la solución de A.S.- E.H para posteriormente añadir 5 mL de solución de quitosano al 0.01%.

Después del tiempo de inyección, la solución se agitó durante media hora para completar la reacción. Luego, la mezcla se centrifugó a 2000 rpm durante 30 min, y luego, el gel se enjuago abundantemente tres veces con agua destilada; tomando una muestra de 1.5 mL en tubos *Eppendorf* y llevarlo a ultracongelación -80 °C para después liofilizarlo en un equipo Thermo Micro Modulyo 115 Freeze Dryer System (-45°C, 1mBar).

Una vez liofilizado las muestras, estas se almacenan en un desecador hasta su análisis por microscopia.

Material	Formulación								
Material		Huitlacacha acaida							
		Tuttacoc) N/) \	
				IV	XIII	XIV	XV	XVI	
Extracto de huitlacoche 1%	100 mg	100 mg	100 mg	100 mg	100 mg	100 mg	100 mg	100 mg	
Alginato de Sodio	150 mg	200 mg	150 mg	200 mg	150 mg	200 mg	150 mg	200 mg	
CaCl 5%	1.5 mL	1.5 mL	1.5 mL	1.5 mL	1.5 mL	1.5 mL	1.5 mL	1.5 mL	
Quitosano	[₿] 5 mL	^B 5 mL	^c 5 mL	^c 5 mL	^B 5 mL	^B 5 mL	^c 5 mL	^c 5 mL	
	V	VI	VII	VIII	XVII	XVIII	XIX	XX	
Extracto de huitlacoche 1.8%	180 mg	180 mg	180 mg	180 mg	180 mg	180 mg	180 mg	180 mg	
Alginato de Sodio	150 mg	200 mg	150 mg	200 mg	150 mg	200 mg	150 mg	200 mg	
CaCl 5%(mL)	1.5 mL	1.5 mL	1.5 mL	1.5 mL	1.5 mL	1.5 mL	1.5 mL	1.5 mL	
Quitosano	[₿] 5 mL	^B 5 mL	^c 5 mL	^c 5 mL	^B 5 mL	^B 5 mL	^c 5 mL	^c 5 mL	
	IX	Х	XI	XII	XXI	XXII	XXIII	XXIV	
Extracto de huitlacoche 2.5%	250 mg	250 mg	250 mg	250 mg	250 mg	250 mg	250 mg	250 mg	
Alginato de Sodio	150 mg	200 mg	150 mg	200 mg	150 mg	200 mg	150 mg	200 mg	
CaCl 5%(mL)	1.5 mL	1.5 mL	1.5 mL	1.5 mL	1.5 mL	1.5 mL	1.5 mL	1.5 mL	
Quitosano	^B 5 mL	^B 5 mL	^c 5 mL	^c 5 mL	[₿] 5 mL	^B 5 mL	^c 5 mL	^c 5 mL	
^B Quitosano 0.01%, ^C Quitosano 0.05	%								

Tabla 15. Formulaciones para los encapsulados con quitosano-alginato de sodio

El diagrama de flujo se puede consultar en anexos 10.9
6.9 Microscopia Estereoscópica

Por cada formulación de microcápsulas de alginato (I, II, III, IV, V, VI, VII, VIII, IX) se seleccionaron un promedio de 25 cápsulas colocándolas en una tapa de caja *Petri* grande para ser analizadas en un esteromicroscopio (Olympus mvx10) con un aumento de 10x.

La visualización de estos encapsulados y la captura de sus imágenes fueron tomadas con el software SpinView 2.3.0.77, las imágenes se obtuvieron en escala de colores y se almacenaron en formato TIFF con una resolución de 1920 x 1200 píxeles.

6.10 Microscopía Electrónica de Barrido Ambiental (ESEM)

Las muestras quitosano y quitosano alginato se colocaron en stubs de aluminio con cinta conductora de cobre de doble cara y fueron observadas directamente bajo un Microscopio electrónico de barrido ambiental (Zeiss, EVO LS10, Alemania) con un voltaje de aceleración de 30 Kv y una presión de 30 Pa de vapor de agua. Se utilizó un detector de electrones retrodispersados (NTS BSD), las imágenes se obtuvieron en escala de grises y se almacenaron en formato TIFF con una resolución de 1024 x 768 píxeles.

6.11 Microscopía Confocal de Barrido Láser (CLSM)

Cada muestra se montó en cubreobjetos de vidrio y se observó mediante un CLSM (Carl Zeiss, LSM800, Alemania) acoplado a una AxioCam HD color (Carl Zeiss, Modelo 305, Alemania). Se utilizó el software ZEN (Zeiss efficient navigation) versión 2.6 Blue edition. Se adquirieron las micrografías con objetivo N – Achroplan de 5 X/0.15 y se identificó autofluorescencia mediante la función "Lambda" en 3 canales espectrales: color azul con el láser a 405 nm al 5 % de excitación en un intervalo de 400 – 500 nm; color verde con el láser a 488 nm al 5 % de excitación en un intervalo de 480 – 617 nm; color rojo con el láser a 640 nm al 5 % de excitación en un intervalo de 650 – 700 nm. Todas las micrografías se almacenaron en formato TIFF con una resolución de 2048 × 2048 píxeles a 300 ppp.

6.12 Microscopía Electrónica de Transmisión (TEM)

Las muestras de quitosano se colocaron en una celda de cobre y fueron observadas directamente bajo un Microscopio electrónico de transmisión (JEOL, JEM-2100, Alemania) acoplado a una CCD digital (Gatán, modelo SC200). Con un voltaje de aceleración de 200 Kv, las imágenes se obtuvieron en escala de grises y se almacenaron en formato JPG con una resolución de 590 x 590 píxeles.

6.13 Análisis de Imágenes Estáticas de Microscopía y Estereoscopía

Para el procesamiento de las imágenes obtenidas en las diferentes microscopias empleadas (ESEM, CLSM, TEM) y estereoscopía se usó el software ImageJ para la medición de los diámetros de los vehículos, a continuación en la Tabla 16 se muestran los equivalentes de unidad/pixeles

Tipo de microscopía	Distancia conocida	Pixeles	Escala
Microscopia Estereoscópica	1 mm	111.5045	111.504 $\frac{pixeles}{mm}$
Microscopía Electrónica de Barrido Ambiental	30 µm	54.125	1.80 $\frac{pixeles}{\mu m}$
(ESEM)	10 µm	44.8757	$4.487 \frac{pixeles}{\mu m}$
Microscopía Confocal do Barrido Lásor (CLSM)	100 µm	160.0031	$1.60 \frac{pixeles}{\mu m}$
	100 µm	93.7513	$0.937 \frac{pixeles}{\mu m}$
Microscopía Electrónica de Transmisión (TEM)	10 nm	26.0001	$2.60 \frac{pixeles}{nm}$

Tabla 16	. Equivalencia	de Pixeles/	' Unidad po	or técnica d	de microsco	pía
	. Equivalentia		ornaua po			più

6.14 Análisis estático ANOVA

El análisis estadístico de los datos de los tamaños de los encapsulados de alginato de sodio – extracto de sodio se realizó con el software GraphPad Prism 8.0.1.Se realizó un análisis de varianza unidireccional (ANOVA) para determinar la significación estadística. Las diferencias significativas entre las muestras se identificaron mediante la prueba de Turkey con un nivel de confianza del 95 % (P < 0,05).

7. Resultados y Discusión

7.1 Rendimientos de Extractos y Fases de Bipartición

El porcentaje de rendimiento entre el extracto etanólico de huitlacoche fresco (E.E.H.F.) y el extracto etanólico de huitlacoche cocido (E.E.H.C.) fue similar, contando con un 3.34 % para el E.E.H.F. y del 3.44 % para el E.E.H.C.; por otro lado, en cuanto a las fases de baja a alta polaridad (fase hexánica, fase de DCM, fase hidroalcóholica) de los extractos etanólicos, el rendimiento de la fase hexánica fue similar para ambos casos, en el caso de la fase de DCM del huitlacoche fresco tuvo un rendimiento del 1.74 % en contraste con el 0.26 % del huitlacoche cocido, por último, en la fase hidroalcohólica del E.E.H.C. tuvo un porcentaje del 41.53% siendo menor al 55.93% del E.E.H.F. del se muestran en la Tabla 17.

	Extracto		Fase hexánica		Fase	DCM	Fase hidroalcohólica	
	H.F.	H.C.	H.F.	H.C.	H.F.	H.C.	H.F	H.C.
Rendimiento	3.34 %	3.44 %	0.33 %	0.67 %	1.74%	0.26%	55.93%	41.53 %
Rendimiento	(266.9 g)	(241 g)	(0.72 g)	(1.48 g)	(3.83 g)	(0.58 g)	(123.0 g)	(91.36 g)

Tabla 17. Rendimiento de las fases de los extractos de huitlacoche

H.F = extracto etanólico de huitlacoche fresco, H.C = extracto etanólico de huitlacoche cocido

Mediante cromatografía en capa fina (CCF) se analizó el extracto etanólico de huitlacoche fresco y el extracto etanólico de huitlacoche cocido, ver Figura 10A, además de las fases obtenidas a partir de la bipartición de estos extractos, ver Figura 10B, 10C, 10D.

Lo apreciado en UV a una longitud de onda corta (λ =254 nm) en la aplicación de huitlacoche fresco (H.F.) en CCF observamos una mancha definida con un Rf de 0.61. Por otro lado, al observar esta misma placa a una longitud de onda larga (λ =366 nm) apreciamos una mayor cantidad de manchas tanto en H.F., la primera de ellas una mancha verde que tiene un Rf de 0.59, seguido de una mancha azul con un Rf casi similar de 0.57. Por último, cerca del punto de aplicación observamos dos manchas pequeñas en un color verde con un Rf de 0.23 y una color azul con un Rf d 0.20.

En las fases de menor polaridad (hexánicas) de ambos extractos (Figura 10B) se observó un contenido metabólico similar, a una longitud de onda corta en la aplicación de H.F. se aprecian al menos 2 manchas definidas, la primera de ellas coincide con la mancha presente en la aplicación de huitlacoche cocido (H.C.) teniendo un Rf de 0.76.

La siguiente mancha únicamente se aprecia en H.F. con un Rf de 0.67 a esta longitud de onda, aunque, al observar la placa en onda corta también hay una mancha fluorescente en las dos aplicaciones teniendo un Rf común de 0.57. En el caso del H.F. se logró apreciar una mancha verde con un Rf de 0.68.

Al colocar el revelador de ácido sérico se apreciaron dos manchas amarillas con una pequeña mancha negra, su Rf en ambas aplicaciones es de 0.13. Posteriormente al calentado de la placa, se revelan las manchas vistas en onda corta, pero se adicionan 3 más por debajo de estas, teniendo un Rf de 0.51, 0.47 y 0.39.

Para las fases de DCM de ambos extractos (Figura 10C) se observó un contenido metabólico similar, al observar la placa a una longitud de onda de 254 nm se aprecia uno mancha ancha para ambos casos teniendo un Rf de 0.68, cuando se aplica el sulfato sérico se aprecian dos manchas de color negro con un contorno amarillo, dichas manchas tienen un Rf de 0.76. Posterior al calentamiento, se apreció una mancha definida en el H.C. teniendo un Rf de 0.96.

Por último, el análisis por cromatografía en capa fina de las fases hidroalcohólicas se aprecian en la Figura 10D, al observar la placa en onda corta de 254 nm se observa una mancha definida para ambos casos teniendo un Rf de 0.90, Posterior a la aplicación del revelador y someterlo a un breve calentamiento, se apreció una mancha definida en el H.F. teniendo un Rf de 0.71.

Figura 10. Placas de CCF: a) Extractos etanólicos, b) Fases hexánicas, c) fases de DCM, d) fases hidroalcohólicas

7.2 Análisis Químico de los Extractos Etanólicos de Huitlacoche

7.2.1 Cuantificación de Polifenoles Totales

La cuantificación de polifenoles totales de los extractos se hizo mediante el método de Folin-Ciocâlteu. En la gráfica 1, se muestra la curva de calibración de ácido gálico que se utilizó como referencia y obtuvo la ecuación de la recta y = 0.0457x + 0.0676 con una R² = 0.9996.

Ya realizada la curva de calibración y teniendo la ecuación de la recta se cuantificaron los polifenoles presentes en los extractos, en el caso del extracto etanólico del huitlacoche fresco se determinó una concentración de 10.18 $\frac{mgEAG}{mL}$, en su contraparte el tratamiento en cocción posee 8.38 $\frac{mgEAG}{mL}$ (tabla 18).

Tabla	18.	Resultados	de	cuantificación	de	polifenoles	para	los	extractos	etanólicos	de
huitlac	oche	Э									

	Absorbancia	Concentración					
	[A]	$\mu \mathbf{g}$	mg	mgEAG			
	[]	mL	mL	\boldsymbol{g}			
Huitlacoche Fresco	0.53	10.18	0.0102	10.18 ± 0.012			
Huitlacoche Cocido	0.45	8.38	0.0084	8.38 ± 0.027			

Acorde a lo reportado en la literatura estos datos pueden ser contrastados con el trabajo de (S. López et al., 2017) al ser extractos etanólicos de huitlacoche en tratamientos similares, reportando un total de contenido polifenólico para el E.E.H.F. y E.E.H.C. no concentrado de $49.6 \pm 0.02 \frac{\mu gEAG}{mL}$ y 70.9 $\pm 0.1 \frac{\mu gEAG}{mL}$ respectivamente, no obstante, cuando el extracto de H.C. y H.F. están concentrados para el caso del extracto etanólico de huitlacoche cocido de $0.183 \frac{m gEAG}{mL}$ y 0.161 $\frac{m gEAG}{mL}$ siendo estas concentraciones menores a las del presente trabajo.

En el caso particular de (Valdez-Morales et al., 2016) el *U. maydis* tuvo condiciones de tratamiento similares al nuestro, donde, como disolvente se usó metanol para la maceración, sus resultados muestran para el extracto metanólico de huitlacoche fresco (E.M.H.F.) una concentración 616.2±101.74 $\frac{mgEAG}{100g}$ (6.16 ± 1.02 $\frac{mgEAG}{g}$) y para el extracto metanólico de huitlacoche cocido (E.M.H.C.) 562.1 ± 112.85 $\frac{mgEAG}{100g}$ (5.62 ± 1.13 $\frac{mgEAG}{g}$) por lo que hay una diferencia de 4.02 $\frac{mgEAG}{g}$ entre los E.E.H.F. – E.M.H.F. y 2.76 $\frac{mgEAG}{g}$ entre los E.E.H.C. – E.M.H.C. ver gráfica 2.

Valdez-Morales et al. 2016 Carlos Espíndola et al. 2024

Gráfica 2. Comparación de polifenoles totales para Extracto etanólico y metanólico de huitlacoche cocido y fresco

7.2.2 Detección de Polifenoles Mediante Cromatografía de Líquidos de Alta Eficacia

Los cromatogramas obtenidos del estudio del extracto etanólico de huitlacoche cocido (E.E.H.C.) y huitlacoche fresco (E.E.H.F.) con una lectura de 270 nm en el detector UV-Vis, se presentan en la Figura 11.

Omitiendo aquellos picos presentes en el blanco (MeOH:Agua), (Figura 11A), de los cromatogramas de los extractos; para E.E.H.F se detectó 1 pico, (Figura 11B) y para E.E.H.C., (Figura 11C), se cuantificaron 3 picos.

Figura 11. Cromatogramas a λ = 270 nm del extracto etanólico de a) huitlacoche fresco y b) Huitlacoche Cocido.

Acorde a la comparación de los tiempos de retención y sus espectros de UV de los estándares, el ácido siríngico (t_R = 34.505 min) coincide con el pico en 30.171 min del E.E.H.C. En la Tabla 19, se muestran los tiempos de retención de los picos y su porcentaje de área.

					·/
	E.E.H.F			E.E.H.C	
Tr	٨ _{max}	Área	Tr	٨ _{max}	Área
[min]	[nm]	%	[min]	[nm]	%
7.342	-	2.1197	7.345	-	5.7627
7.756	-	6.4869	12.821	264	4.4620
12.825	-	3.4593	23.263	248	57.4218
23.470	260	65.4820	24.934	260	13.1477
24.927	-	1.4302	30.172	255	5.1421
30.171	-	20.3573	34.441	260	6.1614
41.347	-	0.3577	36.258	265	6.8003
48.531	_	0.3068			

Tabla 19. Tiempos de retención de los picos detectados a λ =270 nm para el Extracto Etanólico de Huitlacoche Fresco (E.E.H.F.) y Huitlacoche Cocido (E.E.H.C.)

7.3 Análisis Químico de las Fases Obtenidas Mediante Bipartición

7.3.1 Identificación de Metabolitos de la Fases Hexánicas

En el cromatograma del análisis por CG-EM de la reunión fase hexánica de huitlacoche cocido (H.C.), (Figura 12A), se detectaron 53 picos dentro de un rango 12 y 42 minutos con al menos 3 picos con mayor abundancia. Donde sólo el 69.81% de los picos tiene un score \geq 80%.

Para el extracto etanólico del huitlacoche fresco (H.F.), (Figura 12B), se detectaron 41 picos que se encuentran en un intervalo de tiempo entre 18 y 42 min. y 85.36% de ellos superan el 80% de score en la biblioteca NIST; por otro lado, estos cromatogramas sugieren que existe un contenido metabólico similar, pero este difiere en cuanto a abundancia.

Los compuestos identificados con una abundancia superior al 1% se enlistan en la tabla 20; observamos que los compuestos de tipo ácido graso esterificado son los más predominantes enseguida de los esteroles.

				ACIDUS	GRASUS								
	Cpd.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Area					
cocido	01	Linoleato de etilo	$C_{20}H_{36}O_2$	95.36	308.3	67.1	20.680	11.33%					
	02	Oleato de etilo	$C_{20}H_{38}O_2$	96.72	310.3	55.1	20.72	5.30%					
	03	Palmitato de etilo	$C_{18}H_{36}O_2$	96.19	284.3	88.1	19.084	4.37%					
<u>0</u>	04	Ácido oleico	$C_{18}H_{34}O_2$	78.84	282.3	101.1	22.244	2.24%					
ocio	05	Ácido palmítico	$C_{16}H_{32}O_2$	87.08	301.2	65.1	25.282	1.50%					
U U U U	06	(E)-9-palmitoleato de etilo	$C_{18}H_{34}O_2$	82.76	282.3	149	18.884	1.17%					
che	07	Ácido linoleico	$C_{18}H_{32}O_2$	87.96	280.2	55.1	20.549	1.15%					
aco				ESTE	ROLES								
uitl	Cpd.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área					
т	08	Espinasterona	$C_{29}H_{46}O$	88.05	410.4	55.1	36.8195	2.52%					
	09	Gamasitostenona	$C_{30}H_{50}O$	86.18	412.4	124.1	38.0975	2.00%					
	10	β-Ergostenona	$C_{28}H_{46}O$	80.45	398.4	124.1	36.173	1.32%					
		TRITERPENOS											
	Cpd.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área					
	11	Escualeno	$C_{30}H_{50}$	93.67	410.4	69.1	28.6585	1.33%					
		ÁCIDOS GRASOS											
	Cpd.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área					
	01	Linoleato de etilo	C ₂₀ H ₃₆ O ₂	96	308.3	67.1	20.785	29.84%					
	03	Palmitato de etilo	$C_{18}H_{36}O_2$	96.5	284.3	88.1	19.143	17.17%					
	02	Oleato de etilo	$C_{20}H_{38}O_2$	94.75	310.3	55.1	20.818	8.22%					
	12	Ácido araquídico	$C_{20}H_{40}O_2$	80.11	312.3	55.1	20.983	2.68%					
	13	Estearato de etilo	$C_{20}H_{40}O_2$	92.1	312.3	88.1	20.963	2.56%					
	14		$C_{19}H_{34}O_2$	81.93	294.3	88.1	20.056	2.47%					
ŝĉo	15	Ácido oleico	$C_{18}H_{34}O_2$	82.94	282.3	282.3 101.1		2.16%					
free	16	ND				55.1	40.794	2.11%					
he	04	Ácido oleico	C ₁₈ H ₃₄ O ₂	81.01	282.3	101.1	22.263	1.95%					
202	17	ND				55.1	40.827	1.83%					
itla	07	Ácido linoleico	$C_{18}H_{32}O_2$	89.96	280.2	55.1	21.226	1.70%					
귀	18	Ácido gondoico	$C_{20}H_{38}O_2$	87.36	310.3	55.1	22.414	1.37%					
	19	ND				414.4	39.96	1.37%					
				ESTE	ROLES								
	Cpd.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área					
	08	Espinasterona	$C_{29}H_{46}O$	90.26	410.4	55.1	36.931	7.35%					
	09	Gamasitostenona	C ₂₉ H ₄₈ O	90.68	412.4	124.1	38.206	6.06%					
	10	β-Ergostenona	C ₂₈ H ₄₆ O	88.47	398.4	124.1	36.235	4.37%					
	20	Citrost-7-en-3-ol	C ₃₀ H ₅₂ O	80.21	428.4	428.4	42.528	1.52%					
	21	4-Vinylcholestan-3-ol	C ₂₉ H ₅₀ O	80.16	414.4	414.4	39.933	1.45%					
	*Se enl **N.D.: *** ¹⁴ 10,	istan aquellos compuestos con un No detectado 13-éster metílico del ácido octade	área ≥ 1% cadienoico	_									

 Tabla 20. Compuestos presentes en la fase hexánica de huitlacoche cocido y huitlacoche fresco

 ÁCIDOS GRASOS

Dentro de estos ácidos grasos, iniciando con el éster etílico del ácido linoleico (linoleato de etilo) **01** que para el H.C. es del 11.33 % mientras que en su contraparte en el H.F. es del 32.1%. Dentro de su bioactividad, se muestran reportes antiinflamatorios, antidiabéticos, (S. Y. Park et al., 2014; Rayar & Manivannan, 2015)

Lo sigue, el oleato de etilo **02** distribuyéndose con un 05.30% en el H.C. y el 08.67% en el H.F. sus evaluaciones biológicas muestran actividad antimicrobiana, antidiabética, (Akinosanaiye et al., 2011; Kemp et al., 2008).

Y el tercer ácido graso esterificado es el éster etílico del ácido hexadecanoico (palmitato de etilo) **03** para H.C. (04.37%) | H.F. (18.34%). Al igual que los otros metabolitos se reporta una potencial actividad antiinflamatoria (Saeed et al., 2012) y actividad antiobesidad y antihiperlipidémico (Abdur Rashid Mia et al., 2023).

Gráfica 3. Ácidos grasos más abundantes en la fase hexánica de huitlacoche cocido y huitlacoche fresco.

Como se observa en la gráfica 3, este tipo de metabolitos tiende a tener una mayor predominancia en el huitlacoche fresco que en el hongo con tratamiento térmico. Dicha tendencia puede ser atribuida al efecto que se da al someter los lípidos a altas temperaturas que deriva en su degradación, oxidación, polimerización y condensación para generar los correspondientes ácidos grasos, hidroperóxidos, aldehídos, (D. Wang et al., 2023), así como la pérdida de compuestos volátiles.

Ahora bien, los grupos de investigación (Aydoğdu & Gölükçü, 2017; Valdez-Morales et al., 2016; Valverde & Paredes-López, 1993) han reportado para el huitlacoche a estos ácidos grasos en su forma no esterificada.

Siguiendo con este análisis, el segundo tipo de compuestos presentes son los micoesteroles como lo es la espinasterona, la Γ -sitostenona y la β -Ergostenona. Esta familia de metabolitos, ha generado un interés debido a los beneficios que tiene para la salud humana, que va desde su propiedad antioxidante y su capacidad de reducir los niveles de colesterol, (Vezza et al., 2020),

Dicho esto, la espinasterona **08** tiene un porcentaje de abundancia del 2.52% en H.C. y del 7.35% % en H.F. del lado de su actividad biológica tiene actividad antiproliferativa (Meneses-Sagrero et al., 2017) y actividad alelopática (Ripardo Filho et al., 2012).

El siguiente esterol es la Γ-sitostenona **09** con un 2.00% y 6.23% para H.C. y H.F. respectivamente, en cuanto a su bioactividad se ha reportado actividad antiproliferativa (Meneses-Sagrero et al., 2017), (Oh et al., 2021) sugiere que posee actividad antiobesidad.

Con 4.59% el *4-Campestene-3-one* (β -Ergostenona) **10** se ha encontrado en el H.F. y con abundancias muy similares en el H.C. se identificaron a este mismo metabolito (1.32%).

Por otro lado, analizando los datos correspondientes a la gráfica 4, los micoesteroles se encuentran en mayor proporción en el huitlacoche fresco teniendo una diferencia de 4 puntos porcentuales, esta disimilitud puede ser reflejo de su degradación y formación de oxiesteroles (Barriuso et al., 2012). Dentro los esteroles que fueron reportados por (S. López et al., 2017) y (Valdez-Morales et al., 2016) como el ergoesterol, sitoesterol o estigmasterol se han identificado en estas fases pero con una abundancia menor a la de 1%.

7.3.2 Identificación de Compuestos en la Fases de Diclorometano

Las fases de diclorometano del H.C. y H.F. se estudiaron mediante técnicas cromatográficas como cromatografía liquída de alta eficacia (CLAE), cromatografía de gases acoplado a espectrometría de masas (CG-EM), cromatografía en columna y por técnicas espectroscópicas como RMN.

7.3.2.1 Análisis del Perfil Micoquímico de las Fases de DCM por CG-EM.

El estudio de las fases de DCM por cromatografía de gases acoplado a espectrometría de masas de ambos tratamientos del huitlacoche, dio pie a la detección de 17 picos en el cromatograma de H.C. y 40 picos para H.F., (Figura 13), en su conjunto 30 picos poseen un porcentaje de coincidencia en la biblioteca por arriba del 80%.

El procesamiento de datos en la biblioteca NIST sugieren la presencia de compuestos en estas fases como ácidos grasos H.C. (Σ =5.48%) | H.F. (Σ =7.04%), benzoxazolina H.C. (69.94%) | H.F. (20.51%), polifenol H.C. (8.28%) | H.F. (5.94%), ver Tabla 21.

			ACI	DO GRA	1505			
	Сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área
	01	Linoleato de etilo	$C_{20}H_{36}O_2$	95.29	308.3	67.1	20.641	2.47%
	02	Oleato de etilo	$C_{20}H_{38}O_2$	89.83	310.3	28.1	20.687	1.23%
	19		C ₁₉ H ₃₄ O ₂	92.17	294.3	67.1	20.044	1.78%
			BENZO	DXAZOLI	NOIDES			
0	Сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área
cid	22	6-metoxi-2-benzoxazolinona	C ₈ H ₇ NO ₃	96.47	165.0	165.09	17.731	69.94%
00			PC	LIFENO	LES			
çhe	Сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área
aco	23	Propilparabeno	$C_{10}H_{12}O_3$	89.15	180.1	121.01	14.959	8.29%
niti				OTROS	6			
I	24	<i>d</i> -manosa	$C_6H_{12}O_6$	80.34	180.1	60.1	16.066	3.41%
	25		C ₁₉ H ₃₆ O ₃	83.72	312.3	95.1	21.673	2.79%
	26	Ácido carbámico, éster fenílico	C ₇ H ₇ NO ₂	83.92	137.0	94.1	7.084	2.27%
	27	Carbamulto	$C_{12}H_{17}NO_2$	83.89	207.1	150.1	11.642	1.52%
	28	4-hidroxi-2-metilacetofenona	$C_9H_{10}O_2$	85.56	150.1	150.1	11.616	1.50%
	29	N.D.	-	-	-	28.1	19.61	1.21%
	30	N.D.	-	-	-	165	18.198	1.11%
			ÁCI	DO GRA	SOS			
	Cpd.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área
	01	Linoleato de etilo	$C_{20}H_{36}O_2$	96.82	308.3	67.1	20.641	3.80%
	03	Palmitato de etilo	$C_{18}H_{36}O_2$	85.31	284.3	88.1	19.071	1.97%
	02	Oleato de etilo	$C_{20}H_{38}O_2$	89.56	310.3	28.1	20.687	1.27%
0			BENZC	XAZOLI	NOIDES			
SSC	Cpd.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área
e tre	20	6-metoxi-2-benzoxazolinona	$C_8H_7NO_3$	95.17	165	165.1	17.593	20.51%
ç			P	OLIFEN	OL			
aco	Cpd.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área
uitl	23	Propilparabeno	$C_{10}H_{12}O_3$	90.36	180.1	121	14.953	4.89%
I	22	Éster etílico del ácido ferúlico	C12H14O4	81.68	222.1	222.1	18.592	1.05%
				OTROS	;			
	Cpd.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área
	23	Etil-α-d-glucopiranósido	C ₈ H ₁₆ O ₆	86.98	208.1	60.1	16.312	35,64%
	22	d -manosa	$C_{6}H_{12}O_{6}$	82.26	180.1	28.1	13.422	8.27%
	26	Ácido carbámico, éster fenílico	C ₇ H ₇ NO ₂	80 25	137	94 1	6 946	3.96%

Tabla 21. Compuestos presentes en la fase DCM de huitlacoche cocido y huitlacoche fresco

Dentro de los compuestos mayoritarios identificados mediante la biblioteca NIST se encuentra el 6-metoxi-2-benzoxazolinona (coixol) **22** posee una abundancia en H.C. (69.94%) | H.F. (20.51%), las investigaciones sobre su bioactividad refleja que es un buen agente antiinflamatorio, antidiabética, antiadiposito (Cui et al., 2023; Patle et al., 2023; Yu et al., 2023), y se ha reportado su influencia en la microbiota cecal (Dai et al., 2022).

Asimismo, el equipo de investigación de (Wu et al., 2023) bajo las condiciones de fermentación ha dado reporte sobre la presencia de este metabolito en el *U. maydis.* El cual se logró aislar de las fases de DCM de ambos extractos de huitlacoche, su caracterización se discute a detalle en la sección 7.4.1.

Por otro lado, tenemos al éster propílico del ácido 4-hidroxibenzoico y, como tal, pertenece a la clase de los parabenos, este propilparabeno **21** tiene una abundancia en el H.C. del 9.91% siendo el segundo dentro de los de mayor presencia y en el caso del H.F. tan sólo está presente en un 4.46%. Y ha sido reportado en su forma no esterificada (ácido 4-hidroxibenzoico) por (Rosalba Beas et al., 2011).

Gráfica 5. Metabolitos más abundantes en la fase de DCM de huitlacoche cocido y huitlacoche fresco.

Ahora bien, la concentración de estos metabolitos secundarios presentes en ambos tratamientos varía, al ver la gráfica 5, el coixol tiene mayor abundancia en el huitlacoche cocido debido a la manera en que se procedió a apartar los cristales de la fase acuosa, la misma situación puede ser atribuida para el propilparabeno.

Otro tipo de metabolitos presentes son los hidratos de carbono, en la fase de DCM del H.F. se identificó al etil- α -d-glucopiranósido **24** con un tiempo de retención de 16.47 min y una abundancia del 42.79%; en los dos tipos de fase, el tercero más abundante también es un carbohidrato, la *d*-manosa con 3.41%, en el H.C. y para el H.F. es del 7.58%.

Gráfica 6. Carbohidratos más abundantes en la fase de DCM de huitlacoche cocido y huitlacoche fresco.

Analizando la gráfica 6, vemos que estos azúcares tienen una mayor abundancia en el huitlacoche fresco. Dicha diferencia también es atribuida a la degradación de los hidratos de carbono al ser sometidos a calor, proceso por el cual pasa el huitlacoche previo a su consumo.

Por otro lado, esta clase de biomoléculas ha sido reportada por (Lizárraga-Guerra & G. Lopez, 1998; Rosalba Beas et al., 2011; Valdez-Morales et al., 2010).

7.3.2.2 Identificación de Compuestos Polifenólicos en la Fase de DCM

El extracto etanólico de huitlacoche cocido (E.E.H.C.) y huitlacoche fresco (E.E.H.F.) se estudiaron mediante cromatografía líquida de alta eficacia, los resultados con una lectura de 270 nm en el detector UV-Vis se presentan en la Figura 14.

Los resultados obtenidos del análisis de la muestra de fase de DCM del huitlacoche cocido a una λ =270 nm se detectaron 14 picos, que acorde a la información que de la Tabla 22, el pico con un t_R=29.817 min el de mayor porcentaje de área con 62.75 %. En el caso del H.F. se detectaron 16 picos a λ = 270 nm, donde el pico con un t_R= 29.790 min posee un porcentaje de área del 75.1548%.

Figura 14. Cromatogramas a $\lambda = 270$ nm de la fase de DCM del extracto etanólico de a) huitlacoche cocido y b) Huitlacoche fresco

	E.E.H.F.			E.E.H.C.	
Tr	۸ _{max}	Área	Tr	٨ _{max}	Área
[min]	[nm]	%	[min]	[nm]	%
7.779	-	0.5894	7.814	-	0.7920
9.236	-	0.6280	9.225	260	0.2293
12.481	-	4.6347	12.446	250	0.2865
14.818	257	0.9130	23.181	270	0.6450
16.601	260	0.9839	23.398	-	1.0582
23.378	-	2.1801	24.812	260	1.8448
24.786	260	1.3709	29.817	255	62.7494
27.239	210	0.4717	32.757	220	1.0944
29.790	255	75.1548	34.202	262	2.4030
32.775	220	0.9457	35.851	265	2.9560
34.162	300	0.7662	43.746	-	0.1979
35.889	-	0.5605	44.331	240	0.3447
38.605	253	0.3963	45.588	-	2.0069
43.758	-	0.1478	49.128	-	23.3921
45.601	-	2.3090			
49.149	-	7.9482			

Tabla 22. Tiempos de retención de los picos detectados a Λ =270 nm para la fase DCM del Extracto Etanólico de Huitlacoche Fresco (E.E.H.F.) y Huitlacoche Cocido (E.E.H.C.)

Acorde a la comparación de los tiempos de retención y sus espectros de UV de los estándares, el ácido 4-hidroxibenzoico (t_R = 34.505 min), ácido vainillico (t_R = 34.505 min), ácido *p*-cumárico (t_R = 34.505 min) y ácido ferúlico (t_R = 34.505 min) coincide con los picos en 29.817 min, 32.757 min, 43.746 min y 45.5 88 min respectivamente en el E.E.H.F, (Figura 14).

		E.E.	H.F.		E.E.H.C.						
	=۸	270	λ=300		λ=	270	=۸	300			
	Tr	T _r Área		Área	Tr	Área	Tr	Área			
	[min]	%	[min]	%	[min]	%	[min]	%			
Ácido 4-hbz	29.790	75.1548	-	-	29.817	62.7494	-	-			
Ácido vainillico	32.775	0.9457	32.774	1.7853	32.757	1.0944	32.758	1.1666			
Ácido <i>p</i> - cumárico	43.758	0.1478	43.764	1.6838	43.746	0.1979	42.918	0.6381			
Ácido ferúlico	45.601	2.3090	45.604	21.6934	45.588	2.0069	43.741	1.4050			

Tabla 23. Resultados de los compuestos detectados a λ =270 nm y λ =300 nm para la fase DCM del E.E.H.F. y E.E.H.C. acorde a los estandares de referencia

7.3.2.3 Perfil Químico de la Fase de DCM Basado en RMN.

Las fases de DCM de los extractos etanólicos del huitlacoche cocido y huitlacoche fresco se han analizado por RMN mostrando señales para ambos casos, **espectro 1**, en campo alto correspondiente a alifáticos, en la región de 3.5 ppm a 6 ppm observamos señales de protón base de oxígeno que se atribuye a carbohidratos y por último en la región de campo bajo hay señales aromáticas encontrando la presencia de un sistema A₂X₂ y ABX atribuido a compuestos aromáticos.

Espectro 1. Espectro ¹H-RMN, 500 MHz,CD3OD-MeOD; fase DCM huitlacoche a) fresco, b) cocido.

7.3.2.4 Purificación de las Fases de DCM Mediante Cromatografía en Columna.

El purificación de la fase de DCM del extracto etanólico de huitlacoche cocido por cromatografía en columna derivó en 10 reuniones, (diagrama 3). El análisis por CCF se presentan en la Figura 15, en donde se observa que la gran mayoría de estas reuniones tienen manchas definidas, mencionando el caso de la reunión $\Lambda 02$ observamos 9 manchas al exponer la placa a una λ =254, la primera mancha es definida y tiene un Rf de 0.71, enseguida hay una mancha parcialmente definida la cual tiene un Rf de 0.65, la siguiente mancha definida tiene un Rf de 0.477 que de igual forma se logra apreciar en las reuniones $\Lambda 01$ y $\Lambda 03$. Al aplicar ácido sérico para el revelado, estas manchas se tiñen de negro con un contorno amarillo, situación similar al compuesto aislado posteriormente.

Hex:AcOEt:Ác. Fórmico (6:4:0.1)

Figura 15. Placas de CCF de las reuniones del fraccionamiento de la fase de DCM del extracto etanólico de huitlacoche cocido vistas en onda corta y larga

La reunión $\Lambda 03$ que corresponde a las fracciones 31-38, presentaron un sólido blanquecino el cual se apartó como se muestra en la Figura 16A y del cual se obtuvo un rendimiento del 1.4% (7 mg), se analizó por CG-EM y RMN, ver sección 7.4.1. Este compuesto se comparó en CCF (Figura 16C) con la fase de DCM de Huitlacoche Cocido (H.C.) junto con 3 de los 4 polifenoles (Ác. 4-hidroxibenzoico, ácido *p*-cumárico, ácido vainíllico) identificados en HPLC, y por último con el compuesto obtenido en la reunión Λ -R03.

Figura 16. *a*) Sólido blanco de la reunión $\Lambda 03$, *b*) Sólido pastoso de la reunión Λ -R03 *c*) placa CCF comparativa de la fase de DCM del huitlacoche cocido (H.C.), reunión ($\Lambda 03$), reunión (Λ -R03), ác 4-hidroxibenzoico (4-hb), ác. p-cumárico (p-c), Ácido vainillico (V)

La reunión $\Lambda 05$ (51.4 mg) se fraccionó generando 280 fracciones, las cuales se agruparon en 8 reuniones acorde a su homogeneidad en CCF, ver Figura 17. En reunión Λ -R03 se obtuvo una pasta con coloración anaranjado-marrón,(Figura 16B), dicha muestra se analizó por CG-EM y RMN los resultados se muestran en la sección 7.4.2.

Figura 17. Placa CCF reuniones fraccionamiento A05.

En la placa de CCF vemos que la reunión Λ -R05 tiene tres manchas definidas vistas en λ =254 nm cuyos Rf son 0.69, 0.60, 0.51 respectivamente. Esta muestra se analizó por CG-EM; los resultados se pueden consultar en la anexos 10.6.

Hex: AcOEt: MeOH (90:	10:0 → 00:00:100)	Fase D (500 n 	DCM ng)		
٨01	٨02	٨03	٨04	Λ05	٨06
1.4 mg CCF CG-EM Linoleato de etilo Oleato de etilo Palmitato de etilo Espinasterona Γ-sitostenona	2.6 mg CCF CG-EM Ácido oleico Linolenato de etilo Ácido oleico Etilo parabeno	2 mg CCF CG-EM Coixol 7 mg	6.6 mg CCF	51.4 mg CCF CG-EM \uparrow CCF \uparrow CG-EM \uparrow A-R01 CCF \uparrow A-R02 CCF \uparrow A-R03 CCF CG-EM \uparrow \rightarrow 4-hidroxibenzoic \uparrow A-R04 CCF \downarrow A-R05 CCF CG-EM \downarrow \rightarrow 2-metoxi-4-vinilfe \downarrow A-R06 CCF \downarrow A-R07 CCF \downarrow A-R08 CCF \downarrow A-R08 CCF	28.2 mg CCF / RMN o /

Diagrama 3. Reuniones del fraccionamiento mediante cromatografía en columna de la fase de DCM extracto etanólico de huitlacoche cocido

El fraccionamiento de la fase de DCM del extracto etanólico de huitlacoche fresco, diagrama 4, se obtuvieron 12 reuniones, las cuales se analizaron por cromatografía en capa fina (Figura 18)

Figura 18. Placas de CCF de las reuniones del fraccionamiento de la fase de DCM del extracto etanólico de huitlacoche fresco vistas en onda corta y larga.

La reunión Q05 que corresponde a las fracciones 201-240, presentaron un precipitado blanquecino (6-Metoxi-2-Benzoxazolinona) al igual que reunión Λ 03 y del cual se obtuvo 27 mg con un rendimiento del 3.3% respecto a la fase de DCM.

En la reunión Q6 se obtuvo una pasta de consistencia sólida de color anaranjado pardo muy similar a lo visto en la reunión Λ -R03 de la fase de DCM del huitlacoche cocido, dicho compuesto aislado corresponde al ácido 4- hidroxibenzoico. Este tuvo un rendimiento del 1.43% (4.3 mg) respecto a la fase de DCM utilizado en este fraccionamiento.

En la Figura 19, se muestra la comparación de la reunión Q05- Λ 03 por cromatografía en capa fina, observando que Q05 se encuentra parcialmente pura en contraste a Λ 03.

Figura 19. Placa comparativa de CCF del compuesto obtenido en el fraccionamiento de las fases de DCM de ambos extractos.

				Fase DCM					
				(3 g)					
Q01	Q02	Q03	Q04	Q05	Q06	Q07	Q08	Q09	9
107.4 mg	9.3 mg	4.7 mg	6.1 mg	7.9 mg	93.4 mg	152.9 mg	172.6 mg	57 m	ng
CCF CG-EM		CCF CG-EM	CCF CG-EM			CCF CG-EM	CCF CG-EM		G-EM
Linoleato de etilo	Q-V01 CCF	Espinasterona	Ferulato de etilo	Coixol	Ácido 4-hb	Ácido 4-hb	β-Metil xilósido	Q-S01	CCF
Palmitato de etilo Linoleato de metilo Palmitato de metilo	D Linoleato de etilo CG-EM F-Sitostenona Io Linoleato de etilo Palmitato de etilo Palmitato de etilo		17 mg	4.5 mg		4-vinilguaiacol Ciclo (leucil prolilo)	Q-S02	CCF	
		4-campestene-3-ur Palmitato de metilo					Fenol	Q-S03	CCF
	Palmitato de etilo Oleato de etilo	Oleato de etilo Linoleato de metilo						Q-S04	CCF CG-EN
	linoleato de metilo Palmitato de metilo Γ-sitostenona							Octocri heptaco	leño Isano
	4-campestene-3-uno							Q-S05	CCF
	Q-V02 CCF							Q-S06	CCF
	Q-V03 CCF							Q-S07	CCF
	Q-V04 CCF								
	Q-V05 CCF								
	Q-V06 CCF								
	Q-V07 CCF								
	Q-V08 CCF								

Diagrama 4. Reuniones del fraccionamiento primario del extracto etanólico de huitlacoche cocido

La reunión Q2 (0.790 g) se fraccionó obteniéndose 420 fracciones dando un seguimiento por CCF agrupándolas en 9 reuniones, (Figura 20). Y la subreunión Q-V01 se analizó por CG-EM, los resultados se muestran en anexos 10.7.

Figura 20. Placa CCF reuniones fraccionamiento Q02 en un sistema hexano: AcOEt: Ác. Fórmico (6:4:0.1)

En el caso del paso de la reunión Q9 (0.790 g) por la columna de cromatografía se obtuvieron 230 fracciones estas acorde a su similitud metabólica apreciada por CCF se agruparon en 7 reuniones, ver Figura 21. La subreunión Q-S04 se llevó a un estudio por CG-EM cuyos resultados se enseñan en anexos 10.8.

Figura 21. Placa CCF reuniones fraccionamiento Q09 en un sistema hexano: AcOEt: Ác. Fórmico (6:4:0.1).

7.3.2.4.1 Identificación de Compuestos por CG-EM de la Reunión A05 y Q09 .

Para el análisis en cromatografía de gases de la reunión A05 derivada del fraccionamiento de la fase de DCM de H.C., se detectó 65 picos en su cromatograma, (Figura 22A), que se encuentran entre el minuto 6 y 36, donde 23 de ellos tienen un score mayor a 80 en la biblioteca NIST.

Por otro lado, el análisis de la reunión Q09 del fraccionamiento de la fase de DCM de H.F. por cromatografía de gases el software detectó 41 picos en su cromatograma, (Figura 22B), que se encuentran entre el minuto 6 y 29, donde 17.07% de ellos tiene una coincidencia mayor al 80% con la biblioteca NIST.

En la Tabla 24, se enlistan aquellos metabolitos presentes en estas reuniones acorde al procesamiento de datos en la biblioteca NIST, se sugiere la presencia de compuestos como fenoles $\Lambda 05$ (12.88%)) | Q09 (29.58%), ácidos *p*-hidroxicinámicos $\Lambda 05$ (25.61%) | Q09 (17.15%), ácidos benzoicos $\Lambda 05$ (6.26%)) | Q09 (14.05%).

	FENOLES								
C	сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área	
5	51	Fenol	C_6H_6O	96.78	94	94.1	6.742	12.88%	
05	ÁCIDOS p-HIDROXICINÁMICOS								
	сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área	
ș lui	54	2-Metoxi-4-vinilfenol	$C_9H_{10}O_2$	95.01	150.1	150.1	11.485	14.60%	
Let	55	Ácido fenilacético	$C_8H_8O_2$	93.47	136.1	91.1	11.051	11.01%	
	ÁCIDO BENZOICO								
C	Сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área	
5	56	Ácido 4-hidroxibenzoico	$C_7H_6O_3$	93.33	138	121.1	15.15	6.26%	
	FENOLES								
C	сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área	
6	51	Fenol	C_6H_6O	96.42	94	94.1	6.768	29.58%	
g	ÁCIDOS <i>p</i> -HIDROXICINÁMICOS								
ión Cl	сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área	
une 5	54	2-metoxi-4-vinilfenol	$C_9H_{10}O_2$	94.47	150.1	150.1	11.471	17.15%	
2	ÁCIDO BENZOICO								
C	Сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área	
5	56	Ácido 4-hidroxibenzoico	$C_7H_6O_3$	90.99	138	121.1	14.9	14.05%	

Tabla 24. Compuestos presentes en la reunión A05 y reunión Q09

La reunión Q09 de la fase de DCM del HF y la A05 del HC guardan una similitud de metabolitos secundarios, iniciando por el 2-Metoxi-4-vinilfenol **54** (*p*-vinilguayacol) es el mayoritario con A05. (14.6%) | Q09 (17.15%), este ácido cinámico deriva de la descarboxilación del ácido ferúlico; cuya bioactividad comprende antioxidante (Rubab et al., 2020), antiinflamatorio (Asami et al., 2023; Jeong et al., 2011), anticancerígeno (Luo et al., 2021), ver grafica 7

El compuesto **51** predomina en la reunión Q09 (20.58%) en contraste a la Λ 05 con (12.88%), seguido del ácido bencenoacético **55** Λ 05. (11.01%).

Se identificó la presencia del ácido 4-hidroxibenzoico **56** con una abundancia del 6.26%, que corrobora los datos del análisis en HPLC-DAD para la presente fase.

Gráfica 7. Metabolitos mayoritarios para la reunión Λ05 del huitlacoche cocido y Q09 del huitlacoche fresco

7.3.3 Identificación de compuestos en las fases Hidroalcohólicas

7.3.3.1 Análisis por CLAE de Polifenoles en las Fases Hidroalcohólicas.

Las fases hidroalcohólicas de los extractos etanólicos de huitlacoche cocido y fresco se analizaron por cromatografía de líquidos de alta resolución, los cromatogramas obtenidos a una λ = 270 nm se muestran en la Figura 23.

Con base a los tiempos de retención y porcentaje de área de los picos mostrados en la Tabla 25 y analizando el cromatograma de la Figura 23C, para el H.F. se aprecia que a λ = 270 nm se detectaron siete picos donde aquel con un t_R= 23.384 min tiene un porcentaje de área del 16.95%.

Por el contrario, en el cromatograma del H.C., (Figura B), encontramos nueve picos, aquel con un t_R = 23.224 min tiene el mayor porcentaje de área con 19.6862 %.

Tabla 25. Tiempos de retención de los picos detectados a *λ*=270 nm para la fase hidroalcohólica del Extracto Etanólico de Huitlacoche Fresco (E.E.H.F.) y Huitlacoche Cocido (E.E.H.C.)

t	E.E.H.F.			E.E.H.C.	
Tr	∧ max	Área	Tr	٨ _{max}	Área
[min]	[nm]	%	[min]	[nm]	%
7.392	-	3.8870	7.387	-	1.7772
7.731	-	6.2227	7.764	-	5.0344
12.585	220	6.7674	12.619	260	6.5158
23.194	255	15.9188	23.224	245	19.6862
23.384	280	16.9537	24.850	260	15.0455
24.827	260	6.7520	29.931	250	12.0307
29.897	260	14.4088	34.358	-	9.4241
			36.080	260	8.6269
			38.816	250	2.8153

Con base a la comparación de los tiempos de retención y sus espectros de UV de los estándares, el ácido 4-hidroxibenzoico (t_R = 30.064 min) coincide con el pico en 29.931 min del E.E.H.C. y 29.897 min del E.E.H.F.

huitlacoche fresco y b) Huitlacoche Cocido.

7.4 Caracterización de Compuestos Aislados

7.4.1 Caracterización de 6-Metoxi-2-Benzoxazolinona (Coixol)

El cristal blanco obtenido a partir de la purificación de la fase de DCM del extracto etanólico de huitlacoche cocido y extracto etanólico de huitlacoche fresco, se analizó por RMN (600 MHz) de 1D Y 2D. El espectro de ¹H evidencia a campo bajo una señal doble en δ_{H4} 6.94 (J = 8.6 Hz, 1H) con una constante tipo *orto* que acopla al H₅, una señal doble en δ_{H7} 6.85 (J = 2.4 Hz, 1H) con una constante de tipo *meta* que acopla al H₄ y una señal doble de doble en δ_{H5} 6.72 (J = 8.6, 2.5 Hz, 1H) con una constante de tipo *orto* y *meta* que acopla al H₇ y H₄. que conforman el sistema de espines ABX del anillo aromático. Además en la región media del espectro se observa una señal singulete en δ_{H11} 3.77 (3H) perteneciente a un metoxilo, espectro 2.

En el espectro de RMN de ¹³C, **espectro 3**, se observan 8 señales, de las cuales cuatro pertenecen a carbonos cuaternarios (δ 156.30, 156.20, 144.70, 123.57), tres metinos aromáticos (δ 109.61, 109.28, 96.70) y se observa una señal de metileno en δ 55.06 ppm.

Espectro 3. ¹³C RMN (150 MHz, Metanol-d4) del 6-metoxi-2-benzoxazolinona.

El experimento HSQC, permitió asignar de manera inequívoca las correlaciones heteronucleares C-H a una ligadura, donde δ_{c11} 55.06/ δ_{H} 3.77; para los carbonos aromáticos δ_{c7} 96.70 / δ_{H} δ 6.85, δ_{c5} 109.28 / δ_{H} 6.72, δ_{c4} 109.61/ δ_{H} 6.95, ver **espectro 4**.

Espectro 4. HSQC RMN (600 MHz, Metanol-d4) del 6-metoxi-2-benzoxazolinona.

A través del experimento HMBC, espectro 5, vemos que el carbono δ_{c7} 96.70 correlaciona con el protón δ_{H5} 6.72 y δ_{H4} 6.94. El carbono δ_{c5} 109.28 correlaciona con δ_{H5} 6.72, δ_{H7} 6.85, δ_{H4} 6.94, confirmando que el posicionamiento de estos protones pertenecientes al sistema de espines ABX se encuentran en el mismo anillo aromático.

En el caso de los carbonos cuaternarios, el carbono δ_{C9} 123.57 correlaciona con el protón δ_{H5} 6.72, δ_{H7} 6.85, δ_{H4} 6.94, mencionando que este carbono es desplazado debido al efecto de desprotección que ejerce el heteroátomo adyacente; el otro carbono δ_{C8} 144.70 tiene una correlación con los protones δ_{H5} 6.72, δ_{H7} 6.85, δ_{H4} 6.94 y para el caso del carbono δ_{C6} 156.20 tiene una correlación con el protón δ_{H1} 3.77, δ_{H7} 6.85, δ_{H4} 6.94

Los datos obtenidos de los experimentos 1D y 2D de RMN tienen concordancia con lo reportado por (Otaka et al., 2023) elucidando así al compuesto 6-Metoxi-2-benzoxazolinona (coixol), ver Tabla 26.

11

			-nuz0
0	7	1	
	∕∕∕_8	<u> </u>	
	Ň	$\sum_{n=1}^{\infty}$	
			=0
₅ ۲			
	۳ مرک	⁻ N	
	4		
		5	

			3	
No. C	δC		δΗ	HMBC
2	156.30	С	-	-
4	109.61	СН	δ _{H4} 6.94 (d, 1H, <i>J</i> = 8.6 Hz)	C5, C6, C8, C9
5	109.28	СН	δ _{H5} 6.72 (dd, 1H, <i>J</i> = 8.6, 2.5 Hz)	C4, C6, C7, C9
6	156.20	С	-	-
7	96.70	СН	δ _{н7} 6.85 (d, 1H, <i>J</i> = 2.4 Hz)	C5, C6, C8, C9
8	144.70	С	-	-
9	123.57	С	-	-
11	55.06	CH₃	δ 3.77(s, 3H)	C6

La identidad del compuesto, se confirmó mediante un análisis por cromatografía de gases acoplado a masas, en donde se observó un pico único con un tr= 17.76 min, (Figura 24), que por comparación con la biblioteca NIST sugiere que es el compuesto 6-Metoxi-2-benzoxazolinona con un *score* de similitud del 96.8 %.

Figura 24. CG-EM del 6-Metoxi-2-benzoxazolinona

La muestra del 6-Metoxi-2-benzoxazolinona (MBOA) de igual forma se analizó por espectrometría de masas de alta resolución (FAB⁺), espectro 6, los resultados sugieren una fórmula molecular de $C_8H_8O_3N$ con un m/z [M + H]⁺ de 166.0508, lo que confirma la presencia de los heteroátomos N y O pertenecientes al anillo de oxazolidona, y el pico base se encuentra a m/z 165.

Espectro 6. Espectrometría de masas de alta resolución del MBOA.

En cuanto a los reportes de actividad biológica que tiene el Coixol, ha sido evaluado en antiinflamatorio (Cui et al., 2023; Hu et al., 2020), anti-tumoral (Hu et al., 2020), antidiabética (Patle et al., 2023), antiadiposito (Yu et al., 2023), segregador de insulina (Hameed et al., 2019) y se ha reportado su influencia en la microbiota cecal (Dai et al., 2022).

Página 108
7.4.2 Caracterización del Ácido 4-Hidroxibenzoico

La reunión Q04 de la fase de DCM del extracto etanólico de huitlacoche fresco se analizó por CG-EM, (Figura 25), en donde se observó un pico mayoritario con m/z de 138.03 en un TR= 15.143 min, la biblioteca NIST sugiere que corresponde a un ácido fenólico como ácido 4-hidroxibenzoico con una de 95.99 con una abundancia del 46%.

Figura 25. Cromatograma de gases de la reunión Q04 (superior) y cromatograma de masas del ácido 4-hidroxibenzoico (inferior)

Posteriormente se analizó mediante experimentos de RMN (600 MHz) de 1D Y 2D., en el espectro de ¹H a campo bajo tenemos una señal doble en δ 7.87 (J = 8.67 Hz, 2H), una señal doble a δ 6.82 (J = 8.69 Hz, 2H), que conforman el sistema de espines AA'BB' del anillo aromático, espectro 7.

Espectro 7. ¹H RMN (600 MHz, Metanol-d4) del ácido 4-hidroxibenzoico.

En el espectro de RMN de ¹³C se observan 5 señales, espectro 8, de las cuales 3 pertenecen a carbonos cuaternarios (δ 170.06, 163.31, 122.73) y dos metinos aromáticos (δ 132.95, 115.98).

Espectro 8. ¹³C RMN (150 MHz, Metanol-d4) del ácido 4-hidroxibenzoico..

A través del experimento bidimensional HSQC, espectro 9, permite asignar de manera inequívoca las correlaciones heteronucleares C-H a una ligadura, donde $\delta_{c2,c6}$ 132.95/ δ_{H} 7.87 y $\delta_{c3,c5}$ 115.98 / δ_{H} 6.82 Hz.

Espectro 9. HSQC RMN (600 MHz, Metanol-d4 del ácido 4-hidroxibenzoico..

Mediante el experimento HMBC, espectro 10, fue posible asignar la correlación a ³*J* entre la señal de carbono cuaternario en δ_{c5} 170.06 con los protones en δ_H 7.87. La señal de carbono en δ_{C4} 163.31 correlaciona a ³*J* con los metinos en $\delta_{H2-2'}$ 7.87 y a ²*J* con los metinos en $\delta_{H3-3'}$ 6.82, con los cuales la señal en δ_{c1} 122.73 correlaciona tambien a ²*J*. Los carbonos simétricos en δ 115.98 correlacionan a ²*J* con los protones en $\delta_{H2-2'}$ 7.87, y los carbonos simétricos en δ 132.95 correlacionan a ²*J* con la señal de los metinos en $\delta_{H3-3'}$ 6.82.

Por otra parte, el experimento COSY confirman el sistema de espines aromáticos, permitiendo asignar la resonancia mediante cruces de $\delta_{H3-3'}$ 6.82 (d, 2H, *J* = 8.69 Hz) con $\delta_{H2-2'}$ 7.87 (d, 2H, *J* = 8.67 Hz), ver espectro 11.

Espectro 11. COSY RMN (600 MHz, Metanol-d4) del ácido 4-hidroxibenzoico.

Acorde con los resultados espectroscópicos, se ha identificado al compuesto presente en la reunión Q04 como el ácido 4-hidroxibenzoico,(Tabla 27), dicho compuesto presenta una amplia actividad biológica como antioxidante (Chen et al., 2020; Muangsri et al., 2022), antiinflamatorio (Xu et al., 2021), actividad estrogénica (Nguyen et al., 2022), antidiabético (Lee & Lee, 2021), anticancerígeno (Myint et al., 2021).

Tabla 27. Resultados RMN 1D y 2D del ácido 4-hidroxibenzoico.

Página 113

7.5 Análisis y Caracterización de Encapsulados

7.5.1 Microcápsulas de Alginato de Sodio

El extracto etanólico de huitlacoche cocido (E.E.H.C.) y huitlacoche fresco (E.E.H.F.) a concentraciones de 1 %, 1.8 % y 2.5 % que se encapsularon en alginato de sodio (A.S) con las siguientes concentraciones: 1%, 1.5% y 2%.

En primera instancia, se realizaron vehículos de alginato de sodio (V.A.S.) para observar su comportamiento al aumentar la concentración de este, presentando una tendencia creciente en su tamaño y mejorando su uniformidad conforme la concentración subía, como se puede observar en la Figura 26. Esta tendencia estaría relacionada con la viscosidad, donde al haber una mayor presencia de bloques G (α -L-guluronato) da pie a un mayor número de interacciones con el ion Ca²⁺ con los que forman monocomplejos, conllevando al apareamiento de estos lo que conduce a la formación y propagación de dímeros de caja de huevo que a su vez tienen una asociación lateral para generar multímeros.

Figura 26. Cápsulas de alginato a una concentración de a) 1%, b) 1.5 %, c) 2%

Por otro lado, durante la elaboración de los V.A.S. con extracto, se observó que no hay alguna interacción aparente entre estos que predisponga a una gelificación ionotrópica temprana, ya que se requiere la presencia de iones divalentes (Ca²⁺) para dar paso a la formación de los complejos de caja de huevo mediante *crosslinking* siendo este extracto un recurso de baja concentración de calcio, que para tener esa transición sol-gel, la fuente de iones Ca²⁺ proviene del CaCl₂.

El V.A.S. de huitlacoche se muestran en la Figura 27. Dentro de las concentraciones empleadas de A.S., las más viables son las de 1.5% y 2% descartando aquella de 1% por presentar una deshidratación más rápida en el medio posterior a su obtención.

a)E.E.H.C. 1% - A.S. 1%,

b)E.E.H.C. 1.8% - A.S. 1%

c)H E.E.H.C. 2.5% - A.S. 1%

a)E.E.H.F. 1% - A.S. 1%,

b)E.E.H.F. 1.8% - A.S. 1%

c)E.E.H.F. 2.5% - A.S. 1%

E.E.H.C. 1% - A.S. 1.5%

E.E.H.C. 1.8% - A.S. 1.5%

E.E.H.C. 2.5% - A.S. 1.5%

E.E.H.F. 1% - A.S. 1.5%

E.E.H.F. 1.8% - A.S. 1.5%

E.E.H.F. 2.5% - A.S. 1.5%

E.E.H.C. 1% - A.S. 2%

E.E.H.C. 1.8% - A.S. 2%

E.E.H.C. 2.5% - A.S. 2%

E.E.H.F. 1% - A.S. 2%

E.E.H.F. 1.8% - A.S. 2%

E.E.H.F. 2.5% - A.S. 2%

Página 115

Figura 27. Cápsulas de alginato-extracto de huitlacoche

7.5.1.1 Caracterización Morfológica Mediante Microscopia Óptica.

Las cápsulas obtenidas a partir de la formulación *alginato de sodio* + *extracto de huitlacoche* fueron observadas al microscopio (Radical modelo RXL-4B; lente x10). La superficie del encapsulado dispone de una morfología similar, en forma esférica y ovalada, con bordes regulares y definidos para aquellas muestras **b**, **d**, **f**, **h**, **m**, **o**, **q**, ver imagen 29.

Características que no muestran los otros V.A.S.-E.E.H. (**a**, **c**, **e**, **g**, **i**, **j**, **k**, **l**, **m**, **n**, **ñ**) donde sus bordes son irregulares, y su superficie presenta deformación estructural.

Siguiendo con el análisis, se diseccionaron para analizar su interior, (Figura 28); se observan bordes regulares, definidos y concisos a las concentraciones E.E.H. 1% - A.S. 1%, E.E.H.1% - A.S. 1.5%, E.E.H. 1.8% - A.S. 1%, E.E.H. 1.8% - A.S. 1.5% y E.E.H. 1.8% - A.S. 2%.

Asimismo, en estas mismas concentraciones se tiene una cavidad definida en la región interna lo que sería el núcleo del vehículo; por otro lado, en las concentraciones de extracto al 2.5% con A.S. al 1%, 1.5% y 2% encontramos al interior de estas una ausencia de núcleo por la ocupación del complejo A.S.-E.E.H. por lo que no se cuenta con bordes definidos.

Dentro de las concentraciones empleadas del biopolímero, la más viable en cuanto a sus características es la de 1.5%, si bien aquellos V.A.S. con 1% de A.S. presentan puntos favorables previamente mencionados, tienen el inconveniente de deshidratarse rápido previo a su almacenamiento.

Figura 28. Tomas de microscopia óptica de las microcápsulas de alginato de sodio – extracto etanólico de huitlacoche cocido y alginato de sodio – extracto etanólico de huitlacoche fresco a distintas concentraciones de extracto (1%, 1.8%, 2.5%) y alginato de sodio (1%, 1.5%,2%); magnificación de 10x

7.5.1.2 Determinación de Tamaño Mediante Microscopia Estereoscópica.

La evaluación del tamaño de los encapsulados de alginato de sodio con extracto de huitlacoche por estereomicroscopio permite tener una percepción con profundidad en el campo de visión.

En la Figura 29 se observan las fotografías obtenidas del microscopio de los encapsulados de alginato con huitlacoche cocido, los encapsulados con la concentración de 1% de A.S. presentan una morfología similar con un perímetro casi uniforme y en su superficie se aprecian irregularidades esto en aquellas con una concentración de extracto del 1% y 1.8%. En la última concentración los encapsulados exhiben aglomeración que contrasta a las formas semi-esféricas.

Para el caso específico de aquellas con una concentración de alginato de sodio del 1.5%, tienen características similares a aquellas de menor porcentaje de alginato. Observando que hay una mejoría en el contorno entre cada uno de los encapsulados, debemos mencionar que este incremento del polímero evitó una deshidratación temprana.

En ciertas fotografías se pueden observar que algunos vehículos tienen forma de cometa, característica típica de estos procesos de encapsulación donde esa pequeña protuberancia es parte de lo último que sale de la aguja e interacciona con el calcio antes de que se rompa esa tensión molecular entre la aguja y la gota.

Las cápsulas con concentración de 2% de A.S. presentan una mejor morfología en todas las concentraciones de extracto; sin embargo, a simple vista es notorio el crecimiento del tamaño de estas, punto que se aborda a continuación.

Página 118

Figura 29. Tomas de microscopia estereoscópica de las microcápsulas de alginato de sodio – extracto etanólico de huitlacoche cocido y alginato de sodio – extracto etanólico de huitlacoche fresco a distintas concentraciones de extracto (1%, 1.8%, 2.5%) y alginato de sodio (1%, 1.5%,2%); magnificación de 10x, enfoque 0.63

La medición de los encapsulados de los extractos etanólicos y sus respectivos blancos mediante el software ImageJ se muestran en la gráfica 8. Los blancos de alginato de sodio su límite inferior es de 1.186 ± 0.283 mm y en su límite superior de 2.53 ± 0.287 mm, siendo la concentración de 1.5% la de menor tamaño.

En cuanto al tamaño en específico para aquellas partículas con extracto de huitlacoche cocido y a una concentración de A.S. del 1%, se encuentran en el rango de 1.279 \pm 0.374 mm a 1.527 \pm 0.605 mm que acorde al análisis ANOVA (P < 0.05), (Tabla 28), no cuentan con una diferencia significativa entre ellas .

Tabla 28. Resultados del estudio de análisis de varianza unidireccional ANOVA

	SS	DF	MS	F (DFn, DFd)
Tratamiento (entre columnas)	69.89	20	3.494	F (20, 457) = 18.55
Residual (dentro de las columnas)	86.07	457	0.1883	
Total	156.0	477		

Siguiendo con esta concentración del polímero encapsulante, con el extracto de huitlacoche fresco (H.F.) su rango de tamaño es 2.38 ± 0.426 mm a 2.735 ± 0.248 donde la concentración a 2.5% de extracto cuenta con el tamaño contenido en contraste a los demás, y si tiene una diferencia significativa con las de huitlacoche cocido.

Al aumentar el A.S. a 1.5% vemos que para el huitlacoche cocido el tamaño de sus vehículos en sus tres concentraciones de extracto ronda entre los 1.91± 0.349 mm a los 2.233±0.495 mm y no hay diferencia significativa entre ellas.

En contraste, el diámetro de las de H.F. está entre 1.37 ± 0.148 mm y 2.017 ± 0.257 mm donde la de menor valor promedio son las de H.F. al 2.5%, mencionando que también no poseen una diferencia significativa entre ellas. Donde sugiere el análisis estadístico que existe una diferencia significativa entre el H.F. al 2.5% con aquellas de A.S.(1.5%)-H.C. al 1.8% y 2.5%

Continuando con el presente análisis, observamos que en la última concentración de alginato de sodio (2.5%) el diámetro de los encapsulados de H.C. se encuentran dentro de un rango de 1.966± 0.43 mm y 2.165±0.658 mm que para el H.F. su límite inferior es 2.191±0.507 mm y el límite superior de 2.305±0.618 y su análisis estadístico para ambos extractos no existe una diferencia significativa entre ellos.

Ahora bien, la literatura menciona que las microcápsulas tienen un tamaño que va desde los 50 nm a 2 mm, (Singh et al., 2010), lo que permite denominar a nuestros vehículos de alginato con este término al encontrar el tamaño de estos dentro del rango que se menciona.

Alginato de sodio - Extractos de huitlacoche

Analizando los tamaños de las microcápsulas, ver Tabla 29, observamos que para aquellos encapsulados con A.S. al 1% disminuye el tamaño de estas conforme incrementa la concentración de extracto, los vehículos con extracto de H.C. son de menores dimensiones que aquellos que concentran extracto de H.F.

Esta tendencia está presente de igual forma en las microcápsulas con A.S. al 1.5% pero por lo contrario a los de 1%, los que contienen extracto de H.C. tienen un tamaño superior que aquellos con extracto de H.F., oscilando entre 0.2 y 0.6 mm.

En aquellos donde están hechos con A.S. al 2%, se observa un crecimiento en tamaño conforme la concentración de extracto de huitlacoche aumenta, la diferencia de tamaño entre ellas se coloca en un rango entre 0.04-0.4 mm.

La oscilación de tamaño de los V.A.S. con extracto conforme varían las concentraciones de ambos, puede estar relacionado con la posible interacción de los compuestos presentes en los extractos con los iones divalentes o con el propio biopolímero, propiciando esta variabilidad de dimensiones.

			-	Tamaño d	e capsula			
Alginato	Concentración de extractos							
(%)	Blanco	1% H.C	1% H.F.	1.8% H.C.	1.8% H.F	2.5% H.C.	2.5% H.F.	
1	1.951±0.326	1.527±0.605	2.735±0.248	1.523±0.477	2.687±0.532	1.279±0.374	2.38±0.426	
1.5	1.816±0.283	2.012±0.503	1.718±0.231	2.233±0.495	2.017±0.257	1.913±0.349	1.377±0.148	
2	2.53±0.287	2.165±0.658	2.291±0.447	2.155±0.471	2.191±0.507	1.966±0.43	2.305±0.618	

Tabla 29. Tamaño de los microencapsulados de los extractos de huitlacoche.

Ahora bien, se tiene registro del empleo de este biopolímero para encapsular extractos como el extracto etanólico de *Eryngium billardieri*, extracto fenólico de *Spirulina sp.*, extracto acuoso de *Mesona chinensis* (Abtahi et al., 2024; Machado et al., 2022; Wongverawattanakul et al., 2022).

En el caso de la encapsulación del extracto acuoso de la planta *Mesona chinensis* Benth. en el equipo de trabajo de (Wongverawattanakul et al., 2022). donde los encapsulados tienen una dimensión de 1516,67 ± 40,96 µm (1.51 mm) que en contraste a su blanco (792,33 ± 26,12 µm = 0.79 mm) representa un aumento de dimensión.

El tamaño de estos vehículos se encuentra por debajo de aquellas realizadas en este proyecto, teniendo aproximadamente 1.2 mm de diferencia; sin embargo, otras se colocan por debajo de las microcápsulas de *Mesona chinensis* siendo 0.24 mm más pequeñas.

Otro caso de estudio, es el que presenta (Abtahi et al., 2024) con la encapsulación del extracto etanólico de *Eryngium billardieri* empleando una concentración única de alginato al 1%, el rango de tamaño se encuentra entre 150–170 µm. Que para las microcápsulas de extracto de huitlacoche a una concentración de alginato del 1% poseen dimensiones superiores que oscilan entre los 1109 µm y 2565 µm en contraste a lo reportado Abtahi.

Al equiparar las dimensiones de estos capsulados con los obtenidos por el equipo de trabajo de (Machado et al., 2022), ver gráfica 9.

Observamos que en su estudio al variar la concentración de cloruro de calcio $(1\frac{mol}{L}, 0.5\frac{mol}{L}, 0.25\frac{mol}{L})$ el tamaño de las cápsulas incrementa conforme este aumenta, tendencia que ocurre en las tres concentraciones de alginato (1%, 1.5%, 2%).

Gráfica 9. Comparativa de tamaños de microcápsulas a diferentes concentraciones de CaCl₂ y alginato

Las dimensiones de estos V.A.S. se colocan dentro del rango de 2.49 ± 0.27 mm a 3.33 ± 0.42 mm encontrándose por arriba de las obtenidas en el presente donde va de 1.41 ± 0.45 mm a 2.59 ± 0.44 mm, considerando que la concentración usada es de 0.45 $\frac{mol}{l}$.

Analizando y equiparando los resultados de esas concentraciones de 0.5 $\frac{mol}{L}$, 0.45 $\frac{mol}{L}$ y 0.25 $\frac{mol}{L}$ vemos que nuestros encapsulados de extracto de huitlacoche se colocan por debajo del tamaño que aquellas con extracto fenólico de *Spirulina sp.*. Cuando concentración de A.S. es del 1%, sus tamaños a las concentraciones de análisis de CaCl₂ varían del 2.80 ± 0.43 mm a 2.87 ± 0.35 mm en su contraparte los V.A.S.-huitlacoche tienen un tamaño promedio que va del 1.41 ± 0.45 mm a 2.59 ± 0.44 mm estando así entre 0.28 a 1.40 unidades por debajo,

En su contraparte, a una concentración de alginato del 1.5% el tamaño ronda los 2.49 \pm 0.27 a 2.81 \pm 0.15 mm donde los encapsulados de H.C. y H.F tienen una dimensión del 2.05 \pm 0.47 mm y 1.73 \pm 0.34 mm.

Por último, con una concentración del 2% de A.S. crece el tamaño de los V.A.S.-extracto *Spirulina sp.* (2.64 \pm 0.26 mm y 3.33 \pm 0.42 mm) conforme aumenta la concentración de CaCl₂. Mostrando un mayor tamaño con aquellos con extractos de huitlacoche con una dimensión de 2.10 \pm 0.53 mm y 2.26 \pm 0.52 mm.

7.5.2 Microcápsulas de Quitosano

7.5.2.1 Microscopia Electrónica de Barrido.

El extracto etanólico de huitlacoche cocido y el extracto de huitlacoche fresco a concentraciones de 1%, 1.8% y 2.5% se encapsularon empleando quitosano al 0.01% y 0.05%. Los vehículos de quitosano- extracto de huitlacoche (QTS-E.H. *0.01%:2.5%);* se observaron mediante microscopia electrónica de barrido (MEB),

Las fotografías obtenidas en dicha técnica se muestran en la Figura 30, haciendo un análisis detallado se encontró con encapsulamientos depositados sobre la superficie y en los poros dichos vehículos se señalan con una flecha. En la Figura 30A, las partículas QTS-E.H.F. tienen una morfología parcialmente esférica, con superficies variadas (lisas, rugosas, porosas), caso contrario para QTS-E.H.C., (Figura 30B), donde se observa una partícula esférica depositada sobre la superficie de un artefacto planar de quitosano.

Continuando con el estudio, los tamaños de las partículas se determinaron mediante el uso del software ImageJ, los encapsulados de QTS-E.H.F. tienen un rango que va de los 6.1 μ m hasta los 13.9 μ m con un promedio de 9.42 ± 2.69 μ m, en el caso de QTS-E.H.C. tiene un tamaño de 11.93 μ m.

Ahora bien, en cuanto a los reportes de encapsulación de extractos con quitosano analizados por MEB, encontramos la investigación de (Phupaboon et al., 2022) en el que emplearon extractos de Cannabis sativa L., Cannabis indica L., and Mitragyna speiosa K. cuyo tamaño de vehículos oscilaba entre 0.72 a 11 µm, donde el tamaño de nuestros vehículos se localizan dentro del rango superior. De igual forma, los resultados que expone (Safitri et al., 2022) en su trabajo de la microencapsulación del extracto acuoso de la raíz de *Ruellia tuberosa* L. donde el tamaño promedio de estos es de 53.41 µm, lo que nos da un panorama indicándonos que nuestros vehículos se posicionan en el rango de tamaños de microcápsulas,

La estructura del biopolímero entre ambas concentraciones de quitosano (Λ =0.01% y β =0.05%), muestran una tendencia morfológica diferente

a) Quitosano – Extracto Etanólico de Huitlacoche Fresco (AF) (0.01%-2.5%)

20 µm Mag = 200 X Detector = NTS BSD EHT = 30.00 kV Mag = 500 X Detector = NTS BSD EHT = 30.00 kV Figura 30. Micrografías de microscopía electrónica de barrido de microcápsulas de a) Quitosano -Extracto Etanólico de Huitlacoche Fresco (AF) (0.01%-2.5%), b) Quitosano – Extracto Etanólico de Huitlacoche Cocido (βC) (0.01%-2.5%); a una magnificación de 200x y 500x y una barra de escala de 20 µm

20 µm

7.5.2.2 Microscopía Confocal de Barrido Láser (CLSM)

El análisis para los encapsulados de QTS-E.E.H. (0.01%-1.8%) mediante microscopía confocal de barrido láser (CLSM), podemos observar las capturas obtenidas en la Figura 31.

Para la muestra Quitosano-E.E.H.C (**AC**), al incidir el láser a una λ =405 nm se genera una autofluorescencia azul cuya intensidad es casi nula en la superficie y poros, en su contraparte, en **AF** observamos que es más visible las áreas de emisión, donde este color azul observado puede ser generado por algunos metabolitos de tipo ácido cinámico (ferúlico y cumárico) o alcaloides, (Razgonova et al., 2022; Talamond et al., 2015)

Bajo una λ =488 nm se genera una autofluorescencia verde que se extiende sobre la superficie exterior de la muestra además en las cavidades de la misma, en la situación del analito **AF** tiene mayor presencia en la superficie analizada, esta emisión de color rojo se sugiere que son metabolitos de tipo flavinas, flavonoides y algunos terpenoides, (Razgonova et al., 2022; Talamond et al., 2015).

En cambio, al cambiar la λ =640 nm la autofluorescencia roja en la muestra **AC** es prácticamente nula en contraste a la muestra **AF**, el área de esta es muy similar a aquella de la que se observa a una λ =488 nm. Que acorde a la literatura, se le atribuye esta emisión color rojo a la presencia de antocianinas y antocianidinas, (Razgonova et al., 2022; Talamond et al., 2015).

^{>ágina} 126

El sobreposicionamiento de estas longitudes se encuentra en anexos 10.10.

Figura 31. Micrografías de microscopía confocal de barrido láser de los microencapsulados de a) Quitosano-E.E.H.C (Λ C) 0.01%:1.8%, b) Quitosano-E.E.H.F. (Λ F) 0.01%:1.8%; mediante 3 canales espectrales: color azul con el láser a 405 nm al 5 % de excitación en un intervalo de 400 – 500 nm; color verde con el láser a 488 nm al 5 % de excitación en un intervalo de 480 – 617 nm; color rojo con el láser a 640 nm al 5 % de excitación en un intervalo de 650 – 700 nm, con una barra de escala de 100 µm

No obstante, para el análisis de los vehículos de QTS -E.E.H. (0.05%-1.8 %) se muestran en la Figura 32 al incidir el láser a una Λ =405 nm la autofluorescencia de color azul en β C y β F, el nivel de la señal de tiene un índice de cobertura superficial mucho menor, pero en β F hay una región donde es más nítido.

Al exponer la muestra βC y βF a una λ =488 nm apreciamos una autofluorescencia de intensidad moderada. En βF se mantiene la visualización de los encapsulados ya antes identificados, pero con la presencia de nuevos vehículos.

A una λ =640 nm en βC observamos que la autofluorescencia se extiende sobre una franja definida en la superficie. Para el caso de βF , mantiene la misma región de fluorescencia , observando la Figura 32B, los pequeños puntos señalados se infiere que son encapsulados, su tamaño se determinó con ImageJ indicando que tienen un tamaño promedio de 10.4 μ m.

Figura 32. Micrografías de microscopía confocal de barrido láser de los microencapsulados de a) Quitosano-E.E.H.C (β C) 0.05%:1.8%, b) Quitosano-E.E.H.F. (β F) 0.05%:1.8%; mediante 3 canales espectrales: color azul con el láser a 405 nm al 5 % de excitación en un intervalo de 400 – 500 nm; color verde con el láser a 488 nm al 5 % de excitación en un intervalo de 480 – 617 nm; color rojo con el láser a 640 nm al 5 % de excitación en un intervalo de 480 – 617 nm; color rojo de 100 µm

7.5.3 Nanocápsulas de Quitosano

7.5.3.1 Microscopia Electrónica de Transmisión (MET).

Los encapsulados de los extractos etanólicos de huitlacoche empleando como matriz encapsulante al quitosano, se analizaron por microscopia electrónica de trasmisión.

Figura 33. Micrografías de microscopía electrónica de transmisión (MET) de los nanocapsulados de a) Quitosano-E.E.H.C (β C) 0.05%:1.8%, b) Quitosano-E.E.H.F (β F) 0.05%:1.8%, con una barra de escala de 100 µm

Las nanopartículas observadas, (Figura 33), exhibieron una morfología esférica relativamente homogénea y una distribución de tamaño estrecha, va desde 1.5 a 6.5 nm; la medición del tamaño de los nanoencapsulados QTS-E.E.H.F. por ImageJ nos indica que tienen un tamaño promedio de 2.97 \pm 1.53 nm por debajo de aquellos con extracto de huitlacoche fresco con un tamaño promedio de 3.13 \pm 1.22 nm.

Dentro de la literatura para la nanoencapsulación extractos con QTS y analizados por MET hayamos reportes como el del equipo de (El-Naggar et al., 2022) donde las nanocápsulas (NC) de *Eucalyptus globulus* tuvieron un tamaño entre 6.92 and 10.10 nm siendo valores cercanos a los de este trabajo.

El estudio de (Alam et al., 2023) coloca a sus NC de QTS-extracto de *Sida cordifolia* con un tamaño promedio de 57.4 nm, en el caso de (Sathiyabama et al., 2024) con el extracto del té *Camellia sinensis L.* tuvieron un tamaño entre 25 nm 40 nm; dimensiones un poco superiores a las de los extractos de *Ustilago maydis.*

7.5.3 Microcápsulas de Alginato - Quitosano

7.5.3.1 Microscopia Electrónica de Barrido.

La vehiculización del extracto etanólico de huitlacoche cocido y el extracto de huitlacoche fresco a concentraciones de 1%, 1.8% y 2.5% empleando alginato de sodio al 1% y 1.8% además de quitosano al 0.01% y 0.05%.

Los geles liofilizados de alginato de sodio-quitosano-huitlacoche fresco A.S.-QTS-H.F al 0.01%:1.5%:1.8% (**AQF**) y 0.01%:2.5%:1.8% (**ASF**) se observaron mediante microscopia electrónica de barrido (MEB).

Las fotografías obtenidas en MEB se muestran en la Figura 34, al analizarlas se observó una diferencia estructural donde Λ QF cuenta con una estructura superficial rugosa en contraste a la de Λ SF que es fibrosa y porosa, tales características son similares a lo reportado por (Baysal et al., 2013), aunado a esto, se encontraron encapsulamientos depositados sobre la superficie y en los poros de la estructura de Λ SF.

Este comportamiento estructural del complejo polielectrolítico puede ser atribuido a una mayor interacción entre las cadenas policatiónicas del quitosano con el *crosslinker tween* 80 pero de igual forma implica aquellas interacciones con las cadenas polianiónicas del alginato de sodio que corresponderían a los bloques G.

El tamaño de las partículas vistas en **ASF** se determinaron mediante el empleo del software ImageJ teniendo un diámetro promedio de 10.14 µm.

^{⊃ágina} 13C

a) Alginato de sodio-quitosano-extracto (0.01%:1.5%:1.8%) AQF

Figura 34. *Micrografías de microscopía electrónica de barrido de microcápsulas de a) Alginato de sodio-quitosano-extracto (0.01:1.5:1.8)* Λ QF, b) Alginato de sodio-quitosano-extracto (0.01:2.5:1.8) Λ SF; a una magnificación de 200x y 500x y una barra de escala de 10 y 20 µm

Por otro lado, en la literatura se ha reportado el uso de ambos tipos de polielectrolitos para la encapsulación de extracto fenólico de los residuos del vino y la encapsulación de antocianinas.

En el caso de los encapsulados de (Moschona & Liakopoulou-Kyriakides, 2018) ellos reportan un rango de tamaño que oscila entre los 1004 μ m a los 1070 μ m, quedando por arriba de los microencapsulados generados para los extractos de huitlacoche (10.14 μ m).

En su contraparte, el estudio presentado por (da Silva Carvalho et al., 2019) quienes encapsularon antocianinas a partir del extracto de la palmera jussara (*Euterpe edulis Martius*) sus microcápsulas tuvieron un diámetro promedio entre 1–1.2 mm superando a los vehículos de A.S.-QTS.-E.E.H.

7.5.2.2 Microscopía confocal de barrido láser (CLSM).

Las muestras de QTS-A.S.-H.C: **ΛQC** (0.01%:1.5%:1.8%), **ΛSC** (0.01%:2.0%:1.8%), **βSC** (0.05%:2.0%:1.8%), **βQC** (0.05%:1.5%:1.8%); y QTS-A.S.-H.F: **ΛSF** (0.01%:1.5%:1.8%), **βQF** (0.05%:1.5%:1.8%) fueron observadas en microscopia confocal.

Las fotografías de esta técnica se muestran en la Figura 35, en su análisis, estructuralmente se aprecia una variabilidad de grosor lo que está ligado el grado de transparencia observable, en esa misma línea estructural, se localizan sobre o entre la biomasa de QTS-A.S.-E.E.H vehículos con una morfología esférica y una superficie parcialmente lisa; mediante ImageJ se midió su diámetro, teniendo un promedio de 10.41 µm, con un rango que va desde los 7 µm a los 14 µm.

Figura 35 Micrografías de microscopía confocal de los encapsulados de a) Qtn/A.S./E.E.H.C (0.01-1.8.) y b) quitosano-E.E.H.F. Ahora bien, las microcápsulas de QTS/A.S./E.E.H. cocido (c) y fresco (f) en las concentraciones de 0.01/1.5/1.8 (**AQC**), 0.01/2/1.8 (**ASC**), 0.01/2/1.8 (**ASF**) vistas vía microscopía confocal de barrido láser se muestran en la Figura 36. La detección de autofluorecencia con la luz verde a una λ =488 nm al 5 % de excitación en la muestra **AQC**, (Figura 36A), se observa con mayor predominancia en los contornos con un difuminado acentuado hacia los interiores de esta muestra.

Bajo esta misma luz, la muestra **\LambdaSC**, (Figura 36B), presenta la misma tendencia que la muestra **\LambdaQC**, la fluorescencia tiende a concentrarse en la zona central, logrando apreciar un cumulo de microcápsulas con un tamaño de 7.14 µm.

En el caso de la muestra de huitlacoche fresco **ASF**, la autofluorescencia se extiende en toda la analito variando de intensidad en ciertas zonas de esta, en ciertos puntos, se logra apreciar las microcápsulas que están incrustadas en el cumulo de quitosano/A.S y su tamaño promedio es de 7.76 μ m.

La incidencia con el láser a 640 nm al 5 % de excitación en la muestra AQC observamos una autofluorescencia de color roja que se observa en mayor grado de la superficie del analito prevaleciendo en zonas donde se percibió autofluorescencia color verde y autofluoresciendo en regiones donde no había registro, ver Figura 36B.

En la muestra **ASC**, la autofluorecencia color rojo abarca más regiones del analito pero con una intentensidad más débil, y se logra detectar algunos encapsulados, (Figura 35B). La autofluorecencia de color rojo en el analito **ASF**, (Figura 36C), es de intensidad media en toda la superficie que tiende a disminuir en las cavidades. Es evidente la existencia de pequeñas áreas donde se resaltan más la presencia de encapulados que previamente habían autofluorecido color verde.

Por último, la incidencia con el láser a 405 nm al 5 % de excitación en estas mismas muestras dio lugar a la autofluorescencia color azul, en la muestra **AQC** y **ASC** existe un contraste considerable en cuanto al área de autofluorescencia previas, estas se localizan con mayor intensidad en los bordes de los analitos con una considerable degradación de la intensidad lumínica hacia los interiores del analito.

Esto se repite parcialmente en la muestra **ASF**, en las cavidades de esta la autofluorecencia es mucho menor en comparación a aquellas zonas superficiales y en las partes donde se tenía presencia de encapsulados estos no emitieron fluorecencia.

Figura 36. *Micrografías de microscopía confocal de barrido láser de los microencapsulados de a) Quitosano-A.S.-E.E.H.C* (*ΛQC*) 0.01%:1.5%:1.8% b) *Quitosano-A.S.-E.E.H.C* (*ΛSC*) 0.01%:2.5%:1.8%, c) *Quitosano-A.S.-E.E.H.F* (*ΛSF*), 0.01%:2.5%:1.8%, mediante 3 canales espectrales: color azul con el láser a 405 nm al 5 % de excitación en un intervalo de 400 – 500 nm; color verde con el láser a 488 nm al 5 % de excitación en un intervalo de 480 – 617 nm; color rojo con el láser a 640 nm al 5 % de excitación en un intervalo de 650 – 700 nm, con una barra de escala de 100 μm

Ahora bien, las microcápsulas de QTS/A.S./E.E.H. en las concentraciones de 0.05/1.5/1.8 (β QC), 0.05/2.5/1.8 (β SC), 0.05/1.5/1.8 (β QF) vistas vía microscopía confocal de barrido láser se muestran en la Figura 37.

La autofluorescencia color verde en la muestra βQC , (Figura 37A), se observa un par de regiones con una fluorescencia intensa, en el resto del analito esta se ve sumamente atenuada que en contraste a la muestra ΛQC .

Por lo contrario, en la muestra β SC, (Figura 37B), la percepción de distribución e intensidad de autofluorescencia es similar a Λ QC destacando unos pequeños cúmulos de encapsulados localizados en algunos puntos del analito.

En el análisis de **βQF**, ciertas microcápsulas se logran identificar por la autofluorescencia, que además se presenta cubriendo al analito variando de intensidad desde la superficie hasta las posibles cavidades del analito, estas características de autofluorescencia son parcialmente similares al **ΛSF**, (Figura 37C).

Pasando ahora a la autofluorescencia de color rojo en **βQC**, esta abarca toda la muestra habiendo una tendencia a disminuir el brillo en aquellas áreas donde era intenso en la autofluorescencia verde, ver Figura 37A. A esta longitud de onda, es posible localizar las microcápsulas a largo del analito que se ven como pequeños puntos intensos rojos.

En la Figura 37A, en la imagen del **βSC** la autofluorescencia roja se percibe con una intensidad moderada a lo largo del analito, pero en un grado menor de superficie hay regiones con una intensidad marcada. A esta longitud, permite la autofluorescencia de más cantidad de microcápsulas como puntos.

En βQF , la autofluorecencia roja presenta una distribución semejante a la vista con el laser a una λ =488 nm , (Figura 37C). Señalando que a lo largo de un área se ven una cantidad considerable de puntos rojos sugiriendo que son microencapsulados.

Por último, en la muestra βQC y βSC el área de autofluorescencia color azul es similar, estas se localizan con mayor intensidad en los bordes de los analitos con una considerable degradación de la intensidad lumínica hacia los interiores del analito.

Para la muestra βQF , la autofluorecencia es mucho menor en comparación en la λ =488 nm y 640 nm en zonas superficiales pero se mantiene en las orillas del analito.

Figura 37. Micrografías de microscopía confocal de barrido láser de los microencapsulados de a) Quitosano-A.S.-E.E.H.C (βQC) 0.05%:1.5%:1.8% b) Quitosano-A.S.-E.E.H.C (βSC) 0.05%:2.5%:1.8%, c) Quitosano-A.S.-E.E.H.F (βQF), 0.05%:1.5%:1.8%, mediante 3 canales espectrales: color azul con el láser a 405 nm al 5 % de excitación en un intervalo de 400 – 500 nm; color verde con el láser a 488 nm al 5 % de excitación en un intervalo de 480 – 617 nm; color rojo con el láser a 640 nm al 5 % de excitación en un intervalo de 650 – 700 nm, con una barra de escala de 100 μm

Página 137

8.Conclusiones

El presente proyecto de investigación, permitió la identificación de compuestos presentes en el extracto etanólico de huitlacoche cocido (H.C.) y el extracto etanólico de huitlacoche fresco (H.F.) de tipo ácido grasos, ácidos cinámicos, ácidos fenólicos, terpenos y la elucidación del 6-metoxi-2-benzoxazolinona (H.C. 10 mg, H.F. 17 mg), y del ácido 4-hidroxibenzoico 56 (H.C. 2 mg, H.F. 4.5 mg).

Además de la cuantificación de compuestos de interés como los polifenoles (H.F. 10.18 (mgEqA.G.)/g y H.C. 08.38 (mgEqA.G.)/g). donde el extracto de huitlacoche fresco es el que presenta mayor abundancia de metabolitos respecto al huitlacoche tratado con calentamiento.

Por otro lado, se usaron 2 polisacáridos lineales (quitosano QTS, alginato de sodio A.S.) y la combinación de estos (quitosano-alginato de sodio QTS-A.S.) como una matriz encapsulante para los extractos etanólicos de U. maydis.

Dando origen a una serie de vehículos transportadores con dimensiones que van desde la escala nano a micro (QTS-E.H.: 2.97 nm a 11.93 μ m, QTS-A.S.-E.H: 7 a 14 μ m, A.S.-E.H.: 2.98 mm), sin embargo, la concentración de polímero más viable para cada uno es de 1.5% ALG, 0.05% QTS y 0.01%:2.0% QTS-A.S, ya que los encapsulados poseen una morfología esférica (A.S., QTS, QTS-A.S.) y un tamaño homogéneo, en A.S se conservó el núcleo libre; para el QTS permitió mayor formación de encapsulados.

De manera general, se propone que la formulación de la mezcla alginato-quitosano para la conservación de los bioactivos presentes, debido a su doble recubrimiento por parte de los polielectrolitos mencionados. Además de mejorar su biodisponibilidad al emplear materiales comestibles y no tóxicos para el encapsulamiento.

Con estos atributos, podemos concluir con base a la información obtenida en este proyecto los extractos etanólicos de Ustilago maydis (huitlacoche) se posicionan con potencial nutracéutico debido a su contenido micoquímico previamente mencionado, siendo principalmente ácidos grasos y polifenoles, además de que en el presente trabajo se proponen un vehículos encapsulantes (micro y nano), utilizados por primera vez para el huitlacoche, lo cual ayuda a proteger a los compuestos bioactivos y aislar el sabor de este hongo.

9.Perspectivas

- Estandarizar la metodología del encapsulamiento Alginato de sodio + Extracto
- Estandarizar la metodología del encapsulamiento Quitosano + Extracto
- Estandarizar la metodología del encapsulamiento *Alginato de sodio* + Quitosano + *Extracto.*
- Evaluar el perfil de liberación de las micro y nanocápsulas.

10. ANEXOS

10.1 Tiempos de Retención de los Estándares de Polifenoles

Gráfica 10. Tiempo de retención de los estándares empleados para HPLC.

10.2 Espectros de UV: Estándares

Espectro 12. UV-Vis de los estándares de polifenoles analizados por HPLC

10.3 CG-EM Reunión A01

Figura 38. Cromatograma de gases de la reunión A01

Tabla 30. Compuestos presentes en la reunión Λ01									
ACIDOS GRASOS									
Сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área		
01	Linoleato de etilo	$C_{20}H_{36}O_2$	97.66	308.3	67.1	20.674	6.24%		
02	Oleato de etilo	$C_{20}H_{38}O_2$	97.66	310.3	55.1	20.714	3.63%		
03	Palmitato de etilo	$C_{18}H_{36}O_2$	97.07	284.3	88.1	19.078	3.15%		
19	1	$C_{19}H_{34}O_2$	94.22	294.3	67.1	20.044	1.75%		
26	Palmitato de metilo	$C_{17}H_{34}O_2$	85.31	270.3	74.1	18.401	1.03%		
ESTEROLES									
Сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área		
08	Espinasteronas	$C_{29}H_{46}O$	87.4	410.4	55.1	36.899	5.43%		
09	Γ-sitostenona	C ₂₉ H ₄₈ O	90.82	412.4	124.1	38.16	3.86%		
27	Lupeol	$C_{30}H_{50}O$	91.35	426.4	218.2	36.413	3.19%		
28	Friedlein	C ₃₀ H ₅₀ O	95.49	426.4	69.1	39.894	2.97%		
10	β-Ergostenona	C ₂₈ H ₄₆ O	86.38	398.4	124.1	36.242	2.50%		

10.4 CG-EM Reunión Λ02

Figura 39. Cromatograma de gases de la reunión A02

Tabla 31. Compuestos presentes con porcentaje mayor a 1% en la reunión A02									
ACIDOS GRASOS									
Сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área		
36	1	$C_{19}H_{36}O_3$	80.97	312.3	95.1	21.712	10.69%		
37	2	$C_{12}H_{14}O_4$	97.3	222.1	222.1	18.559	4.65%		
04	Ácido oleico	$C_{18}H_{34}O_2$	85.39	282.3	55.1	21.587	4.53%		
01	Linolenato de etilo	$C_{20}H_{34}O_2$	82.34	306.3	55.1	22.145	3.82%		
38	Ácido oleico	$C_{18}H_{34}O_2$	86.28	282.3	55.1	21.916	3.73%		
05	Ácido palmítico	$C_{16}H_{32}O_2$	93.08	256.2	73.1	19.006	2.85%		
39	3	$C_{17}H_{32}O_2$	83.41	268.2	57.1	19.925	2.21%		
40	Ácido oleico	$C_{18}H_{34}O_2$	89.06	282.3	55.1	20.641	1.97%		
41	Ácido oleico	$C_{18}H_{34}O_2$	87.8	282.3	55.1	20.943	1.65%		
42	Ácido oleico	$C_{18}H_{34}O_2$	88.76	282.3	55.1	21.022	1.61%		
43	2	$C_{12}H_{14}O_4$	93.1	222.1	222.1	17.088	1.46%		
44	Ácido oleico	$C_{18}H_{34}O_2$	92.18	282.3	55.1	20.687	1.19%		
45	Ácido oleico	$C_{18}H_{34}O_2$	88.35	282.3	55.1	22.356	1.18%		
OTROS									
46	-Desconocido-				101.1	22.251	6.72%		
47	Etilo parabeno	$C_9H_{10}O_3$	97.68	166.1	121.1	14.44	3.96%		
48	Ftalato de bis(2-etilhexilo)	$C_{24}H_{38}O_4$	95.62	390.3	149	24.385	2.39%		
49	4	C ₁₈ H ₃₄ O ₃	81.66	298.3	57.1	22.921	1.90%		
20	Coixol	C ₈ H ₇ NO ₃	80.8	165	165.1	17.633	1.46%		
50	5	C ₁₈ H ₂₄ O	88.02	256.2	57.1	19.13	1.06%		

¹Ácido oxiraneundecanoico, 3-pentil-, éster metílico, trans-

²(2*E*)-3-(4-hidroxi-3-metoxifenil)-2-propenoato de etilo

³Acetato de 7-metil-Z-tetradecen-1-ol

⁴Ácido oxiraneoctanoico, 3-octilo-, cis-

⁵Estra-1,3,5(10)-trien-17.beta.-ol

Página 143

10.5 CG-EM Reunión Q01

Figura 40. Cromatograma de gases de la reunión Q1

Tabla 32. Compuestos presentes con porcentaje mayor a 1% en la reunión Q01									
ACIDOS GRASOS									
Сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área		
01	linoleato de etilo	C ₂₀ H ₃₆ O ₂	95.49	308.3	67.2	20.897	34.24%		
03	palmitato de etilo	$C_{18}H_{36}O_2$	96.53	284.3	88.2	19.176	15.33%		
95	linoleato de metilo	$C_{19}H_{34}O_2$	95.61	294.3	67.2	20.135	14.97%		
26	palmitato de metilo	$C_{17}H_{34}O_2$	96.76	270.3	74.2	18.434	7.09%		
13	estearato de etilo	$C_{20}H_{40}O_2$	96.76	312.3	88.1	20.996	2.36%		
11	escualeno	C ₃₀ H ₅₀	95.3	410.4	69.2	28.629	2.14%		
06	(E)-9-palmitoleato de etilo	$C_{18}H_{34}O_2$	89.57	282.3	149.1	18.854	2.12%		
96	ácido paulínico	$C_{20}H_{38}O_2$	85.82	310.3	55.2	22.388	1.54%		
97	ceteno	C ₁₆ H ₃₂	98.59	224.2	55.2	14.782	1.25%		
98	cetilmercaptano	C ₁₆ H ₃₄ S	87.19	258.2	43.2	17.002	1.23%		
99	estearato de metilo	C ₁₉ H ₃₈ O ₂	90.3	298.3	74.1	20.319	1.00%		
10.6 CG-EM Reunión Λ-R05

Figura 41. Cromatograma de gases de la reunión Λ-R05

Сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área
54	2-metoxi-4-vinilfenol	$C_9H_{10}O_2$	90.88	150.1	150.1	11.668	41.16%
			0	TROS			
Сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área
69	-Desconocido-	-	-	-	28.1	37.995	11.37%
70	-Desconocido-	-	-	-	43.1	7.583	7.64%
71	-Desconocido-	-	-	-	120.1	11.018	7.56%
72	-Desconocido-	-	-	-	43.2	24.28	7.23%
73	-Desconocido-	-	-	-	28.1	46.265	4.44%
74	-Desconocido-	-	-	-	192.1	23.525	3.34%
75	-Desconocido-	-	-	-	28.1	33.903	2.32%
76	-Desconocido-	-	-	-	28.1	15.261	2.07%
77	-Desconocido-	-	-	-	28.1	17.37	1.76%
78	-Desconocido-	-	-	-	28.2	19.919	1.62%
79	-Desconocido-	_	-	-	129.1	22.631	1.41%
80	-Desconocido-	-	-	-	28.1	16.234	1.10%

Tabla 33. Compuestos presentes en la reunión Λ -R05

10.7 CG-EM Reunión Q-V01

Figura 42. Cromatograma de gases de la reunión Q-V01

ÁCIDOS GRASOS							
Сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área
01	Linoleato de etilo	$C_{20}H_{36}O_2$	97.74	308.3	67.2	20.635	12.72%
03	Palmitato de etilo	$C_{18}H_{36}O_2$	96.48	284.3	88.2	19.058	13.03%
02	Oleato de etilo	$C_{20}H_{38}O_2$	94.45	310.3	55.2	20.667	6.26%
95	Linoleato de metilo	$C_{19}H_{34}O_2$	93.68	294.3	67.2	19.991	4.62%
26	Palmitato de metilo	$C_{17}H_{34}O_2$	96.54	270.3	74.1	18.355	4.13%
100	elaidato de metilo	$C_{19}H_{36}O_2$	90.39	296.3	55.2	20.03	1.67%
13	Estearato de etilo	$C_{20}H_{40}O_2$	98.22	312.3	88.1	20.851	1.45%
99	Estearato de metilo	$C_{19}H_{38}O_2$	94.54	298.3	74.1	20.247	1.10%
101	-Desconocido-	-	-	-	129.1	22.631	1.41%
102	-Desconocido-	-	-	-	28.1	16.234	1.10%
ÁCIDOS GRASOS							
Сро.	Сро.	Сро.	Сро.	Сро.	Сро.	Сро.	Сро.
09	Gama-sitostenona	C ₂₉ H ₄₈ O	92.45	412.4	124.1	37.976	5.33%
08	Espinasterona	C ₂₉ H ₄₆ O	89.83	410.4	55.2	36.728	6.81%
10	4-campestene-3-uno	C ₂₈ H ₄₆ O	88.7	398.4	124.1	36.064	4.22%

Tabla 34.	Compuestos	presentes en la	a reunión	Q-V01
-----------	------------	-----------------	-----------	-------

10.8 CG-EM Reunión Q-S04

Figura 43. Cromatograma de gases de la reunión Q-S04

Tabla 35. Compuestos presentes en la reunión Q-S04							
Сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área
89	Octocrileño	$C_{24}H_{27}NO_2$	92.13	361.204	28.2	26.139	4.81%
30	heptacosano	$C_{27}H_{56}$	83.92	380.438	57.2	29.417	4.57%
90	heptacosano	$C_{27}H_{56}$	83.37	380.438	57.2	28.024	4.17%
93	heptacosano	$C_{27}H_{56}$	81.46	380.438	57.2	23.571	3.15%
				OTROS			
Сро.	Nombre	Fórmula	Score	Masa de referencia	Pico base	RT	%Área
88	1	$C_{24}H_{38}O_4$	97.48	390.277	149.1	24.252	25.66%
91		$C_{24}H_{38}O_4$	82.92	390.277	28.2	27.289	3.83%
92	2	C ₂₇ H ₅₆	88.33	380.438	57.2	24.779	3.40%
41	3	$C_{17}H_{32}O_2$	80.95	268.24	57.2	22.579	2.17%
94	4	C ₁₆ H ₂₂ O ₄	80.29	278.152	149.1	18.841	1.32%

Éster di(2-propilpentílico) del ácido ftálico

Éster bis(2-etilhexílico) del ácido 1,3-bencenodicarboxílico

Acetato de 7-metil-Z-tetradecen-1-ol

Éster butílico 2-metilpropílico del ácido 1,2-bencenodicarboxílico

10.9 Diagramas de Flujo Encapsulación

Diagrama 5. Diagramas de flujo de micro y nanoencapsulación

10.10 CLSM

Figura 44. Sobreposicionamiento de micrografías de microscopía confocal de barrido láser a λ = 405 nm a 488 nm 640 nm

Referencias

- Abdul Khalil, K. (2020). A Review on Microencapsulation in Improving Probiotic Stability for Beverages Application. *Science Letters*, *14*(1), 49. https://doi.org/10.24191/sl.v14i1.7900
- Abdur Rashid Mia, M., Uddin Ahmed, Q., Ferdosh, S., Bashar Mohammed Helaluddin, A., Najmul Hejaz Azmi, S., Ammar Al-Otaibi, F., Parveen, H., Mukhtar, S., Ahmed, M. Z., & Zaidul Islam Sarker, M. (2023). Anti-obesity and antihyperlipidemic effects of Phaleria macrocarpa fruit liquid CO2 extract: In vitro, in silico and in vivo approaches. *Journal of King Saud University Science*, *35*(8), 102865. https://doi.org/10.1016/j.jksus.2023.102865
- Abtahi, S. A., Khoshkhoo, Z., Khorshidian, N., & Mohammadi, M. (2024). Alginate Microcapsules Loaded with Eryngium billardieri Extract and Its Application in Apple Juice. *Journal of Food Quality*, 2024(1), 12. https://doi.org/10.1155/2024/6858230
- Agnihotri, N., Mishra, R., Goda, C., & Arora, M. (2012). Microencapsulation A Novel Approach in Drug Delivery: A Review. *Indo Global Journal of Pharmaceutical Sciences*, 02(01), 01–20. https://doi.org/10.35652/igjps.2012.01
- Akin-osanaiye, B. C., Adeyemi, G., & Alebiosu, R. A. (2011). Characterization and Antimicrobial Screening of Ethyl Oleat Isolated from Phyllanthus Amarus (Sehum and Thonn). *Annals of Biological Research*, 2(2), 298–305.
- Al-Obaidi, J. R., Jambari, N. N., & Ahmad-Kamil, E. I. (2021). Mycopharmaceuticals and nutraceuticals: Promising agents to improve human well-being and life quality. *Journal of Fungi*, 7(7). https://doi.org/10.3390/jof7070503
- Alam, P., Imran, M., Ahmed, S., Majid, H., & Akhtar, A. (2023). Chitosan Nanoparticles for Enhanced Delivery of Sida cordifolia Extract: Formulation, Optimization and Bioactivity Assessment. *Pharmaceuticals*, 16(11). https://doi.org/10.3390/ph16111561
- Alihosseini, F. (2016). Plant-based compounds for antimicrobial textiles. In *Antimicrobial Textiles*. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100576-7.00010-9
- Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Caballero, A. H., & Acosta, N. (2021). Chitosan: An overview of its properties and applications. *Polymers*, 13(19). https://doi.org/10.3390/polym13193256
- Arenas-Jal, M., Suñé-Negre, J. M., & García-Montoya, E. (2020). An overview of microencapsulation in the food industry: opportunities, challenges, and innovations. *European Food Research and Technology*, 246(7), 1371–1382. https://doi.org/10.1007/s00217-020-03496-x
- Asami, E., Kitami, M., Ida, T., Kobayashi, T., & Saeki, M. (2023). Anti-inflammatory activity of 2-methoxy-4-vinylphenol involves inhibition of lipopolysaccharide-induced inducible nitric oxidase synthase by

heme oxygenase-1. *Immunopharmacology and Immunotoxicology*, 45(5), 589–596. https://doi.org/10.1080/08923973.2023.2197141

- Aydoğdu, M., & Gölükçü, M. (2017). Nutritional value of huitlacoche, maize mushroom caused by Ustilago maydis. *Food Science and Technology*, 37(4), 531–535. https://doi.org/10.1590/1678-457x.19416
- Barriuso, B., Otaegui-Arrazola, A., Menéndez-Carreño, M., Astiasarán, I., & Ansorena, D. (2012). Sterols heating: Degradation and formation of their ring-structure polar oxidation products. *Food Chemistry*, 135(2), 706–712. https://doi.org/10.1016/j.foodchem.2012.05.027
- Baysal, K., Aroguz, A. Z., Adiguzel, Z., & Baysal, B. M. (2013). Chitosan/alginate crosslinked hydrogels: Preparation, characterization and application for cell growth purposes. *International Journal of Biological Macromolecules*, 59(May), 342–348. https://doi.org/10.1016/j.ijbiomac.2013.04.073
- Becker, J., Hosseinpour Tehrani, H., Gauert, M., Mampel, J., Blank, L. M., & Wierckx, N. (2020). An Ustilago maydis chassis for itaconic acid production without by-products. *Microbial Biotechnology*, 13(2), 350–362. https://doi.org/10.1111/1751-7915.13525
- Boekhout, T., Fonseca, Á., Sampaio, J. P., Bandoni, R. J., Fell, J. W., & Kwon-Chung, K. J. (2011). Discussion of Teleomorphic and Anamorphic Basidiomycetous Yeasts. *The Yeasts*, *3*, 1339–1372. https://doi.org/10.1016/B978-0-444-52149-1.00100-2
- Chandirika, J. U., Sindhu, R., Selvakumar, S., & Annadurai, G. (2018). Herbal Extract Encapsulated in Chitosan Nanoparticle: a Novel Strategy for the Treatment of Urolithiasis. J. P. Sci, 05(03), 1955–1961. http://doi.org/10.5281/zenodo.1212445
- Chatterjee, D., Halder, D., & Das, S. (2021). Varieties of Mushrooms and their Nutraceutical Importance: A Systematic Review. *Journal of Clinical and Diagnostic Research*, 1–6. https://doi.org/10.7860/jcdr/2021/47240.14660
- Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020). Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. *Scientific Reports*, 10(1), 1–9. https://doi.org/10.1038/s41598-020-62493-y
- Cui, E., Qian, S., Li, J., Jiang, X., Wang, H., Du, S., & Du, L. (2023). Discovery of Coixol Derivatives as Potent Anti-inflammatory Agents. *Journal of Natural Products*, 86(8), 1950–1959. https://doi.org/10.1021/acs.jnatprod.3c00309
- da Silva Carvalho, A. G., da Costa Machado, M. T., de Freitas Queiroz Barros, H. D., Cazarin, C. B. B., Maróstica Junior, M. R., & Hubinger, M. D. (2019). Anthocyanins from jussara (Euterpe edulis Martius) extract carried by calcium alginate beads pre-prepared using ionic gelation. *Powder Technology*, 345, 283–291. https://doi.org/10.1016/j.powtec.2019.01.016

- Dai, X., Chen, L., Liu, M., Liu, Y., Jiang, S., Xu, T., Wang, A., Yang, S., & Wei, W. (2022). Effect of 6-Methoxybenzoxazolinone on the Cecal Microbiota of Adult Male Brandt's Vole. *Frontiers in Microbiology*, 13(March), 1–15. https://doi.org/10.3389/fmicb.2022.847073
- Desai, K. G. H., & Jin Park, H. (2005). Recent Developments in Microencapsulation of Food Ingredients. Drying Technology, 23(7), 1361–1394. https://doi.org/10.1081/DRT-200063478
- Dornburg, A., Townsend, J. P., & Wang, Z. (2017). Maximizing Power in Phylogenetics and Phylogenomics: A Perspective Illuminated by Fungal Big Data. In *Advances in Genetics* (1st ed., Vol. 100). Elsevier Inc. https://doi.org/10.1016/bs.adgen.2017.09.007
- El-Naggar, N. E. A., Shiha, A. M., Mahrous, H., & Mohammed, A. B. A. (2022). Green synthesis of chitosan nanoparticles, optimization, characterization and antibacterial efficacy against multi drug resistant biofilm-forming Acinetobacter baumannii. *Scientific Reports*, 12(1), 1–19. https://doi.org/10.1038/s41598-022-24303-5
- Estrada, A. F., Brefort, T., Mengel, C., Díaz-Sánchez, V., Alder, A., Al-Babili, S., & Avalos, J. (2009). Ustilago maydis accumulates β-carotene at levels determined by a retinal-forming carotenoid oxygenase. *Fungal Genetics and Biology*, *46*(10), 803–813. https://doi.org/10.1016/j.fgb.2009.06.011
- Feyissa, Z., Edossa, G. D., Gupta, N. K., & Negera, D. (2023). Development of double crosslinked sodium alginate/chitosan based hydrogels for controlled release of metronidazole and its antibacterial activity. *Heliyon*, 9(9), e20144. https://doi.org/10.1016/j.heliyon.2023.e20144
- Gaonkar, A., Vasisht, N., Khare, A., & Sobel, R. (2014). Microencapsulation in the Food Industry. In A.
 Gaonkar, N. Vasisht, A. Khare, & R. Sobel (Eds.), *Suparyanto dan Rosad (2015* (1st ed., Vol. 5, Issue 3). Elsevier.
- Geiser, E., Przybilla, S. K., Friedrich, A., Buckel, W., Wierckx, N., Blank, L. M., & Bölker, M. (2016). Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. *Microbial Biotechnology*, 9(1), 116–126. https://doi.org/10.1111/1751-7915.12329
- Guevarra, E. D., & Tabuchi, T. (1990). Accumulation of itaconic, 2-hydroxyparaconic, itatartaric, and malic acids by strains of the genus ustilago. *Agricultural and Biological Chemistry*, 54(9), 2353–2358. https://doi.org/10.1080/00021369.1990.10870333
- Guzmán, G. (2008). Diversity and use of traditional mexican medicinal fungi. A review. *International Journal of Medicinal Mushrooms*, 10(3), 209–217. https://doi.org/10.1615/IntJMedMushr.v10.i3.20
- Haskins, R. H., & Thorn, J. A. (1951). Biochemistry of the Ustilaginales: Vii. Antibiotic Activity of Ustilagic Acid. *Canadian Journal of Botany*, 29(6), 585–592. https://doi.org/10.1139/b51-046
- Hasnain, S., Nayak, A. K., Kurakula, M., & Hoda, M. N. (2020). Chapter 6. Alginate nanoparticles in drug

delivery. In Alginates in Drug Delivery. INC. https://doi.org/10.1016/B978-0-12-817640-5.00006-6

- Hosseini, S., & Varidi, M. (2021). Optimization of Microbial Rennet Encapsulation in Alginate Chitosan Nanoparticles. *Food Chemistry*, 352(February 2020), 129325. https://doi.org/10.1016/j.foodchem.2021.129325
- Hu, Y., Zhou, Q., Liu, T., & Liu, Z. (2020). Coixol suppresses NF-κB, MAPK pathways and NLRP3 inflammasome activation in lipopolysaccharide-induced RAW 264.7 cells. *Molecules*, 25(4), 1–10. https://doi.org/10.3390/molecules25040894
- Jafari, S. M. (2017). An overview of nanoencapsulation techniques and their classification. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries (pp. 1–34). Elsevier. https://doi.org/10.1016/B978-0-12-809436-5.00001-X
- Jeitler, M., Michalsen, A., Frings, D., Hübner, M., Fischer, M., Koppold-Liebscher, D. A., Murthy, V., & Kessler, C. S. (2020). Significance of Medicinal Mushrooms in Integrative Oncology: A Narrative Review. *Frontiers in Pharmacology*, 11(November). https://doi.org/10.3389/fphar.2020.580656
- Jeong, J. B., Hong, S. C., Jeong, H. J., & Koo, J. S. (2011). Anti-inflammatory effect of 2-methoxy-4vinylphenol via the suppression of NF-κB and MAPK activation, and acetylation of histone H3. *Archives of Pharmacal Research*, *34*(12), 2109–2116. https://doi.org/10.1007/s12272-011-1214-9
- Juárez-Montiel, M., Ruiloba de León, S., Chávez-Camarillo, G., Hernández-Rodríguez, C., & Villa-Tanaca, L. (2011). Huitlacoche (corn smut), caused by the phytopathogenic fungus Ustilago maydis, as a functional food. *Revista Iberoamericana de Micologia*, 28(2), 69–73. https://doi.org/10.1016/j.riam.2011.01.001
- Jurado, B., Aparcana, I., Villarreal, L., Ramos, E., Calixto, M., Hurtado, P., & Acosta, K. (2016). Evaluación del contenido de polifenoles totales y la capacidad antioxidante de los extractos etanólicos de los frutos de aguaymanto (Physalis peruviana L.) de diferentes lugares del Perú. *Revista de La Sociedad Química Del Perú*, 82(3), 272–279.
- Kaliyaperumal, M., Kezo, K., & Gunaseelan, S. (2018). A Global Overview of Edible Mushrooms. In B. Pratap Singh, Lallawmsanga, & A. Kumar Passari (Eds.), *Biology of Macrofungi* (pp. 15–56). Springer Cham. https://doi.org/10.1007/978-3-030-02622-6_2
- Kemp, C. J., D'Alessio, D. A., Scott, R. O., Kelm, G. R., Meller, S. T., Barrera, J. G., Seeley, R. J., Clegg, D. J., & Benoit, S. C. (2008). Voluntary consumption of ethyl oleate reduces food intake and body weight in rats. *Physiology & Behavior*, 93(4–5), 912–918. https://doi.org/10.1016/j.physbeh.2007.12.008
- Klement, T., Milker, S., Jäger, G., Grande, P. M., Domínguez de María, P., & Büchs, J. (2012). Biomass pretreatment affects Ustilago maydis in producing itaconic acid. *Microbial Cell Factories*, 11, 1–13. https://doi.org/10.1186/1475-2859-11-43

- Kumar, P. (2018). Role of food and nutrition in cancer. In *The Role of Functional Food Security in Global Health* (pp. 193–203). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813148-0.00012-8
- Kurz, M., Eder, C., Isert, D., Li, Z., Paulus, E. F., Schiell, M., Toti, L., Vértesy, L., Wink, J., & Seibert, G. (2003). Ustilipids, acylated β-D-mannopyranosyl D-erythritols from Ustilago maydis and Geotrichum candidum. *Journal of Antibiotics*, 56(2), 91–101. https://doi.org/10.7164/antibiotics.56.91
- Lee, H., & Lee, J. (2021). Anti-diabetic effect of hydroxybenzoic acid derivatives in free fatty acid-induced HepG2 cells via miR-1271/IRS1/PI3K/AKT/FOXO1 pathway. *Journal of Food Biochemistry*, 45(12), 1–12. https://doi.org/10.1111/jfbc.13993
- Łętocha, A., Miastkowska, M., & Sikora, E. (2022). Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications. *Polymers*, 14(18). https://doi.org/10.3390/polym14183834
- Li, B., Elango, J., & Wu, W. (2020). Recent advancement of molecular structure and biomaterial function of chitosan from marine organisms for pharmaceutical and nutraceutical application. *Applied Sciences* (*Switzerland*), 10(14), 30–50. https://doi.org/10.3390/app10144719
- Lizárraga-Guerra, R., & G. Lopez, M. (1998). Monosaccharide and alditol contents of huitlacoche (Ustilago maydis). *Journal of Food Composition and Analysis*, 11(4), 333–339. https://doi.org/10.1006/jfca.1998.0597
- Lizárraga-Guerra, R., Guth, H., & López, M. G. (1997). Identification of the Most Potent Odorants in Huitlacoche (Ustilago maydis) and Austern Pilzen (Pleurotus sp.) by Aroma Extract Dilution Analysis and Static Head-Space Samples. *Journal of Agricultural and Food Chemistry*, 45(4), 1329–1332. https://doi.org/10.1021/jf960650f
- Lizárraga-Guerra, R., & López, M. G. (1996). Content of Free Amino Acids in Huitlacoche (Ustilago maydis). *Journal of Agricultural and Food Chemistry*, 44(9), 2556–2559. https://doi.org/10.1021/jf960017u
- López-Martínez, L. X., Aguirre-Delgado, A., Saenz-Hidalgo, H. K., Buenrostro-Figueroa, J. J., García, H. S., & Baeza-Jiménez, R. (2022). Bioactive ingredients of huitlacoche (Ustilago maydis), a potential food raw material. *Food Chemistry: Molecular Sciences*, *4*. https://doi.org/10.1016/j.fochms.2022.100076
- López, M. L., & Baeza, J. R. (2018). Bioactividad de compuestos fenólicos de huitlacoche (Ustilago maydis) L.X. López-Martínez 1 y R. Baeza-Jiménez 2. 3, 313–318.
- López, S., Manuel, J., Saldaña, M., Consolación, M., Camacho, R., Morales, C., María, R., Cardoso, S., Lorena, M., & Lara, G. (2017). Capacidad antioxidante y caracterización fitoquímica de extractos etanólicos de huitlacoche (Ustilago maydis-Zea mays) crudo y cocido. *Revista Mexicana de Ciencias Farmacéuticas*, 48(3), 37–47.

- Luo, Y., Wang, C. Z., Sawadogo, R., Yuan, J., Zeng, J., Xu, M., Tan, T., & Yuan, C. S. (2021). 4-Vinylguaiacol, an Active Metabolite of Ferulic Acid by Enteric Microbiota and Probiotics, Possesses Significant Activities against Drug-Resistant Human Colorectal Cancer Cells. ACS Omega, 6(7), 4551– 4561. https://doi.org/10.1021/acsomega.0c04394
- Maassen, N., Panakova, M., Wierckx, N., Geiser, E., Zimmermann, M., Bölker, M., Klinner, U., & Blank, L. M. (2014). Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. *Engineering in Life Sciences*, 14(2), 129–134. https://doi.org/10.1002/elsc.201300043
- Machado, A. R., Silva, P. M. P., Vicente, A. A., Souza-Soares, L. A., Pinheiro, A. C., & Cerqueira, M. A. (2022). Alginate Particles for Encapsulation of Phenolic Extract from Spirulina sp. LEB-18:
 Physicochemical Characterization and Assessment of In Vitro Gastrointestinal Behavior. *Polymers*, *14*(21). https://doi.org/10.3390/polym14214759
- Martau, G. A., Mihai, M., & Vodnar, D. C. (2019). The use of chitosan, alginate, and pectin in the biomedical and food sector-biocompatibility, bioadhesiveness, and biodegradability. *Polymers*, 11(11). https://doi.org/10.3390/polym11111837
- Martínez-Flores, A., Corrales-García, J. J., Espinosa-Solares, T., García-Gatica, P., & Villanueva-Verduzco, C. (2008). CAMBIOS POSTCOSECHA DEL HONGO COMESTIBLE HUITLACOCHE (Ustilago maydis (D.C.) Corda). *Revista Chapingo Serie Horticultura*, XIV(3), 339–346. https://doi.org/10.5154/r.rchsh.2007.09.043
- Matuszewska, A., Jaszek, M., Stefaniuk, D., Ciszewski, T., & Matuszewski, Ł. (2018). Anticancer, antioxidant, and antibacterial activities of low molecular weight bioactive subfractions isolated from cultures of wood degrading fungus Cerrena unicolor. *PLoS ONE*, *13*(6), 1–14. https://doi.org/10.1371/journal.pone.0197044
- Meneses-Sagrero, S. E., Navarro-Navarro, M., Ruiz-Bustos, E., Del-Toro-Sánchez, C. L., Jiménez-Estrada, M., & Robles-Zepeda, R. E. (2017). Antiproliferative activity of spinasterol isolated of Stegnosperma halimifolium (Benth, 1844). *Saudi Pharmaceutical Journal*, 25(8), 1137–1143. https://doi.org/10.1016/j.jsps.2017.07.001
- Moschona, A., & Liakopoulou-Kyriakides, M. (2018). Encapsulation of biological active phenolic compounds extracted from wine wastes in alginate-chitosan microbeads. *Journal of Microencapsulation*, 35(3), 229–240. https://doi.org/10.1080/02652048.2018.1462415
- Muangsri, R., Chuysinuan, P., Thanyacharoen, T., Techasakul, S., Sukhavattanakul, P., & Ummartyotin, S. (2022). Release Characteristic and Antioxidant Activity of 4-Hydroxybenzoic Acid (4HB) from Sodium Alginate and Polyvinyl Alcohol-based Hydrogel. *ChemistrySelect*, 7(34), 1–8. https://doi.org/10.1002/slct.202202329

- Myint, O., Wattanapongpitak, S., Supawat, B., Kothan, S., Udomtanakunchai, C., Tima, S., & Tungjai, M. (2021). Protein binding of 4-hydroxybenzoic acid and 4-hydroxy-3-methoxybenzoic acid to human serum albumin and their anti-proliferation on doxorubicin-sensitive and doxorubicin-resistant leukemia cells. *Toxicology Reports*, 8, 1381–1388. https://doi.org/10.1016/j.toxrep.2021.07.001
- Nath, A. H. (2018). Nutraceuticals: Innovative Research Area. International Journal of Applied and Pure Science and Agriculture, 4(6), 24–33. https://doi.org/10.22623/ijapsa.2018.4024.g4wov
- Nguyen, Q. N., Lee, S. R., Kim, B., Hong, J. H., Jang, Y. S., Lee, D. E., Pang, C., Kang, K. S., & Kim, K. H. (2022). Estrogenic Activity of 4-Hydroxy-Benzoic Acid from Acer tegmentosum via Estrogen Receptor α-Dependent Signaling Pathways. *Plants*, *11*(23). https://doi.org/10.3390/plants11233387
- Niculescu, A. G., & Grumezescu, A. M. (2022). Applications of Chitosan-Alginate-Based Nanoparticles— An Up-to-Date Review. *Nanomaterials*, *12*(2). https://doi.org/10.3390/nano12020186
- Oh, K. K., Adnan, M., & Cho, D. H. (2021). Elucidating drug-like compounds and potential mechanisms of corn silk (Stigma maydis) against obesity: A network pharmacology study. *Current Issues in Molecular Biology*, 43(3), 1906–1936. https://doi.org/10.3390/cimb43030133
- Otaka, J., Subbarao, G. V., MingLi, J., Ono, H., & Yoshihashi, T. (2023). Isolation and characterization of the hydrophilic BNI compound, 6-methoxy-2(3H)-benzoxazolone (MBOA), from maize roots. *Plant and Soil*, 489(1–2), 341–359. https://doi.org/10.1007/s11104-023-06021-7
- Panda, S. K., Sahoo, G., Swain, S. S., & Luyten, W. (2022). Anticancer Activities of Mushrooms: A Neglected Source for Drug Discovery. *Pharmaceuticals*, 15(2). https://doi.org/10.3390/ph15020176
- Park, H. J. (2022). Current Uses of Mushrooms in Cancer Treatment and Their Anticancer Mechanisms. *International Journal of Molecular Sciences*, 23(18). https://doi.org/10.3390/ijms231810502
- Park, S. Y., Seetharaman, R., Ko, M. J., Kim, D. Y., Kim, T. H., Yoon, M. K., Kwak, J. H., Lee, S. J., Bae, Y. S., & Choi, Y. W. (2014). Ethyl linoleate from garlic attenuates lipopolysaccharide-induced proinflammatory cytokine production by inducing heme oxygenase-1 in RAW264.7 cells. *International Immunopharmacology*, *19*(2), 253–261. https://doi.org/10.1016/j.intimp.2014.01.017
- Pati, S., Crupi, P., Benucci, I., Antonacci, D., Di Luccia, A., & Esti, M. (2014). HPLC-DAD-MS/MS characterization of phenolic compounds in white wine stored without added sulfite. *Food Research International*, 66, 207–215. https://doi.org/10.1016/j.foodres.2014.09.017
- Patle, D., Khurana, N., Gupta, J., Kaur, P., & Khatik, G. L. (2023). Design, synthesis, and biological evaluation of coixol-based derivatives as potential antidiabetic agents. *Journal of Molecular Structure*, 1277, 1–12. https://doi.org/10.1016/j.molstruc.2022.134861.

Phupaboon, S., Matra, M., Prommachart, R., Totakul, P., Supapong, C., & Wanapat, M. (2022). Extraction,

Characterization, and Chitosan Microencapsulation of Bioactive Compounds from Cannabis sativa L., Cannabis indica L., and Mitragyna speiosa K. *Antioxidants*, *11*(11), 2103. https://doi.org/10.3390/antiox11112103

- Quinonez-Martinez, M., Ruan-Soto, F., Aguilar-Moreno, I. E., Garza-Ocañas, F., Lebgue-Keleng, T., Lavín-Murcio, P. A., & Enríquez-Anchondo, I. D. (2014). Knowledge and use of edible mushrooms in two municipalities of the Sierra Tarahumara, Chihuahua, Mexico. *Journal of Ethnobiology and Ethnomedicine*, 10(1), 1–13. https://doi.org/10.1186/1746-4269-10-67
- Rahi, D. K., & Malik, D. (2016). Diversity of Mushrooms and Their Metabolites of Nutraceutical and Therapeutic Significance. *Journal of Mycology*, 2016, 1–18. https://doi.org/10.1155/2016/7654123
- Rayar, A., & Manivannan, R. (2015). Evaluation of Antidiabetic Activity of Ethyl Linoleate Isolated from Decalepis hamiltonii Wight and Arn Seed. *International Research Journal of Pure and Applied Chemistry*, 9(2), 1–9. https://doi.org/10.9734/irjpac/2015/19222
- Razgonova, M., Zinchenko, Y., Pikula, K., Tekutyeva, L., Son, O., Zakharenko, A., Kalenik, T., & Golokhvast, K. (2022). Spatial Distribution of Polyphenolic Compounds in Corn Grains (Zea mays L. var. Pioneer) Studied by Laser Confocal Microscopy and High-Resolution Mass Spectrometry. *Plants*, *11*(5). https://doi.org/10.3390/plants11050630
- Ripardo Filho, H. S., Pacheco, L. C., Souza Filho, A. P. S., Guilhon, G. M. S. P., Arruda, M. S. P., & Santos, L. S. (2012). Bioensaios de atividade alelopática dos esteroides espinasterol, espinasterona e glicopiranosil espinasterol. *Planta Daninha*, 30(4), 705–712. https://doi.org/10.1590/S0100-83582012000400003
- Rosalba Beas, F., Guadalupe Loarca, P., Salvador Horacio Guzmán, M., Rodriguez, M. G., Nora Lilia Vasco, M., & Fidel Guevara, L. (2011). Potencial nutracéutico de componentes bioactivos presentes en huitlacoche de la zona centro de México. *Revista Mexicana de Ciencias Farmaceuticas*, 42(2), 36–44.
- Rubab, M., Chelliah, R., Saravanakumar, K., Barathikannan, K., Wei, S., Kim, J.-R., Yoo, D., Wang, M.-H., & Oh, D.-H. (2020). Bioactive Potential of 2-Methoxy-4-vinylphenol and Benzofuran from Brassica oleracea L. var. capitate f, rubra (Red Cabbage) on Oxidative and Microbiological Stability of Beef Meat. *Foods*, 9(5), 568. https://doi.org/10.3390/foods9050568
- Saeed, N. M., El-Demerdash, E., Abdel-Rahman, H. M., Algandaby, M. M., Al-Abbasi, F. A., & Abdel-Naim, A. B. (2012). Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models. *Toxicology and Applied Pharmacology*, 264(1), 84–93. https://doi.org/10.1016/j.taap.2012.07.020
- Safitri, A., Roosdiana, A., Kurnianingsih, N., Fatchiyah, F., Mayasari, E., & Rachmawati, R. (2022). Microencapsulation of Ruellia tuberosa L. Aqueous Root Extracts Using Chitosan-Sodium

Tripolyphosphate and Their In Vitro Biological Activities. *Scientifica*, 2022. https://doi.org/10.1155/2022/9522463

- Salazar-Torres, J. C., Mendez-López, Alonso; Álvarez-Hernadez, R., & Sánchez-Vega, M. (2021). El Huitlacoche. Alimento prehispánico vigente en México. Historia, Aprovechamiento y Técnicas de Producción. In Universidad Autónoma Chapingo-Universidad Autónoma Agraria Antonio Narro (1ra ed.).
- Salazar López, J. M. (2013). "EFECTO DEL HUITLACOCHE (Ustilago maydis-Zea mays) SOBRE INDICADORES DE GLICEMIA Y LIPIDEMIA EN RATAS DIABÉTICAS." Universidad Autónoma de Aguascalientes.
- Santiago, F. H., Moreno, J. P., Cázares, B. X., Suárez, J. J. A., Trejo, E. O., de Oca, G. M. M., & Aguilar, I. D. (2016). Traditional knowledge and use of wild mushrooms by Mixtecs or Ñuu savi, the people of the rain, from Southeastern Mexico. *Journal of Ethnobiology and Ethnomedicine*, 12(1), 1–22. https://doi.org/10.1186/s13002-016-0108-9
- Sathiyabama, M., Boomija, R. V., Muthukumar, S., Gandhi, M., Salma, S., Prinsha, T. K., & Rengasamy, B. (2024). Green synthesis of chitosan nanoparticles using tea extract and its antimicrobial activity against economically important phytopathogens of rice. *Scientific Reports*, 14(1), 1–10. https://doi.org/10.1038/s41598-024-58066-y
- Seville, B., Donaldson, M., & Doyle, C. (2012). Investigating Host Induced Meiosis in a Fungal Plant Pathogen. In *Meiosis - Molecular Mechanisms and Cytogenetic Diversity* (Vol. 11, Issue tourism, p. 13). InTech. https://doi.org/10.5772/30032
- Shaffique, S., Kang, S. M., Kim, A. Y., Imran, M., Khan, M. A., & Lee, I. J. (2021). Current knowledge of medicinal mushrooms related to anti-oxidant properties. *Sustainability (Switzerland)*, 13(14), 1–16. https://doi.org/10.3390/su13147948
- Singh, M. N., Hemant, K. S. Y., Ram, M., & Shivakumar, H. G. (2010). Microencapsulation: A promising technique for controlled drug delivery. *Research in Pharmaceutical Sciences*, 5(2), 65–77. https://doi.org/10.36948/ijfmr.2022.v04i06.1106
- Szekalska, M., Sosnowska, K., Zakrzeska, A., Kasacka, I., Lewandowska, A., & Winnicka, K. (2017). The influence of chitosan cross-linking on the properties of alginate microparticles with metformin hydrochloride - In vitro and in vivo evaluation. *Molecules*, 22(1). https://doi.org/10.3390/molecules22010182
- Taber, D. F. (1982). TLC Mesh Column Chromatography. *Journal of Organic Chemistry*, 47(7), 1351–1352. https://doi.org/10.1021/jo00346a039

Talamond, P., Verdeil, J. L., & Conéjéro, G. (2015). Secondary metabolite localization by autofluorescence in

living plant cells. Molecules, 20(3), 5024-5037. https://doi.org/10.3390/molecules20035024

- Valadez Azúa, R., Fuentes Moreno, Á., & Gómez Álvarez, G. (2011). Cuitlacochi: El Cuitlacochi. Universidad Nacional Autónoma de México - Instituto de Investigaciones Antropológicas.
- Valdez-Morales, M., Barry, K., Fahey, G. C., Domínguez, J., de Mejia, E. G., Valverde, M. E., & Paredes-López, O. (2010). Effect of maize genotype, developmental stage, and cooking process on the nutraceutical potential of huitlacoche (Ustilago maydis). *Food Chemistry*, *119*(2), 689–697. https://doi.org/10.1016/j.foodchem.2009.07.015
- Valdez-Morales, M., Carlos, L. C., Valverde, M. E., Ramírez-Chávez, E., & Paredes-López, O. (2016).
 Phenolic Compounds, Antioxidant Activity and Lipid Profile of Huitlacoche Mushroom (Ustilago maydis) Produced in Several Maize Genotypes at Different Stages of Development. *Plant Foods for Human Nutrition*, 71(4), 436–443. https://doi.org/10.1007/s11130-016-0572-3
- Valverde, M. E., Hernández-Pérez, T., & Paredes-López, O. (2015). Edible Mushrooms: Improving Human Health and Promoting Quality Life. *International Journal of Microbiology*, 2015(Table 1), 1–14. https://doi.org/10.1155/2015/376387
- Valverde, M. E., & Paredes-López, O. (1993). Production and Evaluation of Some Food Properties of Huitlacoche (Ustilago Maydis). *Food Biotechnology*, 7(3), 207–219. https://doi.org/10.1080/08905439309549858
- Vanegas, P. E., Valverde, M. E., Paredes-Lopez, O., & Pataky, J. K. (1995). Production of the edible fungus huitlacoche (Ustilago maydis): Effect of maize genotype on chemical composition. *Journal of Fermentation and Bioengineering*, 80(1), 104–106. https://doi.org/10.1016/0922-338X(95)98187-P
- Vezza, T., Canet, F., de Marañón, A. M., Bañuls, C., Rocha, M., & Víctor, V. M. (2020). Phytosterols: Nutritional health players in the management of obesity and its related disorders. *Antioxidants*, 9(12), 1–20. https://doi.org/10.3390/antiox9121266
- Vimala Bharathi, S. K., Moses, J. A., & Anandharamakrishnan, C. (2018). Nano and Microencapsulation Using Food Grade Polymers. In *Polymers for Food Applications* (pp. 357–400). Springer International Publishing. https://doi.org/10.1007/978-3-319-94625-2_14
- Wang, D., Xiao, H., Lyu, X., Chen, H., & Wei, F. (2023). Lipid oxidation in food science and nutritional health: A comprehensive review. *Oil Crop Science*, 8(1), 35–44. https://doi.org/10.1016/j.ocsci.2023.02.002
- Wang, S. Q., Wang, X. N., Li, Y. Y., Di, X. X., & Lou, H. X. (2014). Identification of purine-derived compounds, ustilagomaydisin A-C, from the plant pathogen Ustilago maydis and their modulating effects on multidrug-resistant (MDR) tumors. *Phytochemistry Letters*, 10, 193–197. https://doi.org/10.1016/j.phytol.2014.09.006

- Wathoni, N., Herdiana, Y., Suhandi, C., Mohammed, A. F. A., El-Rayyes, A., & Narsa, A. C. (2024). Chitosan/Alginate-Based Nanoparticles for Antibacterial Agents Delivery. In *International Journal of Nanomedicine* (Vol. 19, Issue May, pp. 5021–5044). https://doi.org/10.2147/IJN.S469572
- Wilkerson, M. Y. (2022). Properties and applications of alginate. Properties and Applications of Alginate, 1– 181. https://doi.org/10.5772/intechopen.94635
- Wołtczańska, A. (2018). Mycosarcoma Maydis (Ustilago Maydis) Benefits and Harmful Effects of the Phytopathogenic Fungus for Humans. *Biomedical Journal of Scientific & Technical Research*, 4(1), 3746–3748. https://doi.org/10.26717/bjstr.2018.04.001005
- Wongverawattanakul, C., Suklaew, P. on, Chusak, C., Adisakwattana, S., & Thilavech, T. (2022). Encapsulation of Mesona chinensis Benth Extract in Alginate Beads Enhances the Stability and Antioxidant Activity of Polyphenols under Simulated Gastrointestinal Digestion. *Foods*, 11(15). https://doi.org/10.3390/foods11152378
- Wu, H. C., His, H. Y., Hsiao, G., Yen, C. H., Leu, J. Y., Wu, C. C., Chang, S. H., Huang, S. J., & Lee, T. H. (2023). Chemical Constituents and Bioactive Principles from the Mexican Truffle and Fermented Products of the Derived Fungus Ustilago maydis MZ496986. *Journal of Agricultural and Food Chemistry*, *71*(2), 1122–1131. https://doi.org/10.1021/acs.jafc.2c08149
- Xu, X., Luo, A., Lu, X., Liu, M., Wang, H., Song, H., Wei, C., Wang, Y., & Duan, X. (2021). p-Hydroxybenzoic acid alleviates inflammatory responses and intestinal mucosal damage in DSS-induced colitis by activating ERβ signaling. *Journal of Functional Foods*, 87. https://doi.org/10.1016/j.jff.2021.104835
- Yu, G. R., Kim, J. E., Lim, D. W., & Park, W. H. (2023). The combination of Ephedrae herba and coixol from Coicis semen attenuate adiposity via glucocorticoid receptor regulation. *Scientific Reports*, 13(1), 1–14. https://doi.org/10.1038/s41598-023-47553-3
- Secretaría de Agricultura y Desarrollo Rural. (2020, 22 septiembre). *Huitlacoche delicioso y nutritivo*. Gobierno de México. https://www.gob.mx/agricultura/articulos/huitlacoche-delicioso-y-nutritivo
- Secretaría de Agricultura y Desarrollo Rural. (2022, julio). Prevé agricultura alza en la producción de maíz, con 28.9 millones de toneladas al cierre del año agrícola 2022 [Comunicado de prensa]. https://www.gob.mx/agricultura/prensa/preve-agricultura-alza-en-la-produccion-de-maiz-con-28-9millones-de-toneladas-al-cierre-del-ciclo-agricola-2022?idiom=es
- MNHN & OFB [Ed]. 2003-2022. Fiche de Ustilago maydis (DC.) Corda, 1842. Inventaire national du patrimoine naturel (INPN).Site web : https://inpn.mnhn.fr/espece/cd_nom/51310 Le 3 novembre 2022

INSTITUTO DE INVESTIGACIÓN EN CIENCIAS BÁSICAS Y APLICADAS

POSGRADO EN CIENCIAS

Cuernavaca, Mor., a 07 de octubre del 2024

DRA. LINA ANDREA RIVILLAS ACEVEDO COORDINADORA DEL POSGRADO EN CIENCIAS

PRESENTE

Atendiendo a la solicitud para emitir DICTAMEN sobre la revisión de la tesis titulada: "Estudio químico y encapsulación de extractos del hongo ancestral huitlacoche Ustilago maydis como potencial nutracéutico", que presenta el L.D.M.N.Q. Carlos Axel Espíndola Gorostieta (10062676) para obtener el título de Maestro en Ciencias.

Dirección de tesis: Dra. Mayra Yaneth Antúnez Mojica Codirección de tesis: Dra. América Ivette Barrera Molina Unidad Académica: Instituto de Investigación en Ciencias Básicas y Aplicadas (IICBA)

Nos permitimos informarle que nuestro voto es:

NOMBRE	DICTAMEN		
Dra. Laura Patricia Álvarez Berber CIQ-UAEM	APROBADO		
Dr. Mario Alfonso Murillo Tovar CIQ-UAEM	APROBADO		
Dra. Zormy Nacary Correa Pacheco CEPROBI-IPN	APROBADO		
Dr. Daniel Tapia Maruri CEPROBI-IPN	APROBADO		
Dra. María Luisa del Carmen Garduño Ramírez CIQ-UAEM	APROBADO		

Se expide el presente documento firmado electrónicamente de conformidad con el ACUERDO GENERAL PARA LA CONTINUIDAD DEL FUNCIONAMIENTO DE LA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MORELOS DURANTE LA EMERGENCIA SANITARIA PROVOCADA POR EL VIRUS SARS-COV2 (COVID-19) emitido el 27 de abril del 2020.

El presente documento cuenta con la firma electrónica UAEM del funcionario universitario competente, amparada por un certificado vigente a la fecha de su elaboración y es válido de conformidad con los LINEAMIENTOS EN MATERIA DE FIRMA ELECTRÓNICA PARA LA UNIVERSIDAD AUTÓNOMA DE ESTADO DE MORELOS emitidos el 13 de noviembre del 2019 mediante circular No. 32.

Sello electrónico

LAURA PATRICIA ALVAREZ BERBER | Fecha:2024-10-07 14:37:20 | FIRMANTE

ji8rvdwY7JjepkRk2AVqrr+3CKJVgqzYc9NJi7DVd9Vyhukmnu7rkHpELxzD9LE6134Wvj8W5qts6+EVE3wL6VYdX9b82AhNyawcCyu2j3Hzi38X5aiUIRDbrvRTa0/3Yn5uSneWbsi+i 4Z7is9jvQ7HKrDEKGBSMhrdnvQ0RnD0q23Cioe70+tyfmC6IHIXpTS0c+F3YmceHWSHDEGkIOiC2fAlJP4gkOYWGrwaA7hcHrUuv542WzE3F89+sRIyBDov8wp51z9HJ0G05ovY yjbkxGwK4cYTXxi5NuvYlfmzUZsLgIDpMbWt6nvPPgzjtDchuMLrqkNS4zmHd48rhQ==

DANIEL TAPIA MARURI | Fecha: 2024-10-07 14:59:29 | FIRMANTE

Pl/tn6UYhmA+oETUuc0ucUpyTts0wpJLhUuU6uVpp4iPS2+6GVEG/2KXs2OpgNeOHk9cOd3V4ZIIZ9g1cz9aNx2DMTNZsy+AHhdBgBx0NuQdab5zsAPmp7dFevfcxre9+/XTcKTp BTqrHqM/9JSVd2wTaf9RfgWCgre07HyQ865X8VdMQGc55S56KFTczQ19whWi6/yvZiZ9MkiREk9to6iA9bLtqSgA7iq48X+fLptUaZXBuHb3qarRMAvczT6D64miokYACQUz+8Os5 r0SGxIEhMWUcv4tVdl5hfBuVMQGu7hg9bkVUqTd/3XA9EM8mRr1/LtVvnsTaGKj5Hplqg==

MARIO ALFONSO MURILLO TOVAR | Fecha:2024-10-07 15:22:10 | FIRMANTE

BBu0VHPnwpvmr+j5kqCm8FvW7d/Yz/SKQJc4D/CR3tH70G9GlpfbwayRiqmKOEUhzmQybt3WhGJe6cU5eGGibdEvX74IEuWJko28SVaYK+Eq2eLXoDglKHXal1NysLX6P4NAa 4qhdSXf6nW0YNxE0c286C/YiHnf9TikMMvmU+nvZy0YAAxQ81LiUk8D6EGJLIO9a+axqEC5EzoFTi6A9GbKkAfkxQ82716S1iSM4Tmg8G1gWC5neYJagE37hVWj5hxHUJ9hsiTg Lb/4QL7vpTpY+6xli7Zwr037oV40E0D5URsQwBOg0qQ6YWFvI4KAam5OmDlcUP0N9cvLMWn+2Q==

MARIA LUISA DEL CARMEN GARDUÑO RAMIREZ | Fecha: 2024-10-07 16:20:18 | FIRMANTE

yEJ7qh/RDIR3e/SjC/V1XuKqR1aMtwlshj3aTrklk9f4awwAbMDc3X/gOhgiU9lKca/NsAo/brlrjFF2jN07lGzF+V60oSZmEZbzeT20o1/RJVX3YG2tW/x5uAdH2zeTnQXLh1gWwRyINT uhNnwYSlptUtU6Pa/V0KdEXj51WUW5T0FMaP4APCG52Z2RIwb31+BY0YoGQlc+xHx5hc3OlXlr6BkopfvCF+lWnlSBQ38phH11MLNF+9SLGpHMC4hRMdLpCTUKBPK6mM7a +dpUkADCvB4Qwa5MPjVIOBgCiLUreEkz3wkMlyIZXtZaayQs0jQB9xkSCucHlBLpUnJfLQ==

ZORMY NACARY CORREA PACHECO | Fecha: 2024-10-15 07:20:37 | FIRMANTE

ByZj7WU4g2seuryBM2YVqwJZR4r5l0HHDldCv5vJrl5nJe3jct4l2aFKlKf6VTlyfOsb0+BF+gEKSImUlhBPb9zqlkQThBlr3Tpu3TzjjYrjhJhQjNspN2khPLqYCfi6GOKigUDy1wS6vY5ro tR9dLuYfFngcvXCN7kzWCpR9xyHv0MvvMZloTXZczXeJ8CDL6QblYQqVXubZ/WiDm5i6AlA5eCzvSwJy5x1kbGktKBoi9vZTgxOQan8UBwgFq4KBS978pmgSVW81J3x334ZT7J 1wAx8aC048pW1tBv0LMrQ682X7o3tWjHJhHH/OzDhr59pH99v/ZiKCXaLvGhzyw==

Puede verificar la autenticidad del documento en la siguiente dirección electrónica o

escaneando el código QR ingresando la siguiente clave:

U159ImRfK

https://efirma.uaem.mx/noRepudio/cXFCQOkNoUvbcl6uRVqqA8e6gImZadck

