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ABSTRACT 
 

We study a dynamics of the epidemiological infection spreading at different values of 

the risk factor β (a control parameter) with the using of dynamic Monte Carlo approach 

(DMC). In our toy model, the infection transmits due to contacts of randomly moving 

individuals. We show that the behavior of recovereds critically depends on the β value. 

For sub-critical values β <β
c 
~0.6 , the number of infected cases asymptotically converges 

to zero, such that for a moderate risk factor the infection may disappear with time. 

Our simulations shown that over time, the properties of such a system asymptotically 

become close to the critical transition in 2D percolation system. We also analyzed an 

extended system, which includes two additional parameters: the limits of taking on/ 

off quarantine state. It is found that the early quarantine off does result in the irregular 

(with positive Lyapunov exponent) oscillatory dynamics of infection. If the lower limit 

of the quarantine off is small enough, the recovery dynamics acquirers a characteristic 

nonmonotonic shape with several damped peaks. The dynamics of infection spreading 

in case of the individuals with immunity is studied too. 

RESUMEN 

 

Estudiamos una dinámica de la propagación de la infección epidemiológica a diferentes 

valores del factor de riesgo β (un parámetro de control) con el uso del enfoque dinámi- 

co de Monte Carlo (DMC). En nuestro modelo de juguete, la infección se transmite de- 

bido a los contactos de individuos que se mueven al azar. Mostramos que el comporta- 

miento de los individuos recuperados depende críticamente del valor de β. Para valores 

subcríticos β <β
c 
~ 0,6, el número de casos infectados converge asintóticamente a cero, 

de modo que para un factor de riesgo moderado la infección puede desaparecer con el 

tiempo. Nuestras simulaciones mostraron que, con el tiempo, las propiedades de dicho 

sistema se acercan asintóticamente a la transición crítica en el sistema de percolación 

2D. También analizamos un sistema extendido, que incluye dos parámetros adiciona- 

les: los límites de activación / desactivación del estado de cuarentena. Se encuentra 

que la cuarentena temprana da como resultado la dinámica oscilatoria irregular (con 

exponente de Lyapunov positivo) de la infección. Si el límite inferior de la cuarentena 

es lo suficientemente pequeño, la dinámica de recuperación adquiere una forma carac- 

terística no monótona con varios picos amortiguados. También se estudia la dinámica 

de la propagación de la infección en el caso de los individuos con inmunidad. 
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1. INTRODUCTION

The dangerous dynamics of the coronavirus spread 
throughout the world gives rise to numerous studies in 
a wide scientific spectrum. Improving known epidemic 
models and developing new models are complicated 
tasks because the lack of verified statistics on the infection 
spread and disease dynamics. Unstable predictability of 
infection, ambiguity with drugs [1], uncertainty regarding 
the immunity of disease [2], and other factors (such as a 
viral mutation) make it difficult to predict the dynamics of 
pandemic. This may relay to some mathematical models, 
which depend on a significant number of free (statisti-
cally-driven) parameters. The known models of the SIR 
family give solutions in a form of smooth functions [3] 
(solutions of differential equations) that only indirectly 
include important random factors. Naturally, that in 
such a situation, most statistically reliable forecasts are 
obtained by methods based on the direct application 
of the central limit theorem with a predicted error 
of          , see [4] [5] [6] and references therein. In this 
paper, we propose the use of the dynamic Monte Carlo 
(DMC) method that self-consistently includes various 
dynamic random factors. Such a technique was 
previously used to study the processes associated with 
aggregation, viscous flow properties, the formation of 
biological structures, and allows to scale the associated 
geometric and dynamic quantities that characterize 
these phenomena [7] [8] [9]. In our study, as a control 
(free) parameter, we use the generalized risk factor β, 
which includes some of the factors mentioned above in 
an integral form. In our 2D toy model, the transmission 
of infection occurs due to contacts of randomly moving 
individuals, that determines the complex dynamics of 
the infection spread and various critical aspects of such a 
dynamics. The paper is organized as follows. In Section 2, 
we formulate our approach and examine the behavior of 
infected individuals (order parameter A(t, β)), which, as it 
turns out latter, critically depends on the value  β. It also 
is discussed the similarity of the asymptotic behavior of 
the infection dynamics with the critical phase transition 
in a two-dimensional (2D) percolation system. In the 
next Section, we analyze the dynamic properties of the 
extended system, where we deal with two additional 
parameters which allow to on/off the quarantine state. 
The next Section, contains the study of dynamics of the 
infection spreading and the formation of immunity for 
infected individuals. The last Section summarizes our 
conclusions.

 2. DYNAMIC MONTE CARLO SIMULATIONS 

First we explain which the properties of dynamic Monte 
Carlo (DMC) approach we deal with. In order to study the 
infection dynamic in epidemiological system (that is far 
from equilibrium) the DMC method is used, that allows 
investigation both temporal and spatial properties by 
the numerical simulations. As a toy model, we choose a 
2D L×L (where L is size) bounded system that contains 
a disordered population of     individuals. Following the 
classifications commonly known from SIR model [3] in 
our DMC model we divide the host population into a set 
of distinct categories, according to its epidemiological 
status, that are susceptible (S), currently infectious (I), 
and recovered (R). The total size of the host population 
is then N=S+I+R and all the individuals are born in the 
susceptible category [3]. Following the actual situations 
we assume that initially the maternally derived immunity 
is clear. (The effect of immunity is studied in the following 
sections).

Upon contact with infectious individuals, the 
susceptibles may get infected and move into the 
infectious category. To apply the DMC approach it is 
constructed the Person class (individual, alias object) 
that encapsulates properties of a randomly placed and 
moving individual and contains the following significant 
attributes

where x, y are the components of position vx, vy 
are the components of velocity, the parameters  I, M 
describe the states: infected/uninfected and immunized/
non-immunized, respectively. The list of Persons that 
represents a total host population is used in our DMC 
simulations.

One of the underlying reasons why epidemiological 
systems exhibit variation is due to a  different way that 
the individuals in a population have contact with each 
other.  In our DMC simulation we assume that the 
spreading (transmission) of the infection occurs  because 
of random contacts for moving individuals.

To do that in DMC simulations we use the following 
strategy. (i) Any contact can occur only between two 
nearest individuals. (ii) At any contact, the state of an 
infected transmits to the other contact person. But the 
infected one can still be recovered with probability  1-β 
(recall that  β             is a risk factor). This means that if β ≲ 
1 , the probability to a recovery is small.
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When the simulation time runs a lot contacts occur 
between nearest randomly moving persons that 
leads to fast and uncontrollable transfer of infection 
between many individuals, see Figure 1.  It is of 
great interest to investigate the temporal infection 
dynamics at various risk factors β. Such a dynamics of 
the infections spreading (coefficient A(t)=I(t)/(N)) as 
function of time  t  is displayed in Figure 2. Since A(t) is 

To take an advantage of the visualizations at applying the 
DMC technique, we allow each object to have a visual 
representation, which is a yellow circle (non-immunized 
individual), a green circle (immunized but not infected 
individual) and a red circle (infected individual), see 
Figure 1.  We used the interaction radius r as the unit scale 
to measure distances (used  r=6, see Figure 1) between 
the individuals, while the time unit  Δt=1 was the time 
interval between two updatings of the directions and 
positions. In our simulations we used the simplest initial 
conditions: at time t=0 the positions and velocities 
for all the N individuals are randomly distributed. We 
use the velocity scale such that random vx, vy  [2, 10] 
for which the individuals always interact with their 
actual neighbors and move fast enough to change the 
configuration after a few updates. According to our 
simulations, the variation of actual interval of values of  
vx, vy does not affect the results. We also investigated 
the cases when the basic parameter of the model, the 
density ρ=N/L2 is slightly varied.

Figure 1 (Color online.) The snapshots (N = 1000; β = 0.95, L = 
400) show the dynamics of the infection spreading at: (a) t=10, 
(b) t=30, (c) t=50, (d) t=70. We observe that for shown case at t = 
70 nearly all the individuals are infected.

a random-valued function we will fit (see [10])  A(t) by 
a suitable fitting function that is chosen as 

where a0, 1, 2 are the fitting coefficients. We found that 
a1   is very small    10-5 and a2   2  for all the cases, but the 
amplitude a0  changes considerably at the  β variation. In 
Figure 2 the blue lines show the numerical simulations 
(DMC) data, while the red lines display the fitting function 
f(t). Figure 2(a) shows the case β=0.99, (b) β= 0.90, (c) β= 
0.80, (d) β= 0.60. We indicate a remarkable observation that 
for β < 0.60   the system asymptotically converges to a trivial 
solution with A     a0=0 already for t   6. Such observation 
leads to an interesting assumption that the studied 
dynamics of the infection spread can (asymptotically) be 
associated with a critical transition in the two-dimensional 
(2D) percolation system, that

Figure 2  (Color on line.) The dynamics of the infections spreading 
coefficient (order parameter) A=I/N for times t<8 at different 
values of the risk factor (control parameter) β. [In this figure the 
abscissa axis shows the fitting time 0.01t] The blue lines (arrows 
A) show the  numerical simulations (DMC) data, while red lines 
(arrows B) display the fitting function Equation (2), where only a0 
coefficient changes considerably at β variation: (a) shows case 
β=0.99, (b) β= 0.90, (c) β= 0.80, (d) β= 0.60. At β < 0.60 the DMC 
solution rapidly converges to 0 (A = 0). This means that for β < 
βc ≈ 0.60 all the infected individuals will be recovered up to t=8. 
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4. THE EXTENSION OF MODEL

A. Quarantine regime 

Mass infection shown in Figure 1 is an extremely dangerous 
and highly undesirable scenario for the development 
of epidemiological situation. This Section discusses the 
extension of the model, which in principle allows suspending 
this trend. One of the simple solutions proposed recently 
is introducing the quarantine by localizing of infected 
individuals in order to significantly reduce the number of 
contacts that leads to the transmission of infection. This 
can be modeled by setting vx=vy=0 for infected individuals 
and ignoring all the contacts with them in our approach. 
We call such a regime of simulation as a quarantine mode. 
In order to do this we introduce two new parameters into 
the model, Amax (the infection level when the quarantine is 
automatically turned on), and Amin (the infection level when 
the quarantine is turned off).

Figure 4 shows the dynamics of infections A(t) in 
quarantine mode with  Amax=0.7,  Amin=0.36  at moderate 
values  β , (a) β=0.78, (b) β=0.80, and (c) β=0.82; panel 
(d) shows the typical dynamics A at initial times. For 
such parameters from Figure 4 we observe that the 
system transmits to unexpected dynamic state: the 
generation of irregular oscillations of  A  with large 
amplitudes between  Amax and Amin. We have calculated 
(by the method [16]) that the Lyapunov exponent 
for such irregular oscillations is about 0.3. This means 
that if quarantine is turned off too early, the growth of 
infections suppressed, but the system goes into dynamic 
mode with irregular oscillations. In this case, a significant 
number of infected and recovered individuals can be re-
infected, therefore, a full recovery does not occur.

3. CRITICAL VALUE OF THE RISK FACTOR

Figure 3 displays a comparison of above mentioned 
dependencies. In Figure 3 the red line shows the 
dependence a0(β) (see Figure 2) associated with the 
infecting parameter A(β)=I/N, and the blue line shows 
the percolating order parameters P(p) as function of the 
occupation defect probability    . We observe that both 
dependencies are in excellent agreement and at βc    pc                                                        
0.6 the phase transition to infected/percolating state 
occurs. From Figure 3 we can assume that the parameter 
A(β) can be mentioned further as an order parameter 
(similarly P(p)). This results that the formalism of the 
percolation critical percolating phase transition [11], 
[12], [13]can be applied to investigation the asymptotic 
of infection spreading at various (β). On the other hand, 
good agreement between the results of DMC modeling 
and the critical transition in 2D percolation system shows 
the general applicability of DMC approach to analyze 
the dynamics of infection spread in the epidemiological 
system. 

Figure 3 (Color online.) The comparison of the order parameter 
functions for the infection spreading A(β) and the order 
parameter for 2D percolating P(p), where p is the occupation 
probability of defect state [11]. Red line shows the dependence 
of (slightly tailored) amplitude parameter the fitting function a0 
corresponding to A=I/N at fixed time t=8 as function of the risk 
factor β. Blue line shows the dependence of the order parameters 
P(p) for 2D percolating material as function of the occupation 
probability p. We observe that both curves are very close and the 
phase transitions to infected/percolating state occurs similarly 
at βc      pc     0.6 for both cases when the occupation probability 
of defects is  pc=0.594 [11], [12], [13], [14], [15] see Figure 3. Such 
an assumption is studied in the following Section. 
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B. The immunity

Although actually there are no reliable statistics for 
the congenital or acquired immunity for persons (for 
animals see Ref. [17]), in this Section we analyze this 
aspect in framework of our model. Following the Ref. [3], 
we assume that in the host population there is no innate 
immunity to the virus. But we suppose that the persons 
(at least a large majority) will acquire this immunity, 
as is usually the case. To this end, in our model we use 
the parameter M, see Equation (1). Following [3], we 
assume that this parameter acquires a non-zero value 
(the presence of immunity) only after first infection and 
recovery. Re-infection no longer occurs even at contacts 
with infected persons. Figure 7 shows the dynamics 
of recovery at presence of immunity in the quarantine 
mode for fixed parameters β=0.94 and Amax=0.24 and 
different Amin= 0.17, 0.1, 0.05, 0.02, 0.01. One can see that 
now the oscillations shown in Figure 6 acquire shape 
of strongly damped picks that results the number of 
infected (order parameter A) to rapidly decrease. This 
allows predicting that after the first high pick of infection 
(that has nearly fixed amplitude for all the cases) may 
occur a second pick but with lesser amplitude and then 
the complete recover may become.

Figure 5 shows the infections dynamics A(t) in the 
quarantine mode but for large the risk factors  β: (a)  β= 
0.88, (b)  β= 0.90, (c) β=0.92, (d) β=0.88. We observe that 
for large   β the evolution of the infections has monotonic 
shape (with small random variations) but without the 
oscillations as in Figure 4. However the dynamics A(t) in 
(b) for  β=0.90  is already suppressed and strongly differs 
with respect to a case without the quarantine shown in 
Figure 2(b).

Figure 4 (Color online.) The dynamics of infection parameter A in 
quarantine mode with Amax = 0.7, Amin = 0.36 at moderate values, 
(a) β= 0.78, (b)  β= 0.80, and (c) β=0.82; panel (d) shows the 
typical dynamics A at initial times. We observe the generation 
of irregular oscillations of A with large amplitudes between 
Amax and Amin. We calculated (by the method) that the Lyapunov 
exponent for such irregular oscillations is about 0.3.

Figure 5 (Color online.) The same quarantine case as in Figure 4 
but for large the risk factor β: (a) β=0.88, (b) β=0.90, (c) β=0.92, (d) 
β=0.88 for small times. We observe that for large the evolution 
of the infections has monotonic shape (with small random 
variations) but without the large oscillations shown in Figure 4. 
One can see that the dynamics A(t) in (b) for β=0.90 is already 
suppressed and considerably differs with respect to situation 
without the quarantine shown in Figure 2(b).

Figure 6. Current situation with COVID-19. We observe the 
irregular oscillating dynamics similar that is shown in Fig. 5.

Figure 7 (Color online.) The dynamics of recovery in presence of 
immunity in the quarantine mode for the parameters β=0.94, 
Amax=0.24 for different Amin= 0.17, 0.1, 0.05, 0.02, 0.01. One can 
see that after the high peak, the oscillations rapidly decay that 
lead to a decrease of infections (the order parameter A(t) rapidly 
decreases).



Programación Matemática y Software (2020) 12 (3): 1-8. ISSN: 2007-3283

6

Now we compare the effects of quarantine and immunity 
factors for recovery. Figure 7 shows the dynamics of 
infections (order parameter A) for different values of 
the risk factor β=0.99, 0.94, 0.9, 0.8 at situation without 
the quarantine when only the personal immunity M>0 
presents (see Equation (1)). This simulation shows that 
in such case the complete recover can occur even for a 
lesser time comparing to Figure 6.

5. DISCUSSION AND CONCLUSION

We studied the dynamics of the infection spread at 
various values of the risk factors β (control parameter) 
using the dynamic Monte Carlo method (DMC). In our 
model, it is accepted that the infection is transmitted 
through the contacts of randomly moving individuals. 
We show that the behavior of recovered individuals 
critically dependents on the value β. For sub-critical 
values β < βc ~0.6, the number of infected cases (the 
order parameters A(t) asymptotically converges to zero, 
so that at moderate risk factor, the infection can quickly 
disappear. However such a nontrivial behavior has to be 
confirmed by direct calculation.

Figure 8 shows the dynamics of infections fraction 
A(t, β) with time for different risk factors β near the 
critical transition  β ~ βc =0.6 for n=1000 and rather large 
the initial number of infections I0=100. We observe that 
really for    β    0.58 the number of infections rapidly 
reach zero. We also analyzed the extended system, 
which currently is widely used to prevent the spread 
of the virus. In our approach such a system includes 
two additional parameters on/off the quarantine state. 
It was revealed that early exit from the quarantine 
leads to irregular oscillating dynamics (with positive 
Lyapunov exponent) of the infection. However when 
the lower limit of the quarantine off is sufficiently 
small, the infection dynamics acquires a characteristic 
nonmonotonic shape with several damped peaks. The 
dynamics of the infection spread in case of individuals 
with immunity was studied too. Our comparison of 
quarantine and immunity during recovery shows that 
with stable immunity, complete recovery occurs faster 
than in quarantine mode. Finally, we apply the Monte 
Carlo approach to study the dynamics of the epidemic 
at different population number N, see Fig. 10, 11. We 
investigate the situations where all the individuals 
acquire stable immunity after illness and thus no longer 
capture an infection. This again confirms the importance 
of the personal immunity in a mass epidemic.

Figure 8 (Color online.) The dynamics of infections (order 
parameter A) for different values of the risk factor β=0.99, 0.94, 
0.9, 0.8 for situation when only the effective personal immunity 
M > 0 presents (without the quarantine), see Equation (1). This 
simulation shows that in such case the complete recover can 
occur for a lesser time comparing to Figure 6.

Figure 9 (Color online.) The fraction of infections A(t, β) as 
function of time t at different risk factors  near the critical 
transition at βc ~ 0.6 for N=1000 and initial number of infections 
I0=100, with β: (a) 0.56, (b) 0.57, (c) 0.58, (d) 0.581. We observe 
that for β    0.58 the number of infections rapidly reaches zero. 
However for β>0.8 the process of recovering may be long.
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From general point, it is instructively to compare the 
time behavior of the solutions of DMC and popular 
SIR model [3] for the same size of a host population 
N. The latter allows us to assure that the different 
DMC and SIR models can lead to similar results for S, I 
and R dependencies. To compare such dependencies 
which are calculated independently for DMC and SIR 
approaches we apply the Kolmogorov-Smirmov (K-S) 
statistics that is useful to verify the null hypothesis that 
both the data sets drawn from the same distribution, 

see details in Ref. [10]. From Fig.11 we observe a 
high similitude for S, I, R dependencies obtained 
independently from DMC simulations and numeric 
solution of SIR equations.

Figure 10. (Color on line.) The fraction of the infections I as 
function of time at different population number N=1000…9000 
(size of the system is fixed L=400) at the risk factor β=0.98 for 
situation when the personal immunity M > 0 presents (without 
the quarantine). We observe that the larger N, the faster the 
recovery occurs, which again confirms the importance of the 
personal immunity in a mass epidemic.

Figure 11.  The time to reach the peak of infections I=I(N), 
depending on the population number N = 1000 ... 9000 (the size 
of the system is fixed L = 400) at the risk factor β=0.98 when the 
personal immunity M > 0 presents (without the quarantine). It 
can be seen that the larger the population N, the faster the peak 
of infection occurs, see Fig. 9. However, mass recovery with new 
acquired immunity is also faster.

Figure 12 (Color on line.) Comparing DMC (solid lines) and SIR 
(dash lines) approaches for S; I and R dependencies. For SIR 
model all the functions are normalized by N value. For DMC 
approach are use parameter β=0.98. For SIR model is used a 
numerical solution of the SIR system. The factor 0.28 was used to 
adjust the time scales for the DMC and SIR models. We observe 
a high level of agreement for both DMC and SIR models for used 
parameters.
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