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Abstract: In recent years, the use of solvent-free reactions represents a challenge for organic chemists,
since it would help to optimize methodologies and contribute to the development of sustainable
chemistry. In this regard, our research group has intensified efforts in the search for reactions that
can be carried out in the absence of a solvent. In this paper, we present a protocol for the aza-
Michael addition of benzylamine to α,β-unsaturated esters to prepare N-benzylated β-amino esters
in the presence of catalytic amounts of DBU (0.2 eq) via solvent-free reaction. Depending on the
α,β-unsaturated esters, we observed a reduction in reaction times, with good to excellent yields for
aza-Michael addition.

Keywords: solvent free; β-amino esters; microwaves; aza-Michael addition; DBU

1. Introduction

In the past decade, organocatalysis has been the focus of extensive studies due to
its significant advantages over catalysis by metal-containing species, including lower tox-
icity. For example, hypervalent iodine compounds (HICs) are widely used in organic
synthesis due to their high reactivity and low toxicity [1]. It has been demonstrated that
theiodotetrazolium salts and diazolium- and triazolium-based organo-catalysts effectively
catalyze an extensive series of organic transformations, including Michael additions. Re-
cently, it was shown that hypervalent iodine(III) derivatives (i.e., diaryliodonium salts)
exhibit high catalytic activity [2,3]. Considering the highly promising catalytic properties
of thediaryliodonium salts, a reliable model for DFT calculations has been suggested [4].

Currently, for the development of new methodologies in organic synthesis, sustainable
points of view must be considered [5]. This is why Green Chemistry recommends a series of
procedures, such as the use of new ecological reagents and catalysts; more environmentally
friendly solvents; and the use of supercritical fluids [6], ionic liquids [7], and solvent-free
reactions [8]. Within solvent-free methodology, activation techniques such as ultrasound [9],
microwaves (MW) [10], or mechanochemistry could be used [11]. In this sense, the scope of
applications in organic synthesis is very extensive and includes, for example, heterocyclic
chemistry; organometallic chemistry; and radio-, photo-, and combinatorial chemistry [12–15].

On the other hand, the use of microwaves is an enhanced method from classical heat-
ing methods and allows for a reduction in reaction times, obtains higher yields, avoids side
products, and therefore simplifies the purification processes, as well as enables carrying out
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novel transformations and performing reactions that could not take place under conven-
tional thermal conditions [16]. These advantages have encouraged many research groups
to apply this technique to optimize the daily synthetic process, as well as the synthesis
of new compounds. In this way, there is a diverse group of chemical reactions success-
fully performed through microwaves—Suzuki couplings [17], Claisen rearrangements [18],
Mitsunobu reactions [19], Michael additions [20,21], and many more [22]. In particular,
Michael addition is one of the most versatile reactions in organic synthesis, and one of
the most useful applications of this process is the synthesis of β-amino acids and deriva-
tives [23,24], which can also be carried out under asymmetric conditions by employing
chiral auxiliaries [25,26].

As reported by our research group, we developed a methodology for aza-Michael
additions of benzylamine to α,β-unsaturated esters to obtain racemic β-amino esters with
microwaves [27] and their subsequent enzymatic resolution with Lipase B from Candida
Antarctica (CAL-B) [28].

On the other hand, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) has excellent catalytic
activity in Baylis–Hillman reaction, as reported by Aggarwal, and was found to be far
superior to other tertiary amines [29]. In this regard, Kim et al. examined DBU as a
promoter for the aza-Michael reaction and developed a practical and versatile method with
a sub-stoichiometric amount of DBU [30], although it is noteworthy that they used CH3CN
as a solvent.

Considering that the use of solvent-free reactions is especially important and inter-
esting, in the present research project, we decided to combine solvent-free conditions and
MW irradiation in the synthesis of N-benzylated β-amino esters in the presence of catalytic
amounts of DBU (0.2 eq) to reduce reaction times, with the additional advantages of the
eco-friendly approach.

2. Materials and Methods
2.1. Materials
Experimental Part

General. All chemicals were obtained commercially (Sigma-Aldrich, Toluca, Mexico)
and used without further purification. Reactions were monitored by TLC on Al plates
coated with silica gel with fluorescent indicator (60 F254). Column chromatography (CC)
was performed on silica gel (230–400 mesh Merck, Darmstadt, Germany). Melting points
were measured in open capillary tubes using a Melt-temp electrothermal apparatus and
were uncorrected. The reactions with microwaves were carried out in Discover CEM
equipment. NMR Spectra: Varian Gemini at 200 (1H) and 50 MHz (13C), Varian Inova at
400 (1H) and 100 MHz (13C), Bruker AVANCE III HD 500 MHz (1H) and 125 MHz (13C);
spectra were obtained in chloroform-D (99.8%) +0.03% v/v TMS from Cambridge Isotope
Laboratories, Inc. (Tewksbury, MA, United States). The chemical shift (δ in ppm rel. to
Me4Si as internal standard) was J in Hz. HR-MS: MStation JMS-700 JEOL apparatus, in
m/z. For more details see Supplementary Material.

Method for (rac)-methyl 3-(benzylamino)-3-(4-nitrophenyl)propanoate (3), (E)-N-benzyl-
3-(4-nitrophenyl)acrylamide (4). Into a glass microwave reaction vessel, a 5 mL flask provided
with magnetic stirrer, the following were added: methyl 3-(4-nitrophenyl)acrylate 1 (0.5 mmol),
benzylamine (2 mmol), and DBU (30 µL, 0.1 mmol). The reaction was heated at 75 ◦C and 75 W
in microwave for 10 min. After completion, the reaction was purified on column; hexane/ethyl
acetate 80:20 was used for separation. Compound 3. Yield: 32%. 1H NMR (600 MHz, CDCl3):
δ 2.04 (s, 1H), 2.62 (dd, J = 15.9, 5.2 Hz, 1H), 2.72 (dd, J = 15.9, 8.6 Hz, 1H), 3.54 (d, J = 13.2 Hz,
1H), 3.63 (d, J = 12.3 Hz, 1H), 3.64 (s, 3H), 4.23 (dd, J = 8.6, 5.2 Hz, 1H), 7.22–7.34 (m, 5H), 7.57
(d, J = 8.7 Hz, 2H), 8.22 (d, J = 8.7 Hz, 2H). 13C NMR (150 MHz, CDCl3): δ 42.4, 51.5, 51.9, 58.3,
124.0, 127.3, 128.1, 128.2, 128.6, 139.6, 147.5, 150.3, 171.6. Compound 4. 1H NMR (600 MHz,
CDCl3) δ 4.59 (d, J = 5.6 Hz, 2H), 6.09 (s, 1H), 6.55 (d, J = 15.6 Hz, 1H), 7.28–7.39 (m, 5H), 7.63 (d,
J = 8.7 Hz, 2H), 7.72 (d, J = 15.6 Hz, 1H), 8.22 (d, J = 8.7 Hz, 2H). 13C NMR (150 MHz, CDCl3) δ
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44.2, 124.3, 124.6, 127.9, 128.1, 128.5, 129.0, 137.8, 139.0, 141.1, 148.3, 164.7. Data were consistent
with those reported [31].

Method for (rac)-tert-butyl 3-(benzylamino)-3-(4-nitrophenyl)propanoate (5). Into a
glass microwave reaction vessel, a 5 mL flask provided with magnetic stirrer, the following
were added: tert-butyl 3-(4-nitrophenyl)acrylate 2 (0.5 mmol), benzylamine (2 mmol), and
DBU (30 µL, 0.1 mmol). The reaction was heated at 75 ◦C and 75 W in microwave for
10 min. After completion, the reaction was purified on column; hexane/ethyl acetate 80:20
was used for separation. Yield: 44%. 1H NMR (200 MHz, CDCl3) δ (ppm) 1.38 (s, 9H),
1.99 (br, 1H), 2.48–2.71 (m, 2H), 3.46–3.66 (t, 2H), 4.10–4.23 (m, 1H), 7.12–8.28 (m, 9H). 13C
NMR (50 MHz, CDCl3) δ (ppm) 28.0, 43.7, 51.54, 58.6, 81.2, 123.7, 127.1, 128.0, 128.1, 128.4,
139.6, 150.5, 170.2. FAB-MS: 357 ([M + H]+). HR-FAB-MS: 357.18 ([M + H]+, C7H14NO+;
calc. 356.42).

Method for (rac)-methyl 3-(benzylamino)-3-(4-methoxyphenyl)propanoate (8) and
N-benzyl-3-(4-methoxyphenyl)acrylamide (9). Into a glass microwave reaction vessel con-
taining a magnetic stirrer, the following were added: methyl 3-(4-methoxyphenyl)acrylate
6 (1 mmol), benzylamine (4 mmol), and DBU (30 µL, 0.2 mmol). The mixture was placed in
Discover CEM equipment at 130 ◦C, 100 W (20 W), and 1 psi for 2 h. After completion, the
reaction was concentrated to dryness and purified on column; hexane/ethyl acetate 95:5 to
80:20 was used for separation. Compound 8. Yield: 38%. (yellow oil). 1H NMR (200 MHz,
CDCl3), δ (ppm), 1.92 (s, 1H), 2.66 (m, 2H), 3.63 (s, 3H), 3.42–3.73 (m, 2H), 3.81 (s, 3H), 4.07
(m, 1H), 6.79–7.43 (m, 9H); 13C NMR (50MHz, CDCl3), δ (ppm) 43.1, 51.3, 51.7, 55.3, 58.3,
114.1, 127.0, 128.2, 128.3, 128.4, 134.6, 140.4, 159.1, 172.4. Elemental analysis for C18H21NO3:
Observed: %C = 74.0614, %H = 7.7957, %N = 4.0996, Calculated: %C = 73.8730, %H = 7.9700,
%N = 4.1015. Compound 9. Yield: 10%. 1H NMR (200 MHz, CDCl3), δ (ppm), 3.81 (s,
3H), 4.52 (d, J = 6.2 Hz, 2H), 6.16 (br, 1H), 6.27 (d, J = 6 Hz, 1H), 6.74–7.54 (m, 9H), 7.58
(d, J = 8 Hz, 1H). 13C NMR (50 MHz, CDCl3), δ (ppm), 43.9, 55.4, 114.3, 118.2, 127.6, 127.9,
128.8, 129.4, 138.4, 141.0, 161.0, 166.3. Data were consistent with those reported [32,33].

Method for (rac)-tert-butyl 3-(benzylamino)-3-(4-methoxyphenyl)propanoate (10).
Into a glass microwave reaction vessel containing a magnetic stirrer, the following were
added: tert-butyl 3-(4-methoxyphenyl)acrylate 7 (1 mmol), benzylamine (4 mmol), and
DBU (30 µL, 0.2 mmol). The mixture was placed in Discover CEM equipment at 130 ◦C,
100 W (20 W), and 1 psi for 2 h. After completion, the reaction was concentrated to dryness
and purified on column; hexane/ethyl acetate 95:5 to 80:20 was used for separation. Yield:
39%. (mp 64–66 ◦C). 1H NMR (200 MHz CDCl3), δ (ppm), 1.37 (s, 9H), 2.04 (br, 1H),
2.42–2.79 (m, 2H), 3.44–3.68 (m, 2H), 3.82 (s, 3H), 4.05 (m, 1H), 6.67–7.46 (m, 9H); 13C NMR
(50MHz CDCl3), δ (ppm) 28.0, 44.3, 51.3, 55.2, 58.5, 80.5, 113.8, 126.8, 128.3, 134.7, 140.4,
158.8, 171.1. Anal. Calcd for C21H27NO3: C, 73.87; H, 7.97; N, 4.10. Found: C, 74.0611; H,
7.7957; N, 4.0996.

Method for (rac)-methyl 3-(benzylamino)-3-phenylpropanoate (13). Into a flask
containing a magnetic stirrer, the following were added: methyl 3-phenylacrylate 11
(0.62 mmol), benzylamine (2.48 mmol), and DBU (18.5 µL, 0.124 mmol). The mixture was
placed in an oil bath at 75 ◦C for 4 h. After completion, the reaction was concentrated to
dryness and purified on column; hexane/ethyl acetate 95:5 to 80:20 was used for separation.
Yield: 59% (amber oil). 1H NMR (500 MHz, CDCl3), δ (ppm): 2.25 (br, 1H), 2.64 (dd, J = 15.6,
5.2 Hz, 1H), 2.75 (dd, J = 15.6, 8.8 Hz, 1H), 3.54 (d, J = 13.2 Hz, 1H), 3.63 (s, 3H), 3.66 (d,
J = 13.2 Hz, 1H), 4.12 (dd, J = 8.8, 5.2 Hz, 1H), 7.22–7.37 (m, 10H); 13C NMR (125 MHz,
CDCl3), δ (ppm): 42.7, 51.2, 51.6, 58.8, 126.9, 127.1, 127.6, 128.2, 128.3, 128.6, 140.0, 142.2,
172.2. Data were consistent with those reported [32].

Method for (E)-N-benzyl-3-phenylpropenamide (14). Into a glass microwave reaction
vessel containing a magnetic stirrer, the following were added: methyl 3-phenylacrylate
11 (1 mmol), benzylamine (4 mmol), and DBU (30 µL, 0.2 mmol). The mixture was placed
in Discover CEM equipment at 130 ◦C, 150 W, and 1 psi for 1.5 h. After completion, the
reaction was concentrated to dryness and purified on column; hexane/ethyl acetate 95:5 to
80:20 was used for separation. Yield: 32% (white solid, mp 110–120 ◦C). 1H NMR (500 MHz,
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CDCl3), δ (ppm) 4.57 (d, J = 5.8 Hz, 2H), 6.00 (br, 1H), 6.42 (d, J = 15.6 Hz, 1H), 7.26–7.50 (m,
10 H), 7.67 (d, J = 15.6 Hz, 1H,). 13C NMR (125 MHz, CDCl3), δ (ppm): 44.0, 120.5, 127.7,
127.9, 128.0, 128.9, 128.9, 129.8, 134.9, 138.3, 141.5, 165.8. Data were consistent with those
reported [31].

Method for (rac)-tert-butyl 3-(benzylamino)-3-phenylpropanoate (15). Into a glass
microwave reaction vessel containing a magnetic stirrer, the following were added: tert-
butyl 3-phenylacrylate 12 (1 mmol), benzylamine (4 mmol), and DBU (30 µL, 0.2 mmol).
The mixture was placed in Discover CEM equipment at 130 ◦C, 150 W, and 1 psi for
6 h. After completion, the reaction was concentrated to dryness and purified on column;
hexane/ethyl acetate 95:5 to 80:20 was used for separation. Yield: 74.34% (yellow oil), 1H
NMR (200 MHz, CDCl3), δ (ppm), 1.36 (s, 9H), 2.10 (br, 1H), 2.57 (m, 2H), 3.56 (m, 2H), 4.08
(m, 1H), 7.11–7.43 (m, 10H); 13C NMR (50 MHz, CDCl3), δ (ppm), 28.0, 44.3, 51.4, 59.2, 80.6,
126.8, 127.2, 127.3, 128.1, 128.3, 128.4, 140.4, 142.7, 171.04. Data were consistent with those
reported [34].

Method for (rac)-methyl 3-(benzylamino)butanoate (17). Into a glass microwave
reaction vessel containing a magnetic stirrer, the following were added: methyl crotonate 16
(1 mmol) and benzylamine (4 mmol). The mixture was placed in Discover CEM equipment
at 75 ◦C and 50 W (15 W) for 4 h. After completion, the reaction was purified by FC
(hexane/ethyl acetate 8:2 to 60:40). Yield: 73%. (yellow oil). 1H NMR (200 MHz, CDCl3), δ
(ppm), 1.16 (d, J = 5.9 Hz, 3H), 1.87 (br, 1H), 2.63–2.11 (m, 2H), 3.16 (m, 1H), 3.67 (s, 3H),
3.79 (d, J = 5.9 Hz), 7.21–7.33 (m, 5H), 13C NMR (150 MHz, CDCl3), δ (ppm), 20.5, 41.5, 49.7,
51.2, 51.6, 127.0, 128.1, 128.5, 140.4, 172.8. Spectroscopy data were compared with those
reported [31].

Method for (rac)-methyl 3-(benzylamino)-2-methylpropanoate (19). A mixture of
methyl methacrylate 18 (1 mmol), benzylamine (1 mmol,) and DBU (0.02 mmol, 3.98 µL)
was placed into a microwave reaction vial provided with a magnetic stirrer. The capped
vial was placed in microwave synthesis equipment at 75 ◦C and 50 W for 4 h. The crude
product was purified by FC (hexane/ethyl acetate 98:2 to 90:10) to produce (±)-19. Yield:
87% (colorless oil). 1H NMR (200 MHz CDCl3), δ (ppm), 1.18 (d, J = 4 Hz, 3H); 1.61 (br, 1H),
2.54–2.76 (m, 1H), 2.78–2.98 (m, 2H), 3.68 (s, 3H), 3.79 (s, 2H), 7.09–7.49 (m, 5H). 13C NMR
(50 MHz CDCl3), δ (ppm) 15.4, 40.2, 51.5, 52.1, 53.7, 127.0, 128.1, 128.1, 128.5, 128.5, 140.4,
176.4. Spectroscopy data were compared with those reported [31].

Method for (rac)-ethyl 3-(benzylamino)-2-phenylpropanoate (21). Into a 10 mL flask
provided with magnetic stirrer, the following were added: ethyl 2-phenylacrylate 20 (0.43 mmol),
benzylamine (0.43 mmol), and DBU (0.2 mmol, 1.3 µL). The reaction was kept at room tem-
perature for 30 min. After, it was purified on column; hexane/ethyl acetate 8:2 was used for
separation. Yield: 56% (colorless oil). 1H NMR (500 MHz, CDCl3) δ (ppm), 1.06 (t, J = 2 Hz, 3H),
1.63 (br, 1H), 2.92 (dd, J = 5, 5.1 Hz), 3.28 (dd, J = 5, 5 Hz, 2H), 3.80 (s, 1H), 3.82 (dd, J = 4, 4 Hz,
1 H), 4.08–4.19 (m, 2 H), 7.21–7.33 (m, 10H). 13C NMR (75 MHz CDCl3), δ (ppm), 14.3, 52.3, 53.8,
61.0, 127.1, 127.6, 128.2, 128.2, 128.6, 128.9, 137.6, 140.3, 173.3 Spectroscopic data were compared
with those reported [30].

Method for methyl 3-(benzylamino)propanoate (23) and dimethyl 3,3′-(benzylazaned
iyl)dipropionate (24). Into a 10 mL flask provided with magnetic stirrer, the following were
added: methyl acrylate 22 (1 mmol) and benzylamine (1.1 mmol). The mixture was cooled
to 0 ◦C after 2.5 h. After completion of the reaction, the crude product was purified by FC
(hexane/ethyl acetate 8:2). Compound 23 Yield: 56% (colorless oil). 1H NMR (200 MHz,
CDCl3), δ (ppm) 1.83 (s, 1H), 2.53 (t, J = 6.0 Hz, 2H), 2.89 (t, J = 3.37 Hz, 2H), 3.67 (t, J = 6.0 Hz,
2H), 3.80 (s, 2H), 7.30 (m, 5H). 13C NMR (50 MHz, CDCl3) δ (ppm), 34.5, 44.4, 51.5, 53.7,
126.9, 128.0, 128.3, 140.1, 173.1. Compound 24 Yield: 5%. 1H NMR (200 MHz, CDCl3), δ
(ppm) 2.47 (t, J = 6 Hz, 4H), 2.80 (t, J = 6 Hz, 4H), 3.58 (s, 2H), 3.64 (s, 6H) 7.27 (m, 5H).
13C NMR (50 MHz, CDCl3) δ (ppm) 32.6, 49.2, 51.4, 58.3, 127.0, 128.1, 128.6, 138.9, 172.8.
Spectroscopic data were compared with those reported [27].
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3. Results
3.1. Aza-Michael Addition of Benzylamine to Methyl and Tert-Butyl 3-(4-Nitrophenyl)acrylate

To evaluate the effect of electron-withdrawing groups such as nitro on aromatic rings,
a reaction was carried out between methyl 3-(4-nitrophenyl)acrylate and 4 equivalents of
benzylamine (Scheme 1). We started with a reaction in microwave conditions with 75 W of
power for 5 min at 75 ◦C; after chromatographic column aza-Michael addition, product
3 was isolated with only 18.4% yield and traces of the 1,2-addition product 4 (Entry 1,
Table 1).
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Table 1. Aza-Michael addition of benzylamine to methyl 3-(4-nitrophenyl)acrylate 1.

Entry 1
(mmol)

Temp
(◦C)

Time
(min) MW Yield b 3

(%)

Recovered
Material 1

(%)

1 0.5 75 5 75 W 18.4 57.7
2 0.5 75 10 75 W 32 19.2
3 0.5 100 10 75 W 20 70.0
4 0.5 75 40 75 W 10 6.3
5 0.5 75 10 - 15 67.3
6 1.93 75 120 - 63 15.0

7 a 0.5 75 120 - 19 64.4
a 1 mL of acetonitrile was employed. b compound 4 was obtained in traces.

By increasing the reaction time to 10 min with the same conditions (Entry 2), the yield
was improved to 32%. Temperature was increased from 75 to 100 ◦C (Entry 3), but yield
did not improve, and the same was true when increasing the reaction time (Entry 4). To
compare the result without the use of a microwave, we performed an experiment using
an oil bath (Entry 5) under the same conditions as Entry 1, and we only obtained 15%. We
decided to increase the time reaction to 2 h (Entry 6), and surprisingly, the yield raised
to 63%. In Entry 7, we used a solvent to learn the effect, and what we noted was that the
reaction was slower than when a 19% yield was not used (Entry 7).

In order to favor aza-Michael addition, the methyl ester was changed to tert-butyl
ester. In Table 2, Entry 1, ester 2 was mixed with 4 eq. of benzylamine at 75 ◦C and 0.2 eq.
of DBU using a microwave at 75 W for 10 min and obtained a 44% yield for Michael
addition 5. For Entry 2, the reaction time was increased up to 50 min and yielded 45%. The
temperature was increased up to 90 ◦C (Entry 3), obtaining a 36% yield. Despite increasing
the temperature and reaction time and using a solvent, the yield did not increase, so the
best conditions are those from Entry 1.

Table 2. Aza-Michael addition of benzylamine to tert-butyl 3-(4-nitrophenyl)acrylate 2.

Entry 2
(mmol)

Temp
(◦C) Time (min) Yield 5

(%)

1 0.5 75 10 44
2 0.5 75 50 45
3 0.5 90 10 36
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3.2. Aza-Michael Addition of Benzylamine to Methyl and Tert-Butyl 3-(4-Methoxyphenyl)acrylate

In Table 3, the effect of an electron-donor group on an aromatic ring, as a methoxy
group, in the addition of benzylamine to methyl and tert-butyl 3-(4-methoxyphenyl)acrylates
6 and 7 is shown (Scheme 2). We started with the same conditions of microwave of methyl
3-(4-nitrophenyl)acrylate 1 to compare the effect of the group in the aromatic ring (Entry 1).
After heating over 10 min at 75 ◦C in MW conditions using 0.2 eq. of DBU, we did not observe
TLC. The time reaction was raised until 2 h, and the yield was 10% of aza-Michael addition 8
and 38% of 1,2-addition 9 (Entry 2).

Table 3. Reaction conditions for aza-Michael addition of benzylamine to methyl 3-(4-
methoxyphenyl)acrylate 6.

Entry 6 (mmol) Temp
(◦C) Power (W) Time

(min)
Yield 8:9

%

1 0.5 75 75 10 NR
2 1 130 100 120 10:38
3 0.52 130 - 180 -:30
4 0.52 75 - 960 19:70
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Scheme 2. Aza-Michael addition of benzylamine to methyl 6 and tert-butyl 7 3-(4-
methoxyphenyl)acrylate.

To compare the result without the use of a microwave, we performed an experiment
using an oil bath under the same conditions as Entry 2 for 3 h, and we only obtained 30%
of 1,2-addition product 9 (Entry 3). For Entry 4, the temperature was decreased to 75 ◦C,
and after 16 h, we obtained 19% of aza-Michael addition product 8 and 70% of 1,2-addition
product 9.

Despite increasing the temperature and reaction time and using a microwave or oil
bath, we observed that the major product was 1,2-addition 9 in all entries.

In order to increase the aza-Michael addition product, a bulkier Michael acceptor was
used (Table 4). For Entry 1, tert-butyl 3-(4-methoxyphenyl)acrylate (7) was reacted under
Entry 1 (Table 3) conditions, and after 10 min, no reaction was observed. Employing the
same condition again from Table 3, Entry 2, we noted an increase in the yield of the Michael
product. In order to improve yield, the reaction time was increased up to 6 h, but only
yielded 22% of product 10 (Scheme 2); also, decomposition products began to be observed
by TLC.

Table 4. Reaction conditions for aza-Michael addition of benzylamine to tert-butyl 3-(4-
methoxyphenyl)acrylate 7.

Entry 7 (mmol) Temp
(◦C)

Power
(W)

Time
(min)

Yield 10
%

1 0.5 75 75 10 NR
2 1 130 100 120 39
3 1 130 100 360 22

3.3. Aza-Michael Addition of Benzylamine to Methyl and Tert-Butyl 3-Phenylacrylate

First, benzylamine was added to methyl 3-phenylacrylate 11 under MW conditions,
with the following factors: 130 ◦C, 150 W, solvent-free, and DBU (Table 5, Entry 1). After
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1.5 h, only the 1, 2-addition product 14 with 32% yield was isolated without traces of
aza-Michael addition 13 (Scheme 3).

Table 5. Reaction conditions for Aza-Michael addition of benzylamine to methyl 3-phenylacrylate 11.

Entry 6 (mmol) Temp (◦C) Power (W) Time (min) Yield 13:14 1

(%)

1 1 130 150 90 0:32
2 0.62 75 - 240 59:22
3 0.62 75 - 960 36:37

1 Yield after column chromatography.
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Scheme 3. Aza-Michael addition of benzylamine to methyl 3-phenylacrylate 11 and tert-butyl
3-phenylacrylate 12.

It was proposed to make the addition reaction of benzylamine over 11 without mi-
crowave, in solvent-free conditions at 75 ◦C and in an oil bath for 4 h (Entry 2). Both
the formation of the 1,4-addition product 13 and 1,2-addition 14 at a yield of 59 and 22%,
respectively, were observed. In Entry 3, we decided to raise the time reaction to improve
the yield of 13, but we observed that the yield was the worst and the proportion of the
1,2-addition product was higher.

Considering that a bulkier ester could change selectivity, tert-butyl cinnamate 12 was
used as a Michael acceptor. Under the same condition as Table 5 (Entry 1), benzylamine
was added to tert-butyl 3-phenylacrylate 12, and after 1.5 h, only 1,4-addition product 15
was insolated without traces of 1,2-addition (Table 6, Entry 1). In Entry 2, after 2 h, the
yield increased up to 48%, and if time increased to 6 h, it yielded 74%.

Table 6. Reaction conditions for aza-Michael addition of benzylamine to tert-butyl 3-phenylacrylate 12.

Entry 8 (mmol) Temp (◦C) Power (W) Time (mi) Yield 15 1

(%)

1 1 130 150 90 33
2 1 130 150 120 48
3 1 130 150 360 74
4 1 160 150 120 44

1 Yield after column chromatography.

Thinking that a higher temperature would improve yield, it was set to 160 ◦C, but
contrary to expectations, the yield did not improve (Entry 4 after 2 h). The best reaction
conditions found were under solvent-free and DBU conditions (Entry 3): employing
microwaves at 130 ◦C and 150 W over 6 h gave a 74% yield of compound 15 after isolation.

3.4. Aza-Michael Addition of Benzylamine to Methyl Crotonate 16

Under MW conditions at 75 ◦C, 50 W, and 4 h without using DBU as a base, only
aza-Michael Addition product 17 was isolated at a 73% yield (Scheme 4, Table 7, Entry 1).

Despite using DBU (Entry 2), increasing equivalents of benzylamine (Entry 3), or even
using a solvent (Entry 4), the reaction proceeded with a lower yield compared to Entry 1.
As can be seen, solvent-free conditions favor yield, and DBU does not benefit the reaction.
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Table 7. Reaction conditions for aza-Michael addition of benzylamine to methyl crotonate 16.

Entry 16 (mmol) BnNH2
(mmol)

DBU
(eq) Solvent Yield 17 (%)

1 1 1 - - 73
2 1 1 0.2 - 63
3 1 4 0.2 - 69
4 1 1 0.2 MeOH a 34

a Volume of solvent: 3 mL.

3.5. Aza-Michael Addition of Benzylamine to Methyl Methacrylate 18

The aza-Michael addition of benzylamine to α-substituted α,β-unsaturated esters was
also explored. This kind of addition had been carried out in our group [27] but using a
solvent; in this work, we set out to perform this addition under solvent-free conditions
(Scheme 5).
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The first approach employing benzylamine and methyl methacrylate (Scheme 5) was
carried out under microwaves at 130 ◦C and 50 W power, without DBU but solvent-free
conditions. After 4 h, only 25% yield for product 19 was isolated (Table 8, Entry 1). In a
second experiment, DBU was added at 0.2 eq. in order to increase yield. After 4 h (Entry 2),
a 27% yield was isolated, and we also observed the yield after 2 h (Entry 3). For Entry 4,
the temperature was decreased to 75 ◦C and 50 W power, without DBU in solvent-free
conditions, and after 4 h, only a 15% yield was isolated. However, when 0.2 eq. of DBU
was used (Entry 5) over 2 h, a 75% yield was isolated, and after 4 h (Entry 6), it gave an 83%
yield, but increasing time further did not increase yield (Entry 7).

Table 8. Reaction conditions for aza-Michael addition of benzylamine to methyl methacrylate 18.

Entry Temp
(◦C)

DBU
(eq)

Time
(min)

Yield 19
(%)

1 115–130 - 240 25
2 115–130 0.2 240 27
3 115–130 0.2 120 27
4 75 - 240 15
5 75 0.2 120 75
6 75 0.2 240 83
7 75 0.2 360 81

3.6. Aza-Michael Addition of Benzylamine to Ethyl 2-Phenylacrylate 20

Ethyl 2-phenylacrylate 20 was mixed with benzylamine at room temperature and in
solvent-free conditions without DBU (Table 9, Entry 1); after 1.5 h, a 30% yield was isolated
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for compound 21 (Scheme 6). By adding DBU, after 30 min (Entry 2), it gave a 56% yield.
This is the last example where it was clearly observed that DBU lowers reaction times and
increases yields. In Entry 3, the temperature was increased to 60 ◦C, without DBU; after
2 h of reaction, the yield increased to 90%. In Entry 4, 0.1 eq. of DBU was added, and
after 30 min, a 70% yield of 21 was obtained, but in this case, the 1,2 addition product
was observed.
Table 9. Reaction conditions for aza-Michael addition of benzylamine to ethyl 2-phenylacrylate 20.

Entry 20
(mmol)

DBU
(eq)

Temp
(◦C) Time (min) Yield 21

%

1 0.43 - rt 90 30
2 0.43 0.2 rt 30 56
3 0.43 - 60 120 90
4 0.43 0.1 60 30 70
5 0.43 0.1 60 10 88
6 1.33 0.05 60 10 96
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In Entry 5, the reaction time was reduced to only 10 min, obtaining a yield of 88% for
product 21. Finally, for Entry 6, the amount of DBU was reduced to only 5 mol%, and after
10 min, a yield of 96% was obtained.

3.7. Aza-Michael Addition of Benzylamine to Methyl Acrylate 22

As has been reported in our research group [27], this reaction takes place in a short
time, so we decided to carry it out at room temperature (rt) over 2.5 h, and two products
were obtained (Table 10, Entry 1). One corresponded to aza-Michael addition 23, and
the other corresponded to double addition 24 (Scheme 7). After purification by column
chromatography, the isolated ratio was 95:5, with a 41% yield for 23 and only 2% for 24. As
reported before by Escalante et al. [27], the reaction was carried out without DBU, but using
MW and methanol as a solvent over 3 min and at 65 ◦C, the isolated ratio was 90:10 for 23
and 24. As observed, a higher selectivity for 23 was obtained under solvent-free conditions.

Table 10. Reaction conditions for aza-Michael addition of benzylamine to methyl acrylate 22.

Entry 22 (mmol) Temp (◦C) DBU (eq) Time (min) Ratio 23:24
(Yield %)

1 1 rt - 150 95:5 (41:2)
2 1 rt 0.2 150 65:35(11:6)
3 1 0 - 150 92:8 (56:5)
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Scheme 7. Aza-Michael addition of benzylamine to methyl acrylate 22.

In a second experiment trying to increase 23 yields (Entry 2), 0.2 eq. of DBU was
added, but the ratio of 23:24 was worse than Entry 1 (65:35). Finally, to optimize the reaction
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conditions and to avoid double addition product, a reaction was carried out at 0 ◦C over
2.5 h (Entry 3). After purification by column chromatography, the ratio was 92:8, with a
56% yield for 23 and 5% for 24, obtaining a very good yield for product 23.

4. Conclusions

In summary, a solvent-free method has been developed for the aza-Michael addition
of benzylamines to α,β-unsaturated esters. When esters with less steric hindrance were
used, the nucleophile was added 1,2-; on the other hand, when using an ester with greater
steric hindrance, aza-Michael addition was carried out. Furthermore, when the aromatic
system has an electron-withdrawing group such as -NO2, aza-Michael addition is favored
in very short times, even without microwaves. Finally, α,β-unsaturated esters featuring
substituents in the β-position were employed, resulting in yields nearly twofold compared
to those achieved without using DBU and within notably brief reaction periods of 10 min.
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