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ABSTRACT
Background. Litsea glaucencens Kuth is an aromatic plant used for food seasoning
food and in Mexican traditional medicine. Among, L. glaucencens leaves properties,
it has proven antibacterial activity which can be used against opportunistic pathogens
like Listeria monocytogenes, a foodborne bacteria that is the causal agent of listeriosis,
a disease that can be fatal in susceptible individuals. The aim of this work was to
investigate the antibacterial activity of L. glaucescens Kuth leaf extracts against L.
monocytogenes and to identify its bioactive components.
Material andMethods. L. glaucences leaves weremacerated with four solvents of differ-
ent polarity (n-hexane, dichloromethane, ethyl acetate, and methanol). To determine
the capacity to inhibit bacterial proliferation in vitro, agar diffusion and microdilution
methods were used. Next, we determined the minimal bactericidal concentration
(MBC). Finally, we determined the ratio of MBC/MIC. Metabolites present in the
activemethanolic extract from L. glaucescensKuth (LgMeOH)were purified by normal-
phase open column chromatography. The structure of the antibacterial metabolite
was determined using nuclear magnetic resonance (1H, 13C, COSY, HSQC) and by
comparison with known compounds.
Results. The LgMeOH extract was used to purify the compound responsible for the ob-
served antimicrobial activity. This compound was identified as 5,7-dihydroxyflavanone
(pinocembrin) by analysis of its spectroscopic data and comparison with those
described. The MIC and MBC values obtained for pinocembrin were 0.68 mg/mL,
and the ratio MBC/MIC for both LgMeOH and pinocembrin was one, which indicates
bactericidal activity.
Conclusion. L. glaucences Kuth leaves and its metabolite pinocembrin can be used to
treat listeriosis due the bactericidal activity against L. monocytogenes.
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INTRODUCTION
Foodborne diseases are caused by consuming food or beverages contaminated with viruses,
bacteria, parasites, toxins, metals, and prions. Nowadays, foodborne diseases are an
important public health problem around the world since; each outbreak has a series of
direct and indirect costs, affecting public health, the economy and international food trade
(Hoffmann & Scallan Walter, 2020). According to World Health Organization (WHO,
2023), in 2019, at least 1 in 10 people became sick and 33 million individuals with healthy
lifestyles have died annually due to foodborne diseases which are particularly dangerous for
children under <5 years old (1/3 young children’s deaths) or individuals with a weakened
immune system. WHO also identifies, Listeria monocytogenes and Sallmonella as two of the
main etiological agents of foodborne diseases.

Listeria monocytogenes is a foodborne opportunistic bacterial pathogen and is the causal
agent of listeriosis, a disease that can be fatal to susceptible individuals (Jung, Yum &
Jeong, 2017; Disson, Moura & Lecuit, 2021). Listeriosis is characterized by a wide spectrum
of infections, which are categorized into two forms: severe invasive listeriosis and non-
invasive febrile gastroenteritis. The first, is one of the most serious foodborne diseases,
occurs in immunocompromised individuals and manifests itself as sepsis, meningitis,
endocarditis, encephalitis,meningoencephalitis, septicemia and brain infection.While non-
invasive gastroenteritis causes septicemia, atypical meningitis and febrile gastroenteritis
accompanied by headache and backache (Matle, Mbatha & Madoroba, 2020).

Most cases of listeriosis are caused by consumed food products contaminated with
L. monocytogenes (Duze, Marimani & Patel, 2021), which can survive and proliferate over
a broad range of environmental conditions (low pH, high salt concentration, refrigeration
temperature), as well as sublethal concentrations of biocides. This bacterium can be
found in water, soil, food products, vegetables, meat, fish, seafood, ready-to-eat food,
processed food, milk and dairy products. In addition, there are reports of L. monocytogens
strains tolerant to biocides used in food processing and antibiotics, increasing the cases of
listeriosis worldwide (Duze, Marimani & Patel, 2021), which pose a threat to food safety
and public health (Baquero et al., 2020). For this reason, the search for new antilisterial
drugs is necessary.

Litsea glaucescens Kuth is an aromatic tree endemic to México and Central America.
Its common name is Mexican Bay-leaf and is known as ‘‘laurel’’ in Spanish. The leaves of
L. glaucescens are commonly used in this area for food seasoning, replacing the leaves of the
European species Laurus nobilis (Lauraceae), but they are also used in traditional medicine
to treat diarrhea, vomit, bone pain, postpartum baths, colic in children, and illnesses
related to the central nervous system (Guzmán-Gutiérrez et al., 2012). Due to its extensive
use, L. glaucescens is one of the main non-timber forest products in México (Guzmán-
Gutiérrez et al., 2012; Dávila-Figueroa et al., 2016). Several researchers have evaluated the
antihypertensive, antidepressant, antioxidant, and antibacterial activities of this plant
(Meckes et al., 1995; Guzmán-Gutiérrez et al., 2012; Cruz et al., 2014; Guzmán Gutiérrez,
Reyes Chilpa & Bonilla Jaime, 2014; Gamboa-Gómez et al., 2016;Medina-Torres et al., 2016;
López-Romero et al., 2018; Shi, Zhang & Guo, 2018; López-Romero et al., 2022). Regarding
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its antibacterial activities, studies have demonstrated the activity of this plant against
some Gram-positive and Gram-negative bacteria, but its activity against L. monocytogenes
has not been evaluated until now. The aim of this work was to produce different L.
glaucescens extracts to test their effect againstL.monocytogenes and to identify the compound
responsible for the antibacterial activity.

MATERIALS & METHODS
Plant material
Litsea glaucescens leaves were collected in June 2019 from Cuautepec de Hinojosa, Hidalgo,
México and were identified by Edith López Villafranco, head of the Herbarium at the
Faculty of Higher Education Iztacala from Universidad Nacional Autónoma de México. A
voucher sample was deposited in the herbarium with the code number 2533IZTA, then the
leaves were dried under dark conditions at room temperature for three weeks. Afterwards,
the plant material was ground using an electric blender.

Preparation of extracts
The dried, ground material (2.4 kg) was extracted consecutively by maceration with n-
hexane (LgHex), dichlorometane (LgCH2Cl2), ethyl acetate (LgEtOAc), and methanol
(LgMeOH) for 24 h, three times. All extractions were performed using 1:3 plant
material/solvent ratio. The solvent was eliminated under reduced pressure distillation
with a rotary evaporator (Büchi, Flawil, Switzerland).

Methanolic extract fractionation
The LgMeOH extract (18 g) was subjected to open column chromatography (60 x 680mm)
packed with silica gel 60 (mesh 70-230, 540 g) (Merck, Boston, MA, USA), and eluted with
n-hexane/EtOAc/CH2Cl2/MeOHgradient system (100:0:0:0, 95:05:0:0, 90:10:0:0, 80:20:0:0,
60:40:0:0, 0:0:100:0, 0:0:70:30, 0:0:60:40, 0:0:50:50, 0:0:0:100). The volume of all samples
was 500 mL. One hundred forty-two fractions were obtained, which were grouped into ten
final fractions (C1F1 to C1F10) according to their chemical composition.

Flavanone detection and identification
Fraction C1F4 (1 g) was fractionated using open column chromatography (30× 200 mm)
previously packed with 30 g of silica gel 60 (mesh 70-230) (Merck) and eluted with a
n-hexane/acetone (80:20, 79:21, 79:21, 78:22, 77:23, 74:26, 70:30) system. The volume of
all samples was 10 mL. Fifty-five fractions were obtained, which were grouped into six final
fractions (C2F1-C2F6) according to their chemical composition. Spectroscopic data for
1H, 13C, COSY, and HSQC NMR of C2F4 was performed in a Bruker Avance III HD 500
MHz NMR Spectrometer (Bruker, MA, USA). A mixture of CDCl3:CD3OD (1:1 v:v), as
well as DMSO-d6 (Sigma-Aldrich, St. Louis, MO, USA) were used as a solvent.
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Antibacterial assay
Bacterial strain
Listeria monocytogenes (ATCC19113) was donated by Javier Castro Rosas (ICBI, UAEH)
and was used to test the antibacterial activity of the extracts, fractions, sub-fractions, and
the purified compound.

The bacterial strainwas cultivated inMuller-Hinton (MH) agar (Oxoid Ltd., Basingstoke,
UK) at 37 ◦C. For the test, a bacterial inoculumwas prepared under theNational Committee
for Clinical Laboratory Standards guidelines. Direct colony suspensions of overnight
subcultures were diluted in MH broth (Difco, San Jose, CA, USA) and were adjusted to a
0.5 McFarland turbidity standard (approximately 108 colony-forming units [CFU]/mL).

Agar diffusion method
Antimicrobial activities of the extracts and fractions were evaluated by agar diffusion assays
according to Mhalla et al. (2017) and Hoekou et al. (2017) with slight modifications. The
plant extracts were prepared at 100, 50, 25 and 12.5 mg/mL, while the fractions were
diluted to 10 mg/mL, and Kanamycin and Tetracycline (PanReactAppliChem, Darmstadt,
Germany) at 0.032 mg/mL were used as positive control; finally, all dissolved samples
were filtered in a sterile filter unit Millex®GV of 0.22 µm (Merck Millipore Ltd, Ireland).
LgHex, LgAcOEt, and the fractions C1F3 to C1F9 were dissolved in acetone, LgCH2Cl2 and
LgMeOH were dissolved in acetone:ethanol (1:1; v/v), C1F1 was dissolved in n-hexane,
C1F2 was dissolved in n-hexane:acetone (1:1; v/v), and Kanamycin and Tetracycline
were dissolved in sterile water. The sterile filter paper disks (six mm diameter) (Whatman,
Maidstone, Kent,UK)were impregnatedwith the sample for the evaluation, then the solvent
was allowed to evaporate from the extract-laden discs, and three extract/fraction/controls-
treated discs were placed on a plate that was inoculated with fresh cell suspension (108

CFU). The negative control comprised the solvent used to dissolve the extracts and
fractions. The plates were then incubated at 37 ◦C for 24 h. The diameters of the inhibition
zones produced by the plant extracts, fractions, and controls (including the disk) were
measured and recorded. All experiments were carried out in triplicate.

Minimal inhibitory concentration (MIC)
The active test compounds with inhibition zones and 5,7-dihidroxyflavanone were
further investigated to determine their minimal inhibitory concentration (MIC) using
a microdilution method (Morales-Ubaldo et al., 2022). Briefly, in 96-well plates, the stock
solutions of the extracts were serially diluted twofold in methanol:water (1:9 v/v) to final
concentrations between 200 to 0.195 mg/mL for extracts, 12.5 to 0.006 mg/mL for C1F1
to C1F10 fractions and 6.14 to 0.006 mg/mL for C2F1 to C2F6. Then, 100 µL of the
inoculum (108 CFU/mL) were added to the wells. A sterility check (medium and solvent),
negative control (medium, solvent, and inoculum), and positive control (medium, solvent,
inoculum, and Kanamycin and Tetracycline) were included for each experiment. The plates
were then incubated at 37 ◦C for 24 h at 70 rpm. After incubation, 20 µL of the INT salt
(p-iodonitrotetrazolium chloride, 2 mg/mL) (Sigma-Aldrich) were added to each well and
the plates were incubated at 37 ◦C for 30 min at 70 rpm. Bacterial viability was observed
by the formation of pink color after the addition of INT. The MIC of each compound
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was established as the lowest concentration that completely inhibited the visible bacterial
growth.

Minimum bactericidal concentration (MBC)
The minimum bactericidal concentration (MBC) was performed according to Morales-
Ubaldo et al. (2022) with slight modifications. Briefly, 10 µL of each sample from the
plates where there was no INT color change were added to the agar plates inoculated
with a fresh cell suspension (108 CFU). Kanamycin and tetracycline at 32 µg per well
were used as positive controls. The negative control comprised the vehicle where the
sample was dissolved. These preparations were incubated at 37 ◦C for 48 h at 70 rpm.
The MBC corresponds to the lowest concentration in which no growth was detected. All
experiments were performed in triplicate. Moreover, the ratio of MBC/MIC of each sample
was calculated to assess the antibacterial power.

Statistical analysis
The results obtained from the agar diffusion method were analyzed with an ANOVA,
followed by a post-hoc Tukey test. Values of p < 0.01 were considered significantly
different.

RESULTS
The LgHex, LgAcOEt, LgCH2Cl2, and LgMeOH extracts were 24.0, 16.8, 52.8, and 76.8 g/kg
of dry matter, respectively. The chromatographic fractionation of the LgMeOH extract
allowed us to obtain nine fractions’ groups (C1F1 toC1F9). Further, C1F4 chromatographic
purification afforded six final fractions (C2F1 to C2F6).

The TLC analysis of C2F4 indicated the presence of a pure compound, which was a
white amorphous solid with mp = 111 ◦C. This compound was identified as pinocembrin
(1) by NMR spectral data analysis. The proton nuclear magnetic resonance (1H NMR)
spectrum of 1 on CDCl3-CD3OD (Table 1) showed signals for two aromatic units, one
ABX aliphatic system, and two hydroxy groups. The multiple signal that integrates for five
protons is ascribable to a monosubstituted benzene ring, while the AB system signals at
δH 5.93 (1H, d, J = 2.1 Hz) and 5.94 (1H, d, J = 2.1 Hz) were characteristic of a 1,2,3,5
tetrasubstituted benzene moiety.

The aliphatic signals at δH 2.73 (1H, dd, J = 17.2, 3.0 Hz), 3.01 (1H, dd, J = 17.1,
13.0 Hz), and 5.36 (1H, dd, J = 13.0, 2.8 Hz) were assigned to the ABX system formed by
the protons H-3eq, H-3ax, and H-2, respectively of the cyclohexane ring of the flavanone,
which were confirmed by COSY spectrum (Fig. S5). 1H NMR showed a signal for one
hydroxy group [δH 11.99 (1H, brs, OH-C-5). The 1H NMR spectrum on DMSO-d6
showed signals consistent with those described by Napal, Carpinella & Palacios (2009)
(Table 1). In addition, the presence of the hydroxyl at C-5 was confirmed by exchange with
D2O of the signal at δH 11.95 (Table 1, Fig. S2).

13C NMR and DEPT spectra of 1 showed twelve separated signals, including one
oxymethine (δC 79.26), one aliphatic methylene (δC 43.39), one ketone carbonyl (δC
195.89), four aromatic methines (δC 95.8, 96.68, 126.3, and 128.9), three oxyaryl carbons
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Table 1 1H and 13CNMR data of Pinocembrin (1) in different solvents.

1 (This work)
CDCl3-CD3OD

1 (This work)
DMSO-d6

1 from
Tanjung, Tjahjandarie & Sentosa (2013).
(Acetone- d6)

1 from
Napal, Carpinella & Palacios (2009).
(DMSO-d6)

1 from
Nyokat, et al. (2017).
(CDCl3)

δH δC δH δH δC δH δC δH δC

2 5.36 (1H, dd, J = 13.0, 2.8 Hz) 79.26 5.39 (1H, dd, J = 12.5, 3.1 Hz) 5.49 (1H, dd, J = 4.0, 12.0 Hz) – 5.44 (1H, dd, J = 3.2, 12.8 Hz 80.17 5.43 (2H, t, J = 6.7 Hz) 79.18

3ax 3.01 (1H, dd, J = 17.1, 13.0 Hz) 43.39 3.05 (1H, dd, J = 17.1, 12.6 Hz) 3.06 (1H, dd, J = 12.0, 14.0 Hz) – 3.06 (1H, dd, J = 12.8, 17.2 Hz) 40.45 3.10 43.37

3eq 2.73 (1H, dd, J = 17.2, 3.0 Hz). – 2.59 (1H, dd, J = 17.1, 3.1) 2.78 (1H, dd, J = 4.0, 14.0 Hz) – 2.77 (1H, dd, J = 17.2, 3.2 Hz) – 2.86 –

4 – 195.89 – 197.3 – 196.75 – 195.65

5 – 166.32 – 165.4 – 164.41 – 164.34

6 5.93 (1H, d, J = 2.1 Hz) 96.68 5.68 (1H, d, J = 1.5 Hz) 5.86 (1H, d, J = 2.0 Hz) – 5.52 (1H, d, J = 2.2 Hz) 96.84 6.03 96.81

7 – 167.13 9.75 (1H, br, s, 7-OH) 168.5 – 167.62 – –

8 5.94 (1H, d, J = 2.1 Hz) 95.80 5.71 (1H, d, J = 1.5 Hz) 5.92 (1H, d, J = 2.0 Hz) 164.7 6.01 (1H, d, J = 2.2 Hz) 95.94 6.03 95.56

9 – 164.06 – – – 163.59 – 163.11

10 – 102.57 – – – 102.69 – 102.97

1′ – 138.62 – 140.4 – 139.59 – 138.42

2′ 7.32–7.410 (5 H, m) 126.30 7.21–7.34 (5H, m) 7.44 (2H, m) 127.3 7.41 (5H, m) 127.47 7.41–7.49, m 126.16

3′ 7.32–7.410 (5 H, m) 128.96 7.21–7.34 (5H, m) 7.57 (3H, m) 129.7 7.41 (5H, m) 129.46 7.41–7.49, m 128.87

4′ 7.32–7.410 (5 H, m) 128.96 7.21–7.34 (5H, m) 7.57 (3H, m) 129.6 7.41 (5H, m) 129.39 7.41–7.49, m 128.87

5′ 7.32–7.410 (5 H, m) 128.96 7.21–7.34 (5H, m) 7.57 (3H, m) 129.7 7.41 (5H, m) 129.46 7.41–7.49, m 128.87

6′ 7.32–7.410 (5 H, m) 126.30 7.21–7.34 (5H, m) 7.44 (2H, m) 127.3 7.41 (5H, m) 127.47 7.41–7.49, m 126.16

C-5-OH 11.99 (1H, brs) – 11.95 (1H, s, D2O exchange) 12.20 (1H, brs, OH-C-5) – – – 12.07 –
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Figure 1 Key 1H- 1H-COSY and HSQC correlations of 5,7-dihydroxyflavanone (1).
Full-size DOI: 10.7717/peerj.16522/fig-1

(δC, 164.06, 166.32, 167.13) and two aryl quaternary carbons (δC 102.57, 138.62). The
HSQC spectrum (Fig. S6) showed correlations between the signals at δC 128.9 and 126.30
with a multiple signal at δH 7.32–7.41, indicating that these belong to the monosubtituted
benzene ring. Integration of the NMR data obtained, indicated that this compound is a 5,7-
dihydroxyflavanone. Comparison of the NMR data with those reported for pinocembrin
(1) on different solvents (Napal, Carpinella & Palacios, 2009; Tanjung, Tjahjandarie &
Sentosa, 2013; Nyokat et al., 2017), helped to its identification (Table 1, Fig. 1).

The antibacterial test showed that the LgHex, LgCH2Cl2, and LgEtOAc extracts of
L glaucescens were inactive within the tested concentration range, and only the methanolic
extract of L. glaucescens (LgMeOH) exhibited antibacterial activity against L. monocytogenes
(inhibition zone = 11.5 ± 0.45 mm, MIC = 4.5 mg/mL, MBC = 4.5 mg/mL) (Table 2).
All fractions obtained from LgMeOH (CF1 to C1F9) were submitted to a pharmacological
antibacterial test. As shown in Table 3, the C1F4 fraction was the only one with antibacterial
activity (MIC = 0.78 mg/mL, MBC = 0.78 mg/mL). Further, C1F4 chromatographic
purification afforded six final fractions (C2F1 to C2F6), and only C2F4 showed activity
against the bacteria (MIC = 0.68 mg/mL, MBC = 0.68 mg/mL) (Table 4). In addition, the
ratio MBC/MIC obtained for all samples was 1.
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Table 2 Antibacterial activity of Litsea glaucescens leaf extracts against L. monocytogenes.

Extract Concentration
(mg/mL)

IZ (mm)
(Mean± SD)

MIC (mg/mL) MBC
(mg/mL)

RMBC/MIC

100 0
50 0
25 0

LgHex

12.5 0

ND ND ND

100 0
50 0
25 0

LgCH2Cl2

12.5 0

ND ND ND

100 0
50 0
25 0

LgAcOEt

12.5 0

ND ND ND

100 11.5± 0.45a

50 0
25 0

LgMeOH

12.5 0

4.5 4.5 1

Kanamicyn 0.032 24.5± 0.05b 0.001 0.001 1
Tetraciclyne 0.032 33.8± 0.1c 0.004 0.004 1

Notes.
LgHex, hexane leaf extract of L. glaucescens; LgCH2Cl2, dicholorometane leaf extract of L. glaucescens; LgAcOEt, ethyl-acetate
leaf extract of L. glaucescens; LgMeoH, methanol leaf extract of L. glaucescens; IZ, inhibition zone; MIC, minimal inhibitory
concentration; MBC, minimum bactericidal concentration; ND, not determinate; SD, standard deviation.
Different superscript indicate mean values that are significantly different (P < 0.01).

DISCUSSION
Despite the advances of the international community in food safety, foodborne diseases are
still a serious public health problem. Furthermore, this problem is influenced by various
factors, such as changes in eating habits, climate change, and resistance to antibiotics (Jung,
Yum & Jeong, 2017). Listeria monocytogenes is recognized as one of the most important
foodborne pathogens and is the causal agent of listeriosis, a disease that is caused by eating
contaminated food that can be serious and is often fatal in susceptible individuals (Shi,
Zhang & Guo, 2018). In humans, listeriosis treatments are hampered by the intracellular
location of Listeria and the poor intracellular penetration of some antibiotics (Marini et al.,
2018). Therefore, research into new antibacterial agents is required. Plant extracts, as well
as the pure compounds obtained from them, are an important source of new antibacterial
agents that are safe for the environment, humans, and animals (Kim et al., 2017).

The in vitro antibacterial activity of L. glaucescens extracts against L. monocytogenes was
qualitatively evaluated by the presence or absence of inhibition zones toward the tested
bacteria after MIC and MBC were determined. Only the most polar extract, LgMeOH,
showed activity against L. monocytogenes (Table 2). This result agrees with other works
where alcoholic extracts from this plant have shown antibacterial activity. Indeed, a
methanolic extract of L. glaucescens leaves possess activity in vitro against Escherichia coli
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Table 3 Antibacterial activity of fractions obtained from Litsea glaucescensmethanol extract
(LgMeOH) against L. monocytogenes.

Fraction Concentration
(mg/mL)

IZ (mm)
(Mean± SD)

MIC
(mg/mL)

MBC
(mg/mL)

RMBC/MIC

C1F1 10 0 ND ND ND
C1F2 10 0 ND ND ND
C1F3 10 0 ND ND ND
C1F4 10 12.5± 0.04 a 0.78 0.78 1
C1F5 10 0 ND ND ND
C1F6 10 0 ND ND ND
C1F7 10 0 ND ND ND
C1F8 10 0 ND ND ND
C1F9 10 0 ND ND ND
C1F10 10 0 ND ND ND
Kanamicyn 0.032 24.5± 0.05 b 0.001 0.001 1
Tetraciclyne 0.032 33.8± 0.1 c 0.004 0.004 1

Notes.
C1F1 to C1F10 fractions obtained from chromatographic purification of methanol leaf extract of L. glaucescens (LgMeOH).
IZ, inhibition zone; MIC, minimal inhibitory concentration; MBC, minimum bactericidal concentration; ND, not deter-
minate; SD, standard deviation.
Different superscripts indicate mean values that are significantly different (P < 0.01).

Table 4 Antibacterial activity of sub-fractions obtained from C1F4 fraction of Litsea glaucescens
against L. monocytogenes.

C2F1 C2F2 C2F3 C2F4 C2F5 C2F6 Kanamicyn Tetraciclyne

MIC
(mg/mL)

>6.14 >6.14 >6.14 0.68 >6.14 >6.14 0.001 0.004

MBC
(mg/mL)

>6.14 >6.14 >6.14 0.68 >6.14 >6.14 0.001 0.004

R MBC/MIC ND ND ND 1 ND ND 1 1

Notes.
C2F1 to C2F6 fractions obtained from chromatographic purification of C1F4 fraction from methanol leaf extract of
L. glaucescens (LgMeOH).
MIC, minimal inhibitory concentration; MBC, minimum bactericidal concentration; ND, not determinate.

and Staphylococus aureus (CMI ≥ 1 and 0.8 mg/mL, respectively) (Meckes et al., 1995;
López-Romero et al., 2018). Furthermore, Cruz et al. (2014) determined the MIC values
of an ethanolic extract of L. glaucenses against Bacillus subtilis ATCC6051 (0.16 mg/mL),
Mycobacterium smegmatis ATCC607 (0.62 mg/mL), and E. coli (0.62 mg/mL). These results
suggested the presence of secondary metabolites in the alcoholic extracts of L. glaucescens
leaves capable of damaging different bacterial strains. Thus, in this work, a LgMeOH
bioguided chemical fractionation was performed to identify the active compounds that
inhibit the growth of the most important foodborne pathogen Listeria monocytogenes.

LgMeOH purification produced ten final fractions, but only C1F4 showed activity
against L. monocytogenes (inhibition zone = 12.5 ± 0.04 mm; CMI = 0.76 mg/mL). The
TLC analysis of C1F4 showed a mixture of compounds, and for this reason, a subsequent
purification was performed to obtain six new fractions (C2F1 to C2F6). All fractions
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were tested for their antibacterial capacity and only C2F4 showed antilisterial activity
(Table 4). C2F4 was identified as 5,7-dihydroxyflavanone, known as pinocembrin, through
a comparison of its NMR data (1H, 13C, COSY, HSQC) with data reported in the literature
for this compound (Table 1). This flavonoid was previously isolated from the ethanolic
extract of Litsea glaucescens bark by López et al. (1995), and it has been isolated from
different sources such as Flourensia colepis (Napal, Carpinella & Palacios, 2009),Kaempferia
pandurate (Tanjung, Tjahjandarie & Sentosa, 2013), Artocarpus odoratissimus (Nyokat et
al., 2017) and Boesenbergia rotunda (Potipiranun et al., 2018).

Pinocembrin is one of the main flavonoids used in the pharmaceutical industry because
of its antibacterial, antiparasitic, anti-inflammatory, antioxidant, antiapoptotic, anticancer,
antifibrotic, hepatoprotective and neuroprotective biological activities. In addition, it can
be used as a base skeleton for the synthesis of other flavonoids (Shen et al. 2019; Elbatreek
et al., 2023). Regarding its antibacterial activity, there are no reports of the effect of this
molecule against L. monocytogenes. However, pinocembrin has been effective against other
Gram-positive bacteria (S. aureus, methicillin and gentamicin-resistant S. aureus, S aureus
subsp. aureus Rosenbach, S. aureus penicillase (+), S. epidermidis, B. cereus, B. subtilis, and
S. lentus and Streptococcus mutans), whose MIC values range from 0.001 to 0.5 mg/mL
(Alcaráz et al., 2000; Drewes & van Vuuren, 2008; Katerere et al., 2012; Omosa et al., 2014;
Joray et al., 2015; Veloz, Alvear & Salazar, 2019; Hernández Tasco et al., 2020). Besides, this
compound caused the total disappearance of S. aureus populations at 1 mg/mL (Parra
et al., 2016).

Despite L. monocytogenes being a Gram-positive bacteria, 5,7-dihydroxyflavanone
possesses lower antibacterial activity against it (MIC = 0.68 mg/mL) compared to the
effect described for other bacteria of the same type. Nevertheless, it is the first report of the
activity of pinocembrin against L. monocytogenes.

Finally, to identify the type of effect exerted by L. glaucescens and pinocembrin, the
MBC/MIC ratio was determined. An MBC/MIC ratio with values between 1 and 2
indicates bactericidal power, while ratios >2 indicate bacteriostatic activity (Btissam et
al., 2018). Thus, according to the values obtained in this work for methanolic extracts and
pinocembrin (ratio = 1) (Tables 2 and 3), L. glaucescens possess bactericidal power against
L. monocytogenes and 5,7-dihydroxyflavanone is the compound responsible for it.

The antibacterial mechanism of different phenolic compounds has been thoroughly
investigated. There are several forms in which flavonoids affect bacteria. They can inhibit
the synthesis of nucleic acid and porins on the cell membrane, affecting energy metabolism,
disturb cytoplasmic membrane function, reduce cell attachment and biofilm formation,
change the membrane permeability, and attenuate of the pathogenicity (Farhadi et al.,
2018). Furthermore, antibacterial agents can easily destroy the bacterial cell wall of Gram-
positive bacteria, causing a leakage of the cytoplasm and its coagulation (Tian et al., 2018).

Soromou et al. (2013) reported that pinocembrin reduces α-hemolysin production,
attenuated α-hemolysin mediated cell injury at low concentrations and protects mice from
S. aureus-induced pneumonia; moreover, this flavanone increased cell permeability in
Campylobacter jejuni, altering the metabolism (mainly protein production, redox cycle,
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and iron metabolism) (Klančnik et al., 2019; Elbatreek et al., 2023), and affected protein
and DNA metabolism in Aeromonas hydrophila (Wu et al., 2022).

It is possible that the antibacterial effect of pinocembrin against L. monocytogenes is
due to some of the mechanisms mentioned previously; however, subsequent studies are
required to know which of them are responsible.

CONCLUSIONS
Although there are studies on the antibacterial activity of the alcoholic extracts of
L. glaucences, the compounds responsible have not been identified. Some authors attributed
this biological effect to the presence of flavonoids in the plant; however, this has not been
clarified until now.

Our study could be considered the first to document the antilisterial activity of Litsea
glaucences leaves and the isolation of the antibacterial agent in detail. In this work we
evaluated the activity of four L. glaucences extracts against L. monocytogenes, the bioguided
chromatographic separation of the methanolic extract allowed us to identify the 5,7-
dihydroxyflavanone (pinocembrin) as the compound responsible for the antibacterial
activity. In addition, the bactericidal effect against L. monocytogenes was demonstrated.
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