

Universidad Autónoma del Estado de Morelos Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigaciones Químicas

"Fosfinas tris-sililadas y su coordinación hacia metales de transición con enfoque en catálisis homogénea: formación de enlaces Si-C"

T E S I S

Que para obtener el grado de **DOCTOR EN CIENCIAS**

Presenta M. en C. Julio Zamora Moreno

Director de Tesis Dra. Virginia Montiel Palma

Cuernavaca, Morelos

Noviembre 2019

INSTITUTO DE INVESTIGACIÓN EN	CIENCIAS BÁSICAS Y	APLICADAS
-------------------------------	---------------------------	-----------

Coordinación de Programas Educativos

igena 🕀

Posgrado en Ciencias

DR. VICTOR BARBA LÓPEZ COORDINADOR DEL POSGRADO EN CIENCIAS PRESENTE

-Ques

Atendiendo a la solicitud para emitir DICTAMEN sobre la revisión de la TESIS titulada "Fosfinas tris-sililladas y su coordinación hacia metales de transición con enfoque en catálisis homogénea: formación de enlaces Si-C" que presenta el alumno Julio Zamora Moreno (5620131408) para obtener el título de Doctor en Ciencias.

Nos permitimos informarle que nuestro voto es:

NOMBRE	DICTAMEN	FIRMA
Dr. Herbert Höpfi Bachner CIQ-UAEM	Apro boulo	leded hijl
Dr. Nazario López Cruz CIQ-UAEM	Aprobado	Mkl
Dr. Jorge Antonio Guerrero Álvarez CIQ-UAEM	AFRODADO	-th-
Dra. Verónica García Montalvo IQ – UNAM	Aprobado	Turne
Dra. Esther Ramirez Meneses Universidad Iberoamericana	Aprobado	- TUH-
Dra. Ella Marcela López Cardoso CIQ-UAEM	APROBADO	a
Dra. Virginia Montiel Palma CIQ-UAEM	Aprolado	J. morelly .

Av. Universidad 1001 Cal. Chamilpe, Ccemavaca Moretos, Mexos, 62209 Tel (777) 329 70 00, Ext 0011 poegradoenciancias@uwern.me EN EN

na umbersidad de excelenci

[Lista de Publicaciones]

Capítulos de libros:

- Versatile Silylphosphine Ligands for Transition Metal Complexation Julio Zamora-Moreno and Virginia Montiel-Palma. Editors: Chandraleka Saravanan and Bhaskar Biswas. Chapter 2 in: *Ligand*, IntechOpen, 2018, Pages 29-52. DOI: 10.5772/intechopen.73502.
- Semirigid Pincer-Like SiPSi Ligands: Classical Versus Nonclassical Coordination Modes at Ru, Rh, Ir, and Pt. Julio Zamora-Moreno, Virginia Montiel-Palma. Editor: David Morales-Morales, Chapter 32 in: *Pincer Compounds*, Elsevier, 2018, Pages 701-710, ISBN 9780128129319. DOI: 10.1016/B978-0-12-812931-9.00032-3

Artículos:

- A family of rhodium and iridium complexes with semirigid benzylsilyl phosphines: from bidentate to tetradentate coordination modes. María Vicky Corona-González, Julio Zamora-Moreno, Cynthia A. Cuevas-Chávez, Ernesto Rufino-Felipe, Emmanuelle Mothes-Martin, Yannick Coppel, Miguel A. Muñoz-Hernández, Laure Vendier, Marcos Flores-Alamo, Mary Grellier, Sylviane Sabo-Etienne and Virginia Montiel-Palma. *Dalton Trans.* 2017, 46, 8827-8838. DOI: 10.1039/C7DT00727B
- Stabilization of Trans Disilyl Coordination at Square-Planar Platinum Complexes. Cynthia A. Cuevas-Chávez, Julio Zamora-Moreno, Miguel A. Muñoz-Hernández, Christian Bijani, Sylviane Sabo-Etienne, and Virginia Montiel-Palma. Organometallics, 2018, 37(5), 720-728. DOI: 10.1021/acs.organomet.7b00566
- Modulation of an Anagostic Interaction in SiPSi-Type Pincer Platinum Complexes. Julio Zamora-Moreno, Fernando Murillo, Miguel A. Muñoz-Hernández, Mary Grellier, Sudip Pan, Said Jalife, Gabriel Merino, Sylviane Sabo-Etienne, and Virginia Montiel-Palma. Organometallics, 2018, 37(20), 3581-3587. DOI: 10.1021/acs.organomet.8b00269
- Exploiting the Versatility of Phosphinobenzylsilanes for the Stabilization of 14-Electron Rhodium(III) and Iridium(III) Complexes. María Vicky Corona-González, Julio Zamora-Moreno, Miguel A. Muñoz-Hernández, Laure Vendier, Sylviane Sabo-Etienne, and Virginia Montiel-Palma. *Eur. J. Inorg. Chem.* 2019, 1854-1858. DOI: 10.1002/ejic.201900107

R E S U M E N

En el presente trabajo de investigación se desarrolla la síntesis de compuestos tris-sililados de P^{III} y su coordinación como ligantes multidentados para la obtención de nuevos complejos organometálicos estabilizados por el efecto quelato mediante la formación de anillos de seis miembros, con geometrías restringidas alrededor del centro metálico promovidas por el ligante y con potencial catalítico. Por lo tanto, el escrito se dividió en siete capítulos que cuentan con una breve introducción y culminan con sus conclusiones concernientes. En el séptimo capítulo se describe detalladamente sobre el trabajo hecho experimentalmente durante este estudio, mientras que los primeros seis Capítulos abordan la siguiente información.

En el primer capítulo de este trabajo se establece la importancia de utilizar estructuras con fósforo y silicio para la formación de novedosos complejos, con singulares propiedades químicas y sus alcances a nivel industrial y laboratorio. Aquí también se plantean los objetivos inmediatos a alcanzar en esta tesis y las hipótesis basadas en importantes trabajos realizados por varios grupos de investigación incluyendo el nuestro.

Ш

En el segundo capítulo se presenta una extensa gama de complejos fósforo-sililados con metales transicionales (especialmente del grupo 8, 9 y 10), desde complejos con ligantes bidentados *PSi*, esqueletos *PSiP*, derivados *SiPSi*, hasta estructuras más voluminosas como las *P*₃*Si* que son capaces de activar moléculas pequeñas inertes tales como H₂, N₂, py, arenos, alquenos, etc. Además, aquí se expone la ruta sintética para la obtención de nuestros ligantes P-{(*o*-C₆H₄)-CH₂-SiR₂H₃ (**PSi**₃^R), extendiendo la metodología utilizada por nuestro grupo de investigación para la obtención de silibencilfosfinas; particularmente, a partir de la litiación de la fosfina P(*o*-tolilo)₃ y la subsiguiente sililación por la adición de un silano terciario R₃SiH. Consecuentemente, se desarrolla y se argumenta la caracterización de cada uno de los ligantes comparando sus propiedades físicas, químicas y espectroscópicas.

En el capítulo III, se expone la reactividad de los compuestos **PSi**₃^R (R = ^{*i*}Pr, Ph) hacia [Pt(PPh₃)₃] en diferentes condiciones de reacción, observando la formación de nuevos complejos en los que las fosfinas sililadas **PSi**₃^R actúan como ligantes tri- o tetra-dentados dependiendo de los sustituyentes sobre los átomos de silicio. Igualmente, se presenta la caracterización de estos complejos y la posterior reactividad del complejo con el ligante tripodal [Pt^{IV}H{(κ^4 - *PSiSiSi*)-P{(*o*-C₆H₄)-CH₂-SiPh₂}(PPh₃)] hacia moléculas pequeñas como P(OPh)₃. Por otro lado, en el capítulo IV se muestra la selectiva reactividad del organometálico $[Pt^{II}{(\kappa^3-SiPSi)-P{(o-C_6H_4)-CH_2-SiMe_2}_2 (o-C_6H_4)CHSiMe_2{(PPh_3)]}$ hacia ligantes neutros mediante un mecanismo asociativo (típico para complejos d^8) propuesto para la formación de complejos de fórmula general $[Pt^{II}{(\kappa^3-SiPSi)-P{(o-C_6H_4)-CH_2-SiMe_2}_2-(o-C_6H_4)CHSiMe_2{(L)]}$ (L = CO, PMe_3 y P(OPh)_3). Dentro de sus estructuras se puede localizar una interacción no covalente de tipo anagóstica [C-H…Pt] mediante RMN de ¹H y en algunos casos en estado sólido mediante DRX de monocristal; además, esta interacción es sustentada por cálculos computacionales DFT. Aparentemente, la interacción anagóstica se ve desfavorecida al utilizar C₂H₄ como ligante (L) probablemente debido a la activación de la molécula de etileno por el centro de Pt^{II} que se oxida a Pt^{IV}.

En el capítulo V se habla de la reactividad de los ligantes **PSi**₃^R (R = Me, ^{*i*}Pr, Ph) hacia [Ir(μ -Cl)(η^4 -cod)]₂, de aquí la versatilidad de coordinación de estas silil-fosfinas se observa remarcadamente. Mediante diferentes condiciones de reacción, los compuestos **PSi**₃^R exhiben coordinaciones de manera tetradentada con la presencia de interacciones σ -(Si-H) no clásicas o tridentadas con la formación de un fragmento siloxano puente [Si-O-Si] o brazos colgantes clorados [Si-Cl] derivados del intercambio [Si-H…Ir-Cl] mediante metátesis en estructuras diméricas de valencia mixta o estructuras deficientes de electrones con geometrías inusuales. De aquí se desprende lo expuesto en el capítulo VI, en donde el complejo de valencia mixta [(cod)Ir(μ -H)(μ -CI)Ir{ κ^3 -(*SiPSi*)-P(o-C₆H₄CH₂SiⁱPr₂)₂(o-C₆H₄CH₂SiⁱPr₂CI)}] es utilizado como modelo en catálisis homogénea de sililación deshidrogenante de alquenos mediante condiciones suaves de reacción, además con un enfoque en química verde.

Finalmente, en este sexto capítulo también se presenta la sililación de alquenos (isómeros de hexeno, ciclohexeno y estireno) mediante la formación *in situ* de los complejos estudiados en nuestro grupo de investigación mediante la adición del precursor metálico CoX_2 (X = Br, I) o $[M(\mu-CI)(\eta^4-cod)]_2$ (M = Rh, Ir) y el ligante, seguidos de los alquenos arriba mencionados y Et₃SiH como fuente de silicio.

A B S T R A C T

Along of this research work, the syntheses of tris-silylated P^{III} compounds (**PSi**₃^R R = Me, ^{*i*}Pr, Ph) are described, as well as their multi-dentate coordination modes to get novel organometallic compounds with constricted geometries stabilized by chelate effect for the development of new catalysts. Thus, this thesis was distributed into seven chapters provided with brief backgrounds and appropriate conclusions. The last chapter describes in detail the experimental section of this lab-work. While from first to sixth chapters address the following issues.

The first chapter sets up the relevant points to use phosphorous-silylated structures in the formation of innovative complexes with attracting chemical properties for laboratory-scale or even for industrial procedures. Herein, we proposed the objectives of this research work as well as our hypotheses based on previous reports from several research groups, including ours.

A wide range of phosphorous-silylated transition metal complexes was illustrated in the second chapter. For example, organometallic complexes with *PSi* bidentate ligands, *PSiP* or *SiPSi* backbones, and bulky derivative structures P_3Si -type which are capable to activate small inert molecules like H₂, N₂, py, arenes,

alkenes, and so on. Additionally, the obtainment of our ligands P-{($o-C_6H_4$)-CH₂-SiR₂H}₃ (**PSi₃**^R R = Me, ^{*i*}Pr, Ph) was exposed in the last part of this section. Generally, syntheses of those *PSi₃* ligands were carried out by lithiation of the tri-*o*-tolyl phosphine with ^{*n*}BuLi followed by the addition of stoichiometric amounts of the suitable tertiary silane (R₃SiH). Consequently, **PSi₃**^R compounds were characterized comparing their chemical, physical and spectroscopic properties.

The third chapter contains the reactivity of the **PSi**₃^R toward [Pt(PPh₃)₃] in different reaction conditions. We observed the formation of complexes with the related silylated phosphine coordinated in a tri or tetradentate fashion, depending on the substituents over the silicon atom. Likewise, in this Chapter the characterization of the complexes was displayed aside from the subsequent reactivity of the tripodal complex [Pt^{IV}H{(κ^4 -PSiSiSi)-P{(o-C₆H₄)-CH₂-SiPh₂}(PPh₃)] toward P(OPh)₃ and other unsuccessful reactions with small molecules.

On the other hand, the reactivity of the organometallic compound $[Pt^{II}{(\kappa^3-SiPSi)-P{(o-C_6H_4)-CH_2-SiMe_2}_2-(o-C_6H_4)-CHSiMe_2}(PPh_3)]$ towards neutral ligands by associative mechanism to obtain complexes with general formula $[Pt^{II}{(\kappa^3-SiPSi)-P{(o-C_6H_4)-CH_2-SiMe_2}_2-(o-C_6H_4)-CHSiMe_2}(L)]$ (L = CO, PMe₃ P(OPh)₃) is shown in chapter IV. All of those structures display a non-covalent anagostic interaction [C-H…Pt] detected by ¹H NMR and in solid state by singlecrystal X-ray diffraction. Moreover, the anagostic interactions were supported by DFT calculations at PBE0-D3/def2-TZVP level. Apparently, the anagostic interaction is disadvantaged when C_2H_4 is used as ligand (L) perhaps due the extreme activation of the ethylene molecule by Pt^{II} which is oxidized into Pt^{IV} .

The fifth chapter is focused on the reactivity of the ligands PSi_3^{R} toward $[Ir(\mu-Cl)(\eta^4-cod)]_2$, the versatility of the coordination modes of the ligands depends on the reaction conditions since the compounds PSi_3^{R} can exhibit nonclassical σ -interactions (η^2 -Si-H). This compounds also shown the formation of siloxane bridges [Si-O-Si] or hanging chlorinated arms (Si-Cl) formed by metathesis interchange [Si-H…Ir-Cl] within mixed-valence dimeric structure or 14-electron complexes fashioning a seesaw geometry. To conclude, the related chapter VI shows the catalytic activity of the mixed-valence [Ir¹-Ir^{III}] complex [(cod)Ir(μ -H)(μ -Cl)Ir{ κ^3 -(*SiPSi*)-P(o-C₆H₄CH₂SiⁱPr₂)₂(o-C₆H₄CH₂SiⁱPr₂Cl)}] in the insertions of silanes into double bonds via dehydrogenative silylation or hydrosilylation.

Finally, In sixth chapter also contains the results obtained from the silulation via *insitu* with the addition of the metal precursor CoX_2 (X = Br, I) (and the ligand separately) or the complexes [M(µ-Cl)(η^4 -cod)]₂ (M = Rh, Ir), followed by the addition of the substrate (1hexene, cyclohexene, styrene, etc.) and Et₃SiH as silicon source.

[Página en blanco]

[Página en blanco]

ÍNDICE

R	E	S	U	M	E	N	I									Ι	Ι	Ι
A	B	S	T	R	A	С	T	,								v	I	Ι
Í	N	D	Ι	С	E											X	Ι	I
G	L	0	S	A	R	Ι	0									X	v	Ι
Ι	L	U	<u>s</u>	T	R	A	С	I	0	N	E	<u>s</u>			X	V	Ι	Ι
C	A	Р	Í	гι	JL	. 0)	I										1
1.1	L	Со	mpl	ejos	de C	Coor	dina	ació	on y (Orga	nom	etáli	cos: Gen	eralidad	des			2
1.2	2	Fo	sfina	as fu	ncio	nali	zada	as c	on si	ilano	S							4
1.3	3	Im	port	anci	ia de	e la f	orm	aci	ón d	e en	lace	s Si-C						8
1.4	1	Ob	oietiv	vos d	ue e	engl	oba	n es	sta to	esis								9
	1.4.	1	Obje	etivo	gen	eral												9
	1.4.	2	Obje	etivo	s es	pecí	ficos	5										10
1.5	5	Hi	póte	sis														10
C	A	Р	Í	гι	JL	. 0)	I	Ι								1	2
2.1	L	An	tece	eden	tes:	sililf	fosfi	nas	5									13
	2.1.	1	Sililf	osfir	nas k	oider	ntad	las y	y efe	cto d	quela	ato						15
	2.1.	2	Sililf	osfir	nas t	ride	ntad	das:	vers	atili	dad							23
	2	.1.2	.1	Est	ruct	uras	PSi	Р										25
	2	.1.2	.2	Est	ruct	uras	SiD	Si (I	D = c	lona	dor (O, P)						34

2.1.3 Estructuras tripodales P₃Si

2.2 Resultados y discusión de la obtención de ligantes potencialmente tetra-dentados: P-{ $(o-C_6H_4)-CH_2-SiR_2H_3$ R = Me (PSi₃^{Me}), R = ^{*i*}Pr (PSi₃^{iPr}), R = Ph (PSi₃^{Ph}).40

2.3	Conclusiones del Capítulo II		47
C A	PÍTULO III	4	8
3.1	Resutados y discusión de la reacción de los ligantes PSi ₃ ^R hacia [Pt 49	(PPI	h₃)₃]
3.2 PSi3 ^{Ph})F PSi3 ^{Ph})F	Resultados y discusión de la reactividad del complejo [Pt ^{IV} H(ĸ ⁴ - PPh₃] hacia pequeñas moléculas y la obtención del derivado [Pt ^{IV} H(ı P(OPh)₃]	к ⁴ -	59
3.3	Conclusiones del Capítulo III		61
C A	PÍTULO IV	6	3
4.1	Antecedentes: Interacciones C-H····M		64
4.2 PSi3 ^{Me})	Resultados y discusión para la obtención del complejo [Pt ^{II} (κ^3 - PMe $_3$]		67
4.3 PSi ₃ ^{Me})I	Resultados y discusión para la obtención del complejo [Pt ^{II} (κ ³ - P(OPh)₃]		76
4.4	Resultados y discusión para la obtención del complejo [Pt ^{II} (κ^3 -PSi $_3$ 82	^{Me})C	:0]
4.5 PSi3 ^{Me})(Resultados y discusión para la obtención del complejo [Pt ^{IV} (κ^3 -C ₂ H ₄]		86
4.6	Conclusiones del Capítulo IV		91
C A	Ρίτυιο ν	9	3

XIII

5.1	Resultados y discusión para la obtención del complejo [Ir ^{III} Cl(PSi ₃ ^{Me} H)]] ₂ 94
5.2	Resultados y discusión para la obtención del complejo [Ir ^I -Ir ^{III} (PSi ₃ ^{iPr} Cl) 100)]
5.2.1 frent 5.2.2	 Resultados y discusión de la reactividad del complejo [Ir¹-Ir^{III}(PSi₃^{iPr})] e a Et₃SiH Reactividad del complejo [Ir¹-Ir^{III}(PSi₃^{iPr})] con otros ligantes 	106 113
5.3 [Ir ⁱ -Ir ⁱⁱⁱ (I	Resultados y discusión para la obtención del complejos [Ir ^I -Ir ^{III} (PSi ₃ ^{Me}) PSi ₃ ^{Ph})]] y 115
5.4	Conclusiones del Capítulo V	117
C A	PÍTULO VI 11	8
6.1	Antecedentes: Sililcaión e hidrosililación catalítica	118
6.2 Ir [™] (PSi₃	Resultados y discusión de la sililación de alquenos con el complejo [Ir ^{¡Pr})]	'_ 127
6.3 metálic	Resultados y discusión de la sililación de alquenos con precursores cos y ligantes	134
6.4	Conclusiones del Capítulo VI	138
C A	PÍTULO VII 14	0
7.1	Condiciones generales	140
7.2	Síntesis del complejo [Pt ^{II} (κ ³ -PSi ₃ ^{Me})PPh ₃]	142
7.3	Síntesis del complejo [Pt ^{II} (κ ³ -PSi ₃ ^{Me})PMe ₃]	144
7.4	Síntesis del complejo [Pt ^{II} (κ ³ -PSi ₃ ^{Me})P(OPh) ₃]	146
7.5	Síntesis del complejo [Pt ^{II} (κ ³ -PSi ₃ ^{Me})CO]	148
7.6	Síntesis del ligante PSi ₃ ^{Ph} XIV	149

7.7	Síntesis del complejo [Pt ^{IV} H(κ ⁴ -PSi ₃ ^{Ph})PPh ₃]			150				
7.8	Síntesis del ligante PSi ₃ ^{iPr}			152				
7.9	Síntesis del complejo [Ir ^{III} Cl(PSi ₃ ^{Me} H)] ₂							
7.10	Obtención del complejo [Ir ^I -HCI-Ir ^{III} (PSi ₃ ^{iPr} CI)]			154				
7.11	Síntesis de los complejos [Ir ^{III} (PSi ₃ ^{iPr})Cl] y [Areno-Ir ^{III}]			156				
7.12	Condiciones experimentales para la catálisis de sililación de alo	quei	nos.	158				
RE	FERENCIAS	1	5	9				
A N	E X O S	1	6	9				
Espectr	os de RMN			170				
Espectr	ros de IR			216				
Datos E Dato	structurales os cristalográficos y de refinamiento para el complejo [Pt ["] (κ ³ -PSi ₃ [°]	^{vie})P	(OP	220 h)₃]				
				220				
CG-MS				232				

GLOSARIO

BPT. Bipirámide trigonal (geometría)

Bu. Butilo

cod. 1, 5-cilcooctadieno

cot. 1,3,5-Ciclooctatrieno

Cy. Ciclohexilo

DFT. Density Functional Theory (Teoría de Funcionales de la Densidad)

DRX. Difracción de Rayos X

Et. Etilo

L. Ligante

M. Metal

Me. Metilo

MT. Metal Transicional

OTf. Triflato

PBC. Pirámide de base cuadrada (geometría)

Ph. Fenilo

Pr. Propilo

Py. Piridina

RMN. Resonancia Magnética Nuclear

SISHA. Secondary Interaction between Silicon and Hydrogen Atoms (Interacciones Secundarias entre los Átomos de Silicio e Hidrógeno)

TMEDA. N,N,N',N'-Tetrametiletilendiamina

TSMOTf. Triflato de trimetilsilano

I L U S T R A C I O N E S

Ilustración 1. Representación de un enlace de coordinación Metal-Ligante	2
llustración 2. Diagrama molecular para el enlace Metal-fosfina	5
llustración 3. Diagrama molecular para el enlace σ-Si-H hacia metales	6
llustración 4. Proceso de adición oxidativa del enlace Si-H hacia Metales	7
Ilustración 5. Formas de coordinación de las sililfosfinas	_ 13
llustración 6. Silil-(Alquil)-fosfinas y su coordinación hacia Rh e Ir	_ 16
llustración 7. Síntesis del ligante PSi ^{Me} y su reactividad hacia [Pt(cod)Cl ₂]	_ 17
llustración 8. Silil-(carborino)-fosfinas y su reactividad hacia C11	_ 19
Ilustración 9. Reactividad del ligante PSi ^{Me} hacia rutenio	_ 20
Ilustración 10. Reactividad del Ligante PSi ^{iPr} hacia Rh e Ir	_ 22
llustración 11. Reactividad del ligante L19 hacia metales del grupo 10 y Cu	_ 26
Ilustración 12. Reactividad de ligantes PSiP hacia Pt e Ir	_ 32
Ilustración 13. Reactividad del ligante L23 hacia [Mn(CO)5Me]. Activiación gradu	ual
del enlace Si-H en Mn	_ 34
Ilustración 14. Estructura molecular del complejo C41	_ 36
llustración 15. Diseño de ligantes SiPSi. Reactividad del ligante PSi ₂ ^{Me} frente a	
$[Pt(PPh_3)_3]$ y sus subsecuentes reactividades hacia H ₂ y CO	_ 37
Ilustración 16. (Izquierda) Estructuras tipo P_3 Si fluxionales. (Derecha) Estructura	de
Rayos X del complejo tripodal de Rh ^l reportado por Stobart y colaboradores	_ 38
llustración 17. Reactividad de los ligantes rígidos L24 y L25 hacia Pt y Fe	_ 39
Ilustración 18. Reactividad del complejo C47	_ 40
Ilustración 19. Sintesis "One-Pot" de los ligantes PSi3 [®]	_ 41
llustración 20. Espectros parciales de FT-IR de los ligantes PSi ₃ ^{iPr} y PSi ₃ ^{Ph}	
(Transmitancia). Se muestran las frecuencias para las vibraciones de los enlaces	Si-
H (cm ⁻¹)	_ 42
Ilustración 21. RMN de ${}^{31}P{}^{1}H{}$ (202 MHz, C_6D_6 , 298 K) de los ligantes PSi_3^{R}	_ 43
Ilustración 22. RMN-2D HMQC 1 H- 29 Si (600-120 MHz, C ₆ D ₆ , 298 K) de PSi $_{3}^{Ph}$	_ 44
llustración 23. RMN-2D HSQC ¹ H- ¹³ C{ ¹ H}{ ³¹ P} (500-125 MHz, C ₆ D ₆ , 298 K) de PSi ₃	^{iPr} 45
Ilustración 24. Región selecta del espectro de RMN 1 H (400 MHz, $C_6 D_6$, 298 K) pa	ıra
la señal derivada del enlace Si-H de los ligantes PSi3 ^{Ph} y PSi3 ^{Ph}	_ 46
llustración 25. Reactividad de los ligantes PSi ₃ ^R hacia [Pt(PPh ₃) ₃]	_ 50
llustración 26. Espectro parcial (campo alto) de RMN de ¹ H (500 MHz, CD ₂ Cl ₂ , 30)2 K)
del complejo tripodal [Pt ^{IV} H(κ ⁴ -PSi ₃ ^{Ph})PPh ₃]	_ 51
llustración 27. RMN-2D COSY ¹ H- ¹ H (400 MHz, CD ₂ Cl ₂ , 298 K) de los protones	
bencílicos del ligante coordinado en [Pt ^{IV} H(κ ⁴ -PSi ₃ ^{Ph})PPh ₃]	_ 52

Ilustración 28. Espectro de RMN de ³¹ P{ ¹ H} (202 MHz, CD ₂ Cl ₂ , 302 K) del complejo	
tripodal [Pt ^{IV} H(κ^4 -PSi ₃ ^{Ph})PPh ₃]. *OPPh ₃ como impureza	53
Ilustración 29. RMN-2D HMQC ¹ H- ²⁹ Si{ ¹ H} (500-99 MHz, CD ₂ Cl ₂ , 302 K) del comple	2j0
tripodal [Pt ^{IV} H(κ ⁴ -PSi ₃ ^{Ph})PPh ₃]	54
llustración 30. Espectro FT-IR del complejo [Pt ^{IV} H(κ ⁴ -PSi ₃ ^{Ph})PPh ₃] adquirido en	
pastilla de KBr. v(Pt-H) = 2020 cm ⁻¹	55
Ilustración 31. Trabajo reportado por Shimada y colaboradores. Reactividad del	
lignate L26 (SiSiSi) frente a metales del grupo 10	56
Ilustración 32. Espectro de RMN de ${}^{31}P{}^{1}H{}$ (202 MHz, C ₆ D ₆ , 298 K) del complejo	
tripodal [Pt ^{IV} H(κ ⁴ -PSi ₃ ^{iPr})PPh ₃]. Crudo de reacción	57
Ilustración 33. Espectro de RMN de ¹ H (500 MHz, C ₆ D ₆ , 298 K) del complejo tripod	lal
$[Pt^{IV}H(\kappa^4-PSi_3^{iPr})PPh_3]$. Crudo de reacción	59
Ilustración 34. Reactividad del complejo [$Pt^{IV}H(\kappa^4-PSi_3^{Ph})PPh_3$] hacia trifenilfosfita	61
Ilustración 35. Parametros de interacciones agósticas versus anagósticas	64
Ilustración 36. Estructura de rayos X del primer complejo agóstico estructuralmen	ite
caracterizado, [Ti(C ₂ H ₅)Cl ₃ (Me ₂ PCH ₂ CH ₂ PMe ₂)]. Ángulo Ti…H-C = 90.4°, distancia (de
enlace Ti…H = 2.22(10) Å.(76)	65
Ilustración 37. Complejos anagósticos descritos en la literatura	67
llustración 38. Reactividad del complejo [Pt ^{ll} (κ ³ -PSi ₃ ^{Me})PPh ₃]	68
Ilustración 39. Espectro de RMN de ${}^{31}P{}^{1}H{}$ (202 MHz, C ₆ D ₆ , 298 K) del complejo	
pinza [Pt ^{II} (κ^3 -PSi ₃ ^{Me})PMe ₃] + PPh ₃ libre	69
Ilustración 40. Mecanismo propuesto para la obtención de las especies [Pt ^{II} (κ^3 -	
PSi ₃ ^{Me})L]	71
llustración 41. Espectro de RMN de ¹ H (400 MHz, C ₆ D ₆ , 298 K) del complejo pinza	
[Pt ^{ll} (κ ³ -PSi ₃ ^{Me})PMe ₃]. Ampliación de 4.75-1.98 ppm (región bencílica)	72
Ilustración 42. Espectro de RMN 2D ¹ H- ²⁹ Si{ ³¹ P} HMQC (500-99 MHz, C ₆ D ₆ , 298 K)	
del complejo pinza [Pt ^{II} (κ ³ -PSi ₃ ^{Me})PMe₃]. Región alquílica	73
Ilustración 43. Esquemas de los estudios NCI (Noncovalent index) de los complejo.	s
[Pt ^{ll} (κ ³ -PSi ₃ ^{Me})L]. Las interacciones anagósticas están señaldas con las flechas	75
llustración 44. Espectro parcial de RMN de ¹ H (500 MHz, C ₆ D ₆ , 298 K) del compleje	0
[Pt ^{II} (κ ³ -PSi ₃ ^{Me})P(OPh) ₃]	77
Ilustración 45. Espectro de RMN de ${}^{31}P{}^{1}H{}$ (202 MHz, C ₆ D ₆ , 298 K) del complejo	
[Pt ^{ll} (κ ³ -PSi ₃ ^{Me})P(OPh) ₃]. *OPPh ₃ como impureza	78
Ilustración 46. Espectro de RMN 2D 1 H- 29 Si HMQC (500-99 MHz, C ₆ D ₆ , 298 K) del	
complejo pinza [Pt ^{''} (κ ³ -PSi ₃ ^{Me})P(OPh) ₃]. Región alquílica	79
Ilustración 47. Estructura de Rayos X del complejo pinza anagóstico [Pt $''(\kappa^3$ -	
PSi ₃ ^{Me})P(OPh) ₃]	81

llustración 48. Espectro de RMN de ³¹ P{ ¹ H} (162 MHz, C ₆ D ₆ , 298 K) del complejo	
[Pt ^{II} (κ ³ -PSi ₃ ^{Me})CO]. *OPPh ₃ como impureza	82
llustración 49. Espectro de RMN de ¹ Η (400 MHz, C ₆ D ₆ , 298 K) del complejo [Pt ^{II} (κ	3_
PSi ₃ ^{Me})CO]. Ampliación de los protones bencílicos	83
Ilustración 50. Espectro de RMN de ¹³ C{ ¹ H} (100 MHz, C ₆ D ₆ , 298 K) del complejo	
[Pt ^{ll} (κ ³ -PSi ₃ ^{Me})CO]. Ampliaciones de la señal de CO y de la región alquílica	84
Ilustración 51. Espectro de FT-IR del complejo [Pt ^{II} (κ^3 -PSi ₃ ^{Me})CO] adquirido en	-
disolución de C ₆ D ₆ a temperatura ambiente en una celda de KBr	85
llustración 52. Espectro parcial de RMN de ¹ H (400 MHz, C ₆ D ₆ , 298 K) del complej	о
[Pt ^{IV} (κ ³ -PSi ₃)C ₂ H ₄]	86
llustración 53. Espectro de RMN de ³¹ P{ ¹ H} (162 MHz, C ₆ D ₆ , 298 K) del complejo	
[Pt ^{IV} (κ ³ -PSi ₃)C ₂ H ₄]. *OPPh ₃	87
llustración 54. Espectro de RMN 2D ¹ H- ¹³ C HSQC (500-125 MHz, C ₆ D ₆ , 298 K) del	
complejo [$Pt^{IV}(\kappa^3-PSi_3^{Me})C_2H_4$]. Región alquílica	89
Ilustración 55. Espectro de RMN DEPT-q ¹³ C{ ¹ H} (125 MHz, C ₆ D ₆ , 298 K) complejo	
$[Pt^{IV}(\kappa^3 - PSi_3^{Me})C_2H_4] + [Pt^{II}(\kappa^3 - PSi_3^{Me})PPh_3] \text{ con ampliaciones}_{(m_1, m_2)}$	90
Ilustración 56. Reactividad del ligante PSi $_3^{Me}$ frente al dimero [Ir(µ-Cl)(η^4 -cod)] $_2$ (C	2)
en pentano y su subsecuente reacción con agua	95
Ilustración 57. Espectro de RMN de 1 H (400 MHz, $C_{6}D_{6}$, 303 K) del comp	lejo
[IrIIICI((PSi ₃ ^{Me} H)] ₂ . Expanciones de las señales de los protnes bencílicos y η^2 -(Si-H	l)Ir.
* Grasa siliconada como impureza	96
llustración 58. Espectro parcial de RMN de $^{13}C{}^{1}H{}$ (175 MHz, $C_{6}D_{6}$, 298 K) del	
complejo [Ir ^{III} Cl((PSi ₃ ^{Me} H)] ₂ . *Grasa siliconada como impureza, el resto de la señal	les
corresponden al complejo C57	97
Ilustración 59. Espectro de RMN de ${}^{31}P{}^{1}H{}$ (162 MHz, C_6D_6 , 303 K) del complejo	
[Ir ^{III} CI((PSi ₃ ^{Me} H)] ₂	98
llustración 60. Espectro de FT-IR del complejo [Ir ^{III} Cl((PSi ₃ ^{Me} H)] ₂ adquirido a	
temperatura ambiente en una pastilla de KBr	98
Ilustración 61. Seguimiento por RMN de ${}^{31}P{}^{1}H{}$ (162 MHz, C_6D_6 , 298 K) del compl	lejo
$[Ir^{III}Cl((PSi_3^{Me}H)]_2$ en disolución: a) con C ₆ D ₆ con agua después de 30 min y b) C ₆ D ₆	;
seco (sobre K activado) después de 20 h	99
Ilustración 62. Reactividad del ligante PSi $_3^{iPr}$ frente al dimero [Ir(µ-Cl)(η^4 -cod)] $_2$ (C	2)
en pentano. Obtención del complejo [Ir ^I -Ir ^{III} (PSi ₃ ^{iPr} CI)]	100
llustración 63. Espectro de RMN de ¹ H (400 MHz, C ₆ D ₆ , 303 K) del complejo [Ir ^l -	
Ir ^{III} (PSi ₃ ^{iPr} Cl)]. Ampliación de la región bencílica	101

Ilustración 64 (Izquierda) Espectro de RMN de ${}^{31}P{}^{1}H{}$ (162 MHz, C_6D_6 , 296 K) del	
complejo [Ir [!] -HCI-Ir ^{III} (PSi ₃ ^{iPr} CI)]. (Derecha) Espectro de RMN 2D HMQC ¹ H- ²⁹ Si (500)_
99 MHz, C ₆ D ₆ , 297 K) del complejo [Ir ^l -Ir ^{III} (PSi ₃ ^{iPr} Cl)] 1	102
Ilustración 65. Estructura de rayos X del complejo [Ir ^l -Ir ^{III} (PSi ₃ ^{iPr} Cl)] 1	103
Ilustración 66. Estructuras de complejos diméricos de iridio 1	105
Ilustración 67. Reactividad del complejo [Ir ^I -Ir ^{III} (PSi₃ ^{iPr} Cl)] con Et₃SiH1	106
Ilustración 68. Espectro de RMN de ¹ H (500 MHz, C ₆ D ₆ , 298 K) de la mezcla de los	
complejos [Ir ^{III} (PSi ₃ ^{iPr})Cl] y [Areno-Ir ^{III}]. Ampliaciones del hidruro y región alquílica	
1	107
Ilustración 69. Espectro de RMN de ${}^{13}C{}^{1}H{}$ (125 MHz, $C_{6}D_{6}$, 298 K) de la mezcla de	е
los complejos [Ir ^{III} (PSi ₃ ^{iPr})Cl] y [Areno-Ir ^{III}] y ampliaciones1	108
Ilustración 70. Espectro de RMN de ${}^{31}P{}^{1}H{}$ (202 MHz, C_6D_6 , 298 K) del complejo	
[Ir ^{III} (PSi ₃ ^{iPr})Cl] y su ampliación 1	109
Ilustración 71. Estructura de rayos X del complejo [Ir ^{III} (PSi ₃ ^{iPr})Cl]1	111
Ilustración 72. Complejos C61 y C62 descritos por Tobita et al1	113
Ilustración 73. Reaccción in situ del complejo [Ir ^l -Ir ^{III} (PSi ₃ ^{iPr} Cl)] con P(OPh) ₃ 1	114
Ilustración 74. Reactivida de los ligantes PSi_3^R hacia $[Ir(\mu-CI)(\eta^4-cod)]_2$ 1	115
Ilustración 75. Espectros parciales de RMN de ¹ H (200 MHz, C ₆ D ₆ , 298 K) y de ³¹ P{	¹ H}
(81 MHz, $C_6 D_6$, 298 K) de las especies: (a,c) $[Ir^{I}-Ir^{III}(PSi_3^{Me}CI)]$ y (b,d) $[Ir^{I}-Ir^{III}(PSi_3^{Ph}CI)]$)]
1	116
Ilustración 76. Reacciones de alquenos con silanos en presencia de catalizadores 1	119
Ilustración 77. Mecanismo del ciclo catalítico de Chalk-Harrod y Chalk-Harrod	
modificado para la sililación de olefinas.	120
Ilustración 78. Mecanismo propuesto por H. Berke y colaboradores para la sililació	ón
de alquenos con silanos terciarios catalizada por complejos de renio	121
Ilustración 79. Reacción de sililación de 1-Octeno catalizada por C63 1	122
Ilustración 80. Sililacion de arenos. a) Catalizada con [Rh] y L27. b) Catalizada con	1
[Ir] y L281	123
Ilustración 81. Sililacion de especies insaturadas catalizada por metales alcalinos	
1	124
	125
Ilustración 83. Sililación de estireno con FeCl ₂ como catalizador al 20 % mol en	
presencia de peróxido de di-terbutilo	126
Ilustración 84. Mecanismo propuesto para las reacciones entre alquenos y silanos	5
catalizadas por complejos de Ir correspondientes a ésta sección y las subsecuente	?s.
, , , , , , , , , , , , , , , ,	133
Ilustración 85. Transformación de estireno. Región aromática	137
XX	

CAPÍTULO I

Específicamente, en este capítulo se describirán de manera breve las bases de este trabajo de investigación con la finalidad de sustentar las ideas plasmadas en los objetivos y en la hipótesis que también se desarrollan en este capítulo en las secciones 1.4 y 1.5, respectivamente. La apertura comienza con generalidades básicas para el entendimiento de lo planteado en los objetivos; finalizando con el planteamiento de las hipótesis a esclarecer.

1.1 Complejos de Coordinación y Organometálicos:Generalidades

Intrínsecamente, la química de coordinación y la organometálica son ramas de la química inorgánica que se encargan del estudio de la unión entre una especie orgánica (L = ligante) y un metal (M = metal alcalino, alcalino térreo, transicional, etc.) o metaloide.(1)

Ilustración 1. Representación de un enlace de coordinación Metal-Ligante

La química de coordinación tiene sus bases en la formación de enlaces dativos o enlaces de coordinación, de ahí su nombre. Mientras que los complejos organometálicos se definen como aquellos que en su estructura molecular contienen al menos un enlace carbono-metal; en el que éste último es menos electronegativo que el átomo de carbono. La formación de enlaces M-L puede ser conceptualizada mediante un modelo en el que de manera gráfica se explica la compartición de electrones entre una base de Lewis (ligante) y un ácido de Lewis (metal o metaloide). Los orbitales (n-1)*d*, ns y np de los metales transicionales son considerados en la formación de estos enlaces (**Ilustración 1**). La ocupación parcial de estos orbitales es lo que aporta a los metales de transición la capacidad de ser electrodonadores o electroaceptores sin dejar de lado la naturaleza del ligante y su capacidad de enlazarse sinérgicamente al metal cambiando el orden de enlace M-L.(1)

La labilidad cinética y la estabilidad termodinámica de los complejos de coordinación y organometálicos dependen en gran medida del estado de oxidación del metal (configuración electrónica del metal); la geometría del complejo, electrones en orbitales *d* que sean anti-enlazantes con respecto a los ligantes, número de sitios de coordinación en el ligante (efecto quelato) y el número de coordinación del centro metálico; la temperatura; la relación carga/radio; y en consecuencia la reactividad del complejo hacia O₂ (oxidación) o H₂O (hidrólisis).

Como se mencionó en el párrafo anterior, la estabilidad termodinámica de los complejos organometálicos o de coordinación puede ser promovida por el enlazamiento del ligante al metal a través de dos o más sitios de coordinación mediante el llamado efecto quelato, el cual depende de dos aspectos generales: 1) el número de anillos formados, ya que entre más sean, mayor será la estabilidad del complejo sintetizado; 2) la geometría del anillo quelato formado. Los anillos quelato de cinco y seis miembros son los que presentan una mayor estabilidad ya que exhiben una mínima tensión, en la que todos los ángulos de torsión tienen una medida cercana a la idealidad de 60°. Mediante la modificación de un ligante quelante bidentado implementando sitios de coordinación (bases o ácidos de Lewis), se consigue el diseño de nuevos ligantes tri-, tetrao poli-dentados.(2)

1.2 Fosfinas funcionalizadas con silanos

En particular, es importante para el presente trabajo de doctorado conocer las variantes más comunes para ligantes potencialmente tetra-dentados. Las disparidades de esta clasificación vienen dadas por los principales átomos centrales donadores o aceptores de densidad electrónica y las bases de Lewis conectados a él. Tanto el átomo central como los donadores quelantes pueden actuar como espectadores flexibles o bien, pueden ser donadores con moderada o fuerte influencia *trans*. Este tipo de ligantes proveen geometrías bien definidas que conlleva a la obtención de compuestos con interesantes propiedades químicas, espectroscópicas e incluso catalíticas. Un buen ejemplo de átomos centrales para este tipo de estructuras es el fósforo, ya que de acuerdo con la teoría AB-DB (Ácido/Base-Duro/Blando) de Pearson, las fosfinas se clasifican como bases blandas que reaccionan rápidamente y forman enlaces más fuertes con los metales Pt e Ir (de interés para este estudio) que son

4

considerados por esta teoría como ácidos de Lewis blandos (**Ilustración 2**).¹ Una más de las ventajas de usar P dentro de estas estructuras es la aplicación de la técnica espectroscópica de resonancia magnética nuclear (RMN) de ³¹P (isótopo con abundancia natural del 100%) para la identificación de interacciones de fosfinas con metales de transición; obteniendo espectros rápidamente, de calidad y sencillos de elucidar.(3)

Ilustración 2. Diagrama de orbitales moleculares para el enlace metal-fosfina

Por otro lado, en el mecanismo de la reacción de hidrosilanos $(R_{4-n}-SiH_n)$ con metales transicionales existe un paso cave, el cual es la adición oxidativa (AO) del enlace Si-H hacia el metal (**Ilustración 3**).(4) De aquí se desprende la idea de que esta importante transformación

¹ HOMO de alta energía en el caso de las bases blandas y LUMO de baja energía en el caso de los ácidos blandos

es crucial para la creación de enlaces Si-C en compuestos orgánicos insaturados a través de la sililación catalítica hecha por el propio metal de transición. Es significativo tomar en cuenta a la entalpía de disociación del enlace Si-H de \approx 326 kJ·mol⁻¹ que comparada con la entalpía de disociación de los enlaces H-H (\approx 430 kJ·mol⁻¹) y C-H (\approx 416 kJ·mol⁻¹) es considerablemente menor, lo que sugiere que el enlace Si-H es potencialmente más suceptible a escindirse vía AO en presencia de un metal transicional.(5, 6) Esto también indica que el enlace Si-H es un mejor aceptor-π por contar con una energía menor del orbital de antienlace σ*(Si-H) con respecto a los orbitales σ*(H-H) y σ*(C-H).

Ilustración 3. Diagrama molecular para el enlace σ-Si-H hacia metales

Ilustración 4. Proceso de adición oxidativa del enlace Si-H hacia Metales

Existen parámetros estructurales y espectroscópicos que avudan a evaluar el proceso de AO de los enlaces Si-H promovida por metales de transición, los valores de estos parámetros representados de manera general en la Ilustración 4 son adquiridos experimentalmente mediante difracción de rayos X de cristales (o difracción de neutrones), espectroscopía de IR y en disolución mediante espectroscopia de RMN especialmente de ¹H y/o ²⁹Si.(7) Las interacciones sigma no clásicas son consideradas como aquellas que forman parte del proceso de AO del enlace E-H (E = H, B, Al, Si, Ge, Sn, etc.) en donde este enlace aún no ha completado su proceso de adición y no se encuentra totalmente escindido. La interacción no clásica del fragmento E-H (particularmente Si-H) con el metal es similar a un enlace de 3c2e⁻ mientras que un enlace clásico es aquel

formado directamente entre dos átomos (enlace de 2c2e⁻). Finalmente, se puede deducir que en comparación con los complejos dihidrógeno y agósticos M-(η^2 -CH), los complejos no clásicos σ -Si-H generalmente presentan un mayor grado de adición oxidativa hacia metales de transición debido a su eficiente donación- σ retrodonación- π que conduce a la completa ruptura del enlace Si-H y a la formación enlaces Si-M que también son de gran relevancia para esta tesis.

1.3 Importancia de la formación de enlaces Si-C

La adición de enlaces Si-H a través de enlaces dobles C=C para la formación de nuevos enlaces Si-C mediante la hidrosililación de olefinas catalizada por metales transicionales, es una de las aplicaciones más sobresalientes en la producción industrial de surfactantes, fluidos, recubrimientos y adhesivos. Por lo tanto, la sililación e hidrosililación ha tenido un auge importante en aplicaciones a larga escala con métodos basados en catálisis homogénea.(8) Por ejemplo, el producto anti-Markovnikov 3-octilo-1,1,1,3,5,5,5-heptametiltrisiloxano procedente de la hidrosililación de 1-octeno con (Me₃SiO)₂SiMeH es preparado comercialmente y usado en compuestos agrícolas, en sensores y como materia prima en la formulación de nuevos productos cosméticos.(9)

8

El uso de silanos terciarios R₃SiH también es favorable en comparación con el uso de silanos primarios RSiH₃ o secundarios R₂SiH₂, porque éstos llevan a la formación de compuestos con enlaces Si-H residuales que promueven posteriores reacciones, envenenando al catalizador y, por lo tanto, arruinando la estabilidad de éste y la utilidad del producto final. Además, la producción de silanos terciarios es la más extensa, volviéndose en los silanos más accesibles comercialmente hablando.(10)

La trascendencia de optimizar la formación de enlaces Si-C, también radica en que estas reacciones se ven afectadas por la competitiva formación de diversos productos secundarios. La reacción entre alquenos y R₃SiH catalizada por metales puede llevar a la obtención de productos derivados de la hidrosililación, sililación deshidrogenante, hidrogenación, la isomerización del alqueno, polimerización (oligomerización) y/o la redistribución del silano.(11)

1.4 Objetivos que engloban esta tesis

1.4.1 Objetivo general

Llevar a cabo la sínteis complejos organometálicos con geometrías bien definidas que incluyan ligantes de estructucturas semirígidas de P y Si para su estudio en catálisis homogénea de sililación de alquenos

9

1.4.2 Objetivos específicos

 Obtener compuestos tris-(silil-bencil)fosfinas que puedan actuar como ligantes y se coordinen fácilmente a platino e iridio;

Aislar compuestos puros derivados del estudio de la reactividad de las bencil-sililfosfinas hacia $[Pt(PPh_3)_3]$; asimismo con $[Ir(\mu-Cl)(\eta^4-COD)]_2$

 Estudiar la reactividad de las nuevas especies metálicas debidamente caracterizadas hacia moléculas pequeñas como H₂, CO, C₂H₄, Et₃SiH, PR₃, etc., con predisposición a usarlas como modelos catalíticos

Realizar catálisis homogénea de sililación de alquenos con los complejos organometálicos derivados de las sililfosfinas y los metales de transición antes mencionados, específicamente con aquellos que no sean onerosos de sintetizar con el fin de optimizar este estudio.

1.5 Hipótesis

Las tris-(bencilsilil)-fosfinas serán capaces de coordinarse a través del átomo de fósforo a los centros metálicos correspondientes y posteriormente los enlaces Si-H interaccionarán o se adicionarán a éste, formando nuevos fragmentos [Si-M] y/o [(η^2 -SiH)-M]. Por lo tanto, los complejos organometálicos así sintetizados tendrán propiedades poco usuales, tanto químicas, espectroscópicas y/o

estructurales, desencadenadas por el efecto ejercido de los átomos de P y Si coordinados.

La geometría alrededor del metal transicional estará fuertemente restringida por el ligante semi-rígido coordinado; finalmente, los sitios de coordinación vacantes en el metal serán aprovechados para catalizar reacciones orgánicas que también serán promovidas por la fuerte influencia/efecto *trans* del grupo sililo. Se usará la sililación de alquenos como modelo de catálisis homogénea debido al interés actual que existe a nivel laboratorio e incluso industrial en la formación de enlaces Si-C(sp²) y/o Si-C(sp³).

CAPÍTULO II

En este capítulo se abordan tópicos relacionados con la preparación de ligantes con dos o más sitios de coordinación (P, Si-H) y su reactividad hacia metales transicionales. Una gran variedad de ligantes y complejos con estas características han sido sintetizados y reportados en la literatura; sin embargo, me enfocaré en aquellos antecedentes que sean relevantes y de importancia directa para el desarrollo del presente trabajo de investigación. También en este capítulo se describe la obtención y caracterización de los ligantes estudiados en este proyecto de investigación.

2.1 Antecedentes: sililfosfinas

Aproximadamente desde hace cuatro décadas se ha explorado la reactividad de las sililfosfinas con diferentes centros metálicos. Las sililfosfinas pueden ser descritas como ligantes bi, tri o polidentados con al menos un átomo de P^{III} como base de Lewis, usualmente una fosfina PR₃ [o fosfita P(OR)₃] con al menos un fragmento silano (terciario, secundario e incluso primario).

Ilustración 5. Formas de coordinación de las sililfosfinas hacia centros metálicos

El átomo de fósforo(III) es capaz de formar enlaces de coordinación considerablemente fácil con un centro metálico, mientras que el fragmento silano potencialmente se enlaza mediante la adición oxidativa y la pérdida de moléculas de H₂, alcanos o arenos. Aunque un enlace directo P-Si también puede ser establecido, entre los átomos de P y el de Si generalmente existe una cadena de átomos de carbono con el propósito de formar puentes alguílicos o arílicos que posteriormente darán paso a la formación de anillos quelato con el centro metálico, que originan una gama diversa en las morfologías de coordinación con este tipo de moléculas (Ilustración 5). Las sililfosfinas logran comportarse como ligantes bi, tri o polidentados dependiendo del número de átomos de P y/o fragmentos silano presentes en la estructura de la molécula. Por lo tanto, los orbitales moleculares en estos dos fragmentos se asumen como donadores de densidad electrónica debido a sus orbitales "frontera" que se muestran esquemáticamente en las Ilustraciones 2 y 3.(12) Un ligante bidentado P-SiH puede coordinarse rápidamente al centro metálico, primeramente por el átomo de P^{III} que se coordina vía donación de su par electrones libres hacia un orbital vacío del metal y posteriormente se une mediante el silano, que se coordina a través de la donación del par de electrones involucrados en el enlace σ-Si-H a un orbital-d adecuado en el centro metálico, formando un enlace no clásico de 3c2e. Ambos enlaces se estabilizan mediante la retro-

14
donación de densidad electrónica desde un orbital-*d* lleno hacia el orbital vacío de antienlace. Cuando existe una fuerte retrodonación de densidad electrónica del orbital *d* hacia el orbital σ^* -(Si-H), se favorece la ruptura y AO del enlace Si-H hacia el centro metálico; así, el producto final exhibe la creación de dos enlaces clásicos de 2c2e⁻: M-Si, M-H. Como es de esperarse, dependiendo de los sustituyentes sobre los átomos de P y de Si, los diagramas de orbitales moleculares y la energía del HOMO y del LUMO varían. Sin embargo de manera general, esto podría ser visto acorde a las **llustraciones 2 y 3**, donde habitualmente el HOMO se concentra más hacia el ligante, mientras que el LUMO está más centrado en el metal.(13)

2.1.1 Sililfosfinas bidentadas y efecto quelato

Desde la mitad del siglo pasado se ha tenido el interés por explorar la química de los compuestos mixtos que contienen dentro de la misma estructura un átomo de los elementos del grupo 15 y funcionalizados con elementos del grupo 14.(14) Sin embargo, no se les proporcionaba una aplicación directa o no se experimentaba alguna posible reactividad hacia metales de transición. Uno de los pioneros en examinar esta clase de química fue Stobart y colaboradores, quienes entre los años de 1981 y 1985 documentaron la síntesis de varios ligantes sililfosfina en los que incorporan un átomo de P y uno de Si variando sus sustituyentes y modificando la estructura del fragmento puente que los une con cadenas alquílicas, produciendo compuestos con formula general $PR_2(CH_2)_nSi(XY)H$ (donde X, Y = H, Me, Ph; n = 2 o 3; R = Me o Ph) (**L1-L15, Ilustración 6a**).(15-18) Además, éstos podían fácilmente ser coordinados a centros metálicos tales como Ru^{0,II}(19), Rh^I(18), Ir^I(20) y Pt^{0,II}(21).

c)

Ilustración 6. Estructura molecular de Silil-(Alquil)-fosfinas y su coordinación hacia los complejos [M(μ-Cl)(η4-cod)]₂ (M = Rh, Ir) y complejo de Vaska (15-18, 20)

Por ejemplo, la reacción del ligante $Ph_2P(CH_2)_2SiMe_2H$ (L5) hacia los complejos organometálicos diméricos $[M(\mu-CI)(\eta^4-cod)]_2$ (M = Rh C1, lr C2; cod = 1, 5-ciclooctadieno), llevaban a la formación de complejos quirales de formula general [MCl{Ph₂P(CH₂)₂SiMe₂}] (M = Rh: **C3**, M = Ir: **C4**) con los dos átomos de fósforo en posición *trans* mientras que los dos fragmentos sililo se disponen en *cis* uno del otro (**Ilustración 6b**). También, el grupo de investigación del Dr. Stobart publicó la reactividad de los ligantes análogos a **L5** de fórmula general Ph₂P(CH₂)₂SiXYH (**L6-L9**) hacia el compuesto comúnmente conocido como complejo de Vaska, los cuales llevan a la obtención de complejos hexa-coordinados de Ir^{III} estables al aire (**C5-C9**), resultado de la coordinación de los ligantes a través del átomo de P y de la adición oxidativa del enlace Si-H (**Ilustración 6c**).

Ilustración 7. Síntesis del ligante PSi^{Me} y su reactividad hacia [Pt(cod)Cl2] (22)

Por otro lado, la coordinación del ligante **PSi^{Me}** hacia metales transicionales se estudió a través de la reactividad hacia platino para la formación del complejo [Pt- κ^2 -*PSi*-{Ph₂P(C₆H₄)CH₂SiMe₂}] (**C10**) en

la que los átomos de P se encuentran en posición *cis* uno del otro al igual que los fragmentos sililo, sin evidencia alguna de la obtención del estereoisómero trans (Ilustración 7).(22) Como estos complejos, existen otros varios ejemplos más de análogos de Pt^{II} e Ir^{III} con ligantes quelantes similares que también fueron publicados hace casi tres décadas por estos mismos autores. Es importante enfatizar que en el gran trabajo reportado por el investigador Stobart y sus colaboradores [incluso en trabajos reportados por otros grupos (23)], no existe alguna especie derivada de estas sililfosfinas (L1-L15) en que los fragmentos sililo se ordenen geométricamente en disposición trans alrededor del centro metálico. Esto se debe al remarcado efecto labilizador trans que ejercen los grupos -SiR₃.(24, 25) Sin embargo, un modelo inusual de estabilización cinética de isómeros geométricos trans es el que fue reportado por Kang y colaboradores en 2004.(26) Mediante la adición oxidativa del enlace Si-H y estabilizado vía la formación de quelatos P-Si, dos ligantes voluminosos de formula general $R_2P-C_2B_{10}H_{10}-SiMe_2H$ (R = Me L16, OEt L17) se coordinan al centro metálico de platino a partir del complejo de $Pt^{0} [Pt(n^{2}-C_{2}H_{4})(PPh_{3})_{3}]$ (**C11**) en disposición *trans*. No obstante, los compleios obtenidos de Pt^{II} en presencia de dimetilacetilendicarboxilato experimentan un re-arreglo termodinámico favoreciendo la disposición cis de los grupos sililo tal y como se observa en la **Ilustración 8**. También, la coordinación de los ligantes se ve controlada en gran medida por el volumen que proyectan los sustituyentes sobre el átomo de fósforo (ángulo de cono). La evidencia clara de este hecho, es que de la reacción del compuesto **C11** y el ligante $Ph_2P-C_2B_{10}H_{10}-SiMe_2H$ (**L18**) que es más voluminoso con respecto a sus congéneres, lleva a la formación del complejo mono-sililado [PtH{(Ph_2P)C_2B_{10}H_{10}(SiMe_2)}(PPh_3)] (**C12**).

Ilustración 8. Silil-(carborino)-fosfinas y su reactividad hacia C11 (26)

Volviendo con las particularidades del ligante quelante **PSi^{Me}**, que es de gran interés y sirve de base para nuestro proyecto de investigación, recientemente se observó que de la reactividad de este ligante frente al precursor organometálico [RuH₂(η^2 -H₂)(PCy₃)₂] (**C13**), genera al complejo **C14** a través de la sustitución de dos moléculas de H₂ y los dos ligantes PCy₃ en **C13** por dos ligantes **PSi^{Me}** que se enlazan al centro metálico a través del átomo de fósforo y enlaces-σ no clásicos con los fragmentos Si-H.

Ilustración 9. Reactividad del ligante **PSi^{Me}** hacia rutenio (27)

El comportamiento del complejo **C14** es muy interesante ya que posteriormente, tras la pérdida lenta de más moléculas de H₂, lleva a la formación del complejo ciclometalado **C15** y subsecuentemente en el bis-(ciclometalado) **C16**. Alternativamente, cuando el ligante **PSi^{Me}** es agregado al complejo organometálico [Ru(cod)(cot)], el cual es precursor sintético del complejo **C13**, el compuesto bis-(ciclometalado) **C16** es formado directamente. Este es un claro ejemplo de que la interacción anagóstica Si-H precede y favorece la activación de enlaces $C(sp^3)$ -H (**Ilustración 9**).(27)

La importancia de modificar los ligantes para variar sus propiedades electrónicas reside en que el enlace L_nM-SiR₃ se ve favorecido dependiendo de los sustituyentes sobre el átomo de Si, según varios estudios reportados en la literatura.(28, 29) Con este hecho en mente, la modificación de los ligantes dentro de nuestro grupo de investigación comenzó con la integración de grupos como ¹Pr, Ph e incluso PhMe en lugar de los metilos. Para efectos prácticos, me enfocaré en la reactividad del ligante **PSi^{iPr} (Ilustración 10)** el cual fue publicado recientemente por nuestro grupo de investigación.(30) La reactividad de éste hacia los complejos $[Rh(\mu-Cl)(n^4-cod)]_2$ (C1) e $[Ir(\mu-Cl)(\eta^4-cod)]_2$ (C2) lleva a la formación de estructuras completamente distintas entre sí, dando muestra del alcance que tiene la naturaleza del centro metálico a la hora del diseño de nuevos catalizadores. Entrando más en materia, las reacciones entre los complejos organometálicos C1 y C2 y el ligante en cuestión, se llevaron a cabo con una relación molar 1:2. En ambas reacciones se observa la coordinación del ligante PSi^{iPr} a través del átomo de fósforo y del fragmento Si-H vía adición oxidativa. Sin embargo, en el caso del complejo de rodio C17 no se presenta la ruptura de la estructura dimérica inicial (de C1) manteniendo a los átomos de Cl

21

como ligantes puente entre los dos centros metálicos de Rh^{III} manteniendo al enlace Rh-H como parte del complejo resultante **C17**.

Ilustración 10. Reactividad del Ligante **PSi^{iPr}** hacia $[Rh^{I}(\mu-CI)(\eta^{4}-cod)]_{2}$ (**C1**) e $[Ir^{I}(\mu-CI)(\eta^{4}-cod)]_{2}$ (**C2**) (30)

En contraste, cuando la sililfosfina se coordina al centro de iridio, el arreglo dimérico inicial se divide resultando en un complejo mononuclear de Ir^{III} (C18), en el cual se observan coordinadas dos moléculas del ligante; uno de ellos, se modifica al ciclometalarse a través del átomo de carbono del metileno como ocurre en el complejo de Ru C15, nuevamente mediante la activación de un enlace C(sp³)-H. Otra característica importante qué resaltar en la formación de este complejo, es que a diferencia de los complejos ciclometalados de Ru^{III} C15 y C16, en los que se observan interacciones σ no clásicas adicionales [(Si-H)···M], en el compuesto ciclometalado C18 se observa un cloro-silano derivado de una

subsecuente reacción de metátesis H/Cl. De esta manera se puede extender la idea que se describió anteriormente de que se puede asumir que la activación del enlace Si-H conduce a la posterior activación del enlace C-H; adicionalmente, ésta antecede el intercambio del halógeno y el hidrógeno entre el metal y el átomo de silicio (metátesis).

2.1.2 Sililfosfinas tridentadas: versatilidad

Definitivamente, la serie de complejos organometálicos con sililfosfinas tridentadas coordinadas al centro metálico es la más extensa y la más estudiada durante las últimas décadas.(31)

El claro entendimiento de la estructura de la activación del enlace Si-H realizada por metales de transición, así como sus intermediarios, recientemente están llamando la atención ya que es un determinante paso en procesos catalíticos (reducción de la energía de activación y control en la selectividad) como la hidrosililación. La adición oxidativa del enlace Si-H de un hidrosilano (incluyendo: SiH₄, RSiH₃, R₂SiH₂, R₃SiH) hacia un centro metálico es bien conocida para la mayoría de los metales transicionales, produciendo complejos estables con fuertes enlaces M-Si. Éstos pueden formarse precisamente vía adición oxidativa del enlace Si-H y/o seguido concertadamente de la eliminación reductiva, liberando pequeñas moléculas como HX, HR, H₂, etc.(32) No obstante, como se describió en la sección 1.2, las interacciones no clásicas pueden ser definidas como aquellas en las que la coordinación de los enlaces E-H (E = H, B, C, Si, Ge, Sn, etc.) hacia el centro metálico se organizan para formar un enlace de tres centros dos electrones entre los dos fragmentos de existencia independiente;(33) de forma comparativa entre el estilo de coordinación del enlace Si-H vs la molécula dihidrógeno, se puede considerar que el primero es más básico (base de Lewis) que el enlace H-H, actuando como mejor donador sigma. De aquí se desprende la idea de que la formación de enlaces Mi-Si/M-H se lleva a cabo fácilmente y con menor desgaste energético (ver sección 1.2). Enfocándonos en la formación de enlaces M-Si que son de vital importancia para el diseño de nuestros nuevos complejos debido a su aporte electrónico, encontramos que varios trabajos de investigación reportados en la literatura han dilucidado el alto grado de influencia trans que se ejerce en el centro metálico por el fragmento sililo. Existen varias razones para este comportamiento incluyendo el excelente traslape de orbitales sigma así como una favorable donación electrónica del Si al metal.(34)

Con todo lo mencionado anteriormente acerca de las propiedades del átomo de P y del fragmento silano, se asegura que dependiendo de la estructura flexible, semi-rígida o rígida de las sililfosfinas utilizadas como ligantes, se fomenta la obtención de múltiples complejos organometálicos con geometrías tetra, penta, hexa e incluso heptacoordinadas alrededor del centro metálico. A continuación mostraré algunos ejemplos que trascienden por ser novedosos e inusuales.

2.1.2.1 Estructuras PSiP

En cuanto a sililfosfinas se trata, el esqueleto PSiP es la arquitectura molecular más explorada en los últimos años. El carácter distintivo de base blanda del átomo de fósforo, combinado con su habilidad de comportarse como aceptor π de densidad electrónica, proporciona una vasta gama de complejos con metales transicionales.(35) Al seleccionar un metal adecuado y condiciones de reacción favorables, los ligantes con formula general (o-C₆H₄-PR₂)₂R'SiH son capaces de proveer más conocimiento acerca del proceso de adición oxidativa del enlace Si-H y sobre todo su aporte electrónico y estérico a sistemas pinza con metales transicionales. Los parámetros estructurales, especialmente las distancias de enlace Si-H son frecuentemente usados para evaluar la naturaleza de las interacciones con metales $[(n^2-Si-H)-M]$. La extensa variedad de completes formulados como $[M(n^2-Si-H)-{(C_6H_4-2-PR_2)_2RSiH}]$ son aprovechados con el fin de dar una evidencia clara de dicho fenómeno. Recordando que aproximadamente un rango en la distancia de enlace de 1.6 a 1.9 Å del enlace Si-H, es considerado como indicio de este tipo de coordinación no clásica $[(n^2-Si-H)-M]$ (Ver Ilustración 3, sección 1.2). A continuación se muestra la diversidad de complejos que el ligante $(C_6H_4-2-PPh_2)_2MeSiH$ (L19) ofrece frente a diferentes precursores metálicos.(36)

Ilustración 11. Reactividad del ligante L19 hacia metales del grupo 10 (36-46) y Cu (47)

Por ejemplo, el complejo de Ni⁰ **C19**, muestra ideales distancias de enlace Si-H, Ni-H y Ni-Si de 1.64(3), 1.44(2) y 2.2782(4) Å, respectivamente, acorde con una coordinación- σ no clásica. El complejo **C19** también fue caracterizado mediante otras técnicas espectroscópicas con la intención de respaldar la presencia de la

interacción (Si-H)···Ni. Por ejemplo, en el espectro de RMN de ¹H del complejo **C19**, fue observada una señal con multiplicidad tdq (² J_{PH} = 29.9, ² J_{PH} = 15.8 and ³ J_{HH} = 1.3 Hz) a campo alto como un típico hidruro metálico (δ -2.90 ppm); mientras que la constante de acoplamiento ¹H-²⁹Si y el desplazamiento químico δ_{Si} fueron medidos mediante el uso de experimentos de RMN de ²⁹Si a 193 K, parámetros que concuerdan con la naturaleza del enlace σ -silano (²⁹Si{¹H} δ 6.8 ppm br d J_{P-Si} = 69 Hz; ²⁹Si br dd J_{Si-H} = 77, J_{P-Si} = 69 Hz).(37)

El complejo homólogo **C20** con PMe₃ como ligante en lugar de PPh₃, muestra características espectroscópicas y estructurales similares a las encontradas en el complejo **C19**. Las distancias de enlace Ni-H y Ni-Si en **C20** son 1.26(9) y 2.235(2) Å, respectivamente. Nuevamente, ambos parámetros nos dan una idea de la coordinación poco usual la cual es estabilizada por la retrodonación de densidad electrónica del orbital *d* lleno del metal al orbital de antienlace σ^* (Si-H); este hecho es apoyado y observado más allá de la formación del enlace [M-(η^2 -SiH)], ya que éste lleva a una significante inclinación del enlace Si-H, situando al átomo de hidrógeno más cerca del centro metálico que el átomo de silicio. El hidrógeno del fragmento [Ni-(η^2 -SiH)] en **C20** fue localizado y refinado de manera isotrópica mediante un análisis por DRX; la distancia de enlace Si-H es 1.77(9) Å, que es más larga que la observada en **C19**, siendo congruente con la elongación del enlace Si-H. Tambien, fueron proporcionados datos espectroscópicos de RMN de ¹H: δ -3.71 ppm tdq ²J_{PH} = 31.4, ²J_{PH} = 14.3 and ${}^{3}J_{HH}$ = 2.0 Hz (${}^{2}J_{SiH}$ = 82.0 Hz), además de RMN de ${}^{29}Si{}^{1}H$ adquirida a 296 K: δ 13.77 (td, ${}^{2}J_{siP}$ = 82.0, ${}^{2}J_{siP}$ = 3.3 Hz). De igual forma, la naturaleza del enlace [Ni-(n²-SiH)] fue identificada mediante una absorción a 1721 cm⁻¹ en el espectro de IR, como un típica vibración de estiramiento del enlace Ni-H, lo que está de acuerdo con el arreglo estructural no clásico del complejo C20. A pesar de cambiar la fosfina PMe₃ coordinada en **C20** por un mejor ligante aceptor π como el CO, las propiedades espectroscópicas del complejo así obtenido C21 (IR: s, 1725 cm⁻¹ v-(Ni-H)) son similares a las exhibidas para el complejo precursor C20. La fuerte coordinación del CO en **C21**, hace que la densidad electrónica del centro de Ni decrezca y se observe una constante de acoplamiento más larga que en **C20** (${}^{2}J_{SiH}$ = 104.8 Hz), sugiriendo que la retrodonación del metal al orbital σ^* (Si-H) en C21 es débil manteniendo casi intacto al enlace Si-H.(38)

La coordinación de los átomos de fósforo en los ligantes *PSiP* es un paso fundamental para desencadenar la interacción del enlace Si-H hacia el centro metálico. Es imperativo conocer el desplazamiento químico de este núcleo (³¹P) visto a través de experimentos de RMN para discernir su coordinación al centro metálico.(39) Por ejemplo, los complejos **C22** y **C23** muestran evidencia del enlace dativo $P \rightarrow M$ en la coordinación del ligante, ya que la señal con multiplicidad correspondiente a un sistema AB de los fósforos del esqueleto *PSiP* del complejo **C22** se encuentra desplazado con respecto al ligante libre (**L19**: δ -24 ppm) a δ 36.3 ppm (d, ²*J*_{PP} = 8.1 Hz). Asimismo, el complejo **C23** exhibe una frecuencia similar, aunque no con la misma multiplicidad, de la señal correpondiente a los átomos de P de la estructura *PSiP* a δ 39.6 ppm (br s). Todos los parámetros estructurales y espectroscópicos mencionados hasta ahora en esta sección, son representativos para la mayoría de complejos con interacciones no clásicas de fórmula general [L_nM-{(n²-SiH)-*PSiP*}] (M = Ni, Pd) y sus derivados y/o análogos.(40-43)

Un estudio de la reacción del complejo **C22** (44) y su análogo **C23** (45) hacia B₂pin₂ fue realizada con la intención de obtener el acceso a la completa adición oxidativa del enlace Si-H para la producción de sililos de Pd^{II} y la liberación de HBpin (fuerza motriz). Así, los isómeros *cis* y *trans* [Pd(Bpin)(κ^3 -*PSiP*)PMe₃] fueron propuestos y el aislamiento de alguno de los dos es posible a través de un mecanismo reversible de metátesis. Dependiendo en gran medida de la fosfina auxiliar coordinada al centro metálico, en el caso donde la PMe₃ se encuentra coordinada al Pd, el producto cinético *cis*-[Pd(Bpin)(κ^3 -*PSiP*)PMe₃] (**C25**) muestra una lenta reversibilidad y se obtiene de manera predominante. En contraste, para el derivado

con PPh₃, el equilibrio se favorece hacia el isómero termodinámico *trans*-[Pd(Bpin)(κ^3 -*PSiP*)PPh₃] (**C24**).(46)

La mezcla del ligante L19 con el precursor $[Pt(PPh_3)_4]$ a temperatura ambiente lleva a la formación del complejo pentacoordinado de Pt^{\parallel} C26. A diferencia con los derivados de Ni⁰ C19 v Pd^0 **C22**, en los que el enlace Si-H se encuentra moderadamente activado, el complejo C26 se deriva de la completa adición oxidativa del enlace Si-H; su estructura cristalina revela que el grupo sililo ocupa la posición apical de una geometría de bipirámide trigonal. Mientras que la otra posición apical de esta geometría BPT es ocupada por el ligante hidruro que es revelado mediante RMN de ¹H al observarse una señal a δ -7.92 ppm (g, ${}^{2}J_{PH}$ = 18.9 Hz) de la que se consigue medir una constante de acoplamiento ${}^{2}J_{PtH} = 650$ Hz que es considerablemente menor relacionada con la calculada en especies *cis*-H-Pt-Si (${}^{2}J_{PtH}$ = 890-1010 Hz), señalando que el hidruro se encuentra trans al sililo a pesar de la fuerte influencia trans de ambos ligantes.(37)

Las interacciones inusuales soportadas por la estructura *PSiP* también fueron experimentadas con CuCl y el ligante **L19** en presencia de GaCl₃, este último con la intención de incrementar la electrofilicidad del centro metálico y favorecer el fenómeno de "donación-retrodonación". El complejo **C27**, muestra un ligero desplazamiento con respecto al ligante libre de la señal hacia campo alto vista por RMN de ²⁹Si a δ -30 ppm (ligante libre **L19**: δ -24 ppm) debido a una débil interacción con el centro de Cu o simplemente por alguna modificación en la geometría del átomo de Si. Asimismo, la señal propia para el hidrógeno del enlace Si-H en el complejo **C27** se encuentra desplazada casi por 1 ppm respecto al ligante libre (δ 6.63 ppm para **C27** *vs* δ 5.48 ppm para **L19**). Tal y como se mencionó en párrafos anteriores, la constante ¹*J*_{SiH} y el δ_{H} son herramientas bien establecidas para identificar enlaces σ -(Si-H) no clásicos, en **C27** el valor es grande (170 Hz) sugiriendo solamente una interacción débil con el centro metálico [Cu-(η^2 -Si-H)].(47)

Los ejemplos mostrados en los párrafos anteriores demuestran claramente cómo los ligantes PSiP adoptan una disposición "facial" al rededor del centro metálico en geometrías tetra, penta y hexa-coordinadas(48), permaneciendo los dos átomos de fósforo en posición cis uno con respecto del otro. Sin embargo, esto se debe en gran medida a la naturaleza del metal (número de coordinación, estado de oxidación); por tal motivo, estos mismos ligantes también adquieren una disposición "meridional" (en el mismo plano) alrededor de centros metálicos adecuados (átomos de P en posición *trans*).

31

Ilustración 12. Reactividad de ligantes PSiP hacia Ir (49) y Pt (50)

La reactividad de los ligantes $(C_6H_4-2-PR_2)_2MeSiH$ (R = Cy, L20; ^{*i*}Pr, L21; ^{*t*}Bu, L22) también fue publicada usando como precursor metálico al compuesto dimérico $[Ir(\mu-CI)(\eta^4-cod)]_2$ (C2) produciendo los complejos de formula general $[IrHCI{(C_6H_4-2-PR_2)_2MeSi}]$ (R = Cy, **C28**; ^{*i*}Pr, **C29**; ^{*t*}Bu, **C30**) que en presencia del agente reductor $Me_4N\cdot BH_4$ en atmósfera de argón se forman los complejos polihidruro con geometrías distorsionadas BPP (bipirámide pentagonal) de Ir(V) [IrH₄{(C₆H₄-2-PR₂)₂MeSi}] (R = Cy, **C31**; ^{*i*}Pr, **C32**; ^{*t*}Bu, **C33**). Los autores también describieron en sus publicaciones las subsecuentes reactividades de estos complejos encontrando un interesante comportamiento del ligante en diferentes condiciones de reacción, tomando ventaja de la fuerte influencia *trans* del fragmento sililo coordinado. En concreto, los complejos **C31** y **C32** experimentan la pérdida de H₂ al exponerlos a una atmósfera de N₂ conduciendo a la producción de la mezcla de los isómeros *fac* y *mer*-[IrH₂(N₂){(C₆H₄-2-PR₂)₂MeSi}] (R = Cy, **C34**; ^{*i*}Pr, **C35**).(49)

Otro modelo relevante es el complejo de platino **C37**, el cual es considerado por sus autores como un producto "capturado", utilizando como ligante al compuesto **L20** (ver **Ilustración 12**). El complejo **C37** se deriva de la eliminación reductiva del complejo [PtCl{Si(Me)(C₆H₄-2-PCy₂)₂}] **(C36**) en presencia de LiEt₃BH. Fue observado el comportamiento de este complejo a diferentes temperaturas mediante RMN de ¹H, ²⁹Si y ³¹P. En el espectro de RMN de protón se observa la señal con satélites característica para el hidrógeno unido al átomo de Pt, que se encuentra centrada en δ 5.48 ppm (t, ²J_{PH} = 19 Hz), de la cual se puede medir una constante de acoplamiento ¹⁹⁵Pt-¹H de 921 Hz. Sin embargo, el parámetro representativo para una interacción no clásica recae en la información obtenida de los experimentos de RMN de ²⁹Si. Una señal posicionada en δ 62.3 ppm (con satélites ${}^{1}J_{PtSi}$ = 735 Hz) indica la existencia de la presencia de esta interacción (activación del enlace Si-H) debido al valor medido de la constante de acoplamiento de ¹J_{siH} = 52 Hz.(50)

Estructuras SiDSi (D = donador O, P)

Ilustración 13. Reactividad del ligante L23 hacia [Mn(CO)₅Me]. Activiación gradual del enlace Si-H en Mn (51)

El diseño de la estructura SiOSi derivada del esqueleto xantfos, funciona exitosamente en la coordinación hacia metales irradiación transicionales. La ultravioleta del compuesto [Mn(CO)₅Me] en presencia del ligante L23, lleva a la formación del complejo C38 mediante la liberación de CO, la completa adicción oxidativa de uno de sus dos enlaces Si-H del ligante, acompañada de la eliminación de metano y la coordianción del enlace Si-H restante en forma [n¹-(Si-H)-Mn] (**Ilustración 13**).(51) El complejo **C38** experimenta un proceso gradual de adición oxidativa del enlace Si-H. La subsecuente irradiación del complejo C38 en una disolución de pentano, lleva a la liberación de una molécula de CO (reacción reversible) y a la coordinación del átomo de oxígeno del ligante al centro de Mn. Este paso también trae consigo un rearreglo en el carácter de coordinación del enlace de $[\eta^1$ -Si-H] a $[\eta^2$ -Si-H], así el complejo C39 fue aislado y caracterizado mediante DRX de monocristal. Por otro lado, la fotoreacción del complejo C38 en una disolución de tolueno lleva a la formación del compleio C40, a través de la disociación de tres ligantes CO del compuesto de partida. Sin embargo, C40 también se obtiene a partir de la reacción de C39, sugiriendo que este último es un posible intermediario de la conversión fotoinducida de C38 a C40.

Nuestro grupo de investigación ha reportado recientemente la síntesis de complejos con ligantes *SiPSi* que provienen de la

35

coordianción de los ligantes **PSi₂^{Me} y PSi₂^{iPr}** hacia centros de Cu¹, Ru^{II},(52) Rh^{III}, Ir^{III} y Pt^{II}. El caso más reciente fue la síntesis del complejo **C41** y el estudio de su reactividad hacia moléculas pequeñas.(53) Este complejo proviene de la reacción entre el ligante **PSi₂^{Me} y** [Pt(PPh₃)₃] en disolventes arénicos a temperatura ambiente. A diferencia con el complejo **C10** (ver **Ilustración 7**), alrededor del centro metálico de **C41** la distribución de los sililos se estabiliza en disposición *trans* confirmada mediante análisis por difracción de rayos X de monocristal. La reacción del complejo **C41** hacia H₂ (3 atm) y CO (3 atm) lleva a la formación reversible de las especies hexa- y penta-coordinadas, respectivamente (complejos **C42** y **C43** de la **Ilustración 14**). Ambas especies fueron caracterizadas mediante técnicas espectroscópicas (IR, RMN).

Ilustración 14. Estructura molecular del complejo C41 (53)

Ilustración 15. Diseño de ligantes *SiPSi*. Reactividad del ligante **PSi₂**^{Me} frente a [Pt(PPh₃)₃] y sus subsecuentes reactividades hacia H₂ y CO (53)

2.1.3 Estructuras tripodales P₃Si

También podemos encontrar en la literatura una amplia gama de ligantes y complejos con estructuras no rígidas reportadas por el pionero Stobart y coautores. Arquitecturas moleculares en las que se aumenta un fragmento Alquil-fósforo generando una variante con esqueletos P_3Si tal y como se muestra en la **Ilustración 16**.(31, 54)

Ilustración 16. (Izquierda) Estructuras tipo P_3Si fluxionales. (Derecha) Estructura de Rayos X del complejo tripodal de Rh¹ reportado por Stobart y colaboradores (31, 54)

No obstante, las aplicaciones inmediatas más atrayentes son las que se encuentran en las especies tripodales con platino y hierro. Por ejemplo, la reactividad del ligante **L24** (al igual que **L25**) hacia diferentes precursores de este metal como [Pt(PPh₃)₄], [PtMe₂(cod)] y [PtCl₂(cod)] llevan a la respectiva formación de los complejos **C44**, **C45** y **C46**.(55)

La formación de este tipo de estructuras rígidas y bien definidas derivadas de los ligantes **L24** y **L25**, se reportaron y publicaron utilizando Fe^{II} como centro metálico. Dichas especies ferrosas (complejos **C47** y **C48**, **Ilustración 17**), manifestaron ser ventajosas en la reducción de N₂ a NH₃ ya que esta transformación se llevan a cabo justo en la posición *trans* al grupo sililo, evidenciando el aprovechamiento sistemático que se tiene del efecto/influencia *trans* de este sustituyente.(39, 56, 57)

Ilustración 17. Reactividad de los ligantes rígidos **L24** y **L25** hacia Pt (39) y Fe (56, 57)

El complejo **C47** puede ser transformado después de varios pasos en el complejo de Fe^I **C49**,(56) que también es utilizado en la síntesis de otros complejos como el **C50** que a su vez es empleado como precursor en la reacción de sililación de CO con TMSOTf. Así, el compuesto intermediario **C51** fue aislado y ampliamente estudiado. La distancia Fe-C fue inusualmente corta 1.671(2) Å comparada incluso con la de su precursor **C50** (1.769(2) Å), sugiriendo un enlace triple entre estos dos átomos que también fue considerablemente discutido por estudios teóricos de DFT. Si se asigna el estado de oxidación al átomo de hierro removiendo todos los ligantes de su esfera de coordinación (P_3Si , Me₃SiOC³⁻) se sugiere que éste es Fe⁴⁺ (configuración d^4) en una geometría BPT.(58)

2.2 Resultados y discusión de la obtención de ligantes potencialmente tetra-dentados: $P-\{(o-C_6H_4)-CH_2-SiR_2H\}_3 R = Me (PSi_3^{Me}), R = {}^{i}Pr (PSi_3^{iPr}), R = Ph (PSi_3^{Ph}).$

De manera general, la síntesis de los ligantes contemplados para la obtención de nuevos complejos organometálicos en este trabajo de investigación fue hecha mediante una reacción "OnePot"(59) en la que se emplea la fosfina P(*o*-tolilo)₃ como materia prima en común. La reacción de metalación de esta fosfina con ^{*n*}BuLi en presencia de TMEDA en una disolución de hexano, lleva a la formación del agregado monomérico P-{($o-C_6H_4$)-CH₂-Li·TMEDA}₃.(60) Posteriormente, mediante una reacción de metátesis al adicionar en el mismo seno de reacción tres equivalentes del silano correspondiente R₂SiHCl (R = Me, ^{*i*}Pr o Ph), se obtienen en muy buenos rendimientos las sililfosfinas de interés **PSi₃**^R.

Ilustración 19. Síntesis "One-Pot" de los ligantes $PSi_3^R R = Me_{1}(53)^{i} Pr(30)$ o Ph(61)

La caracterización de las nuevas sililfosfinas **PSi₃**^{iPr} y **PSi₃**^{Ph} se realizó mediante diferentes técnicas espectroscópicas. Semejante al espectro de IR del compuesto **PSi₃**^{Me} (s, v-(Si-H) 2119 cm⁻¹), los espectros de los ligantes **PSi₃**^{iPr} y **PSi₃**^{Ph} muestran una banda a 2099 y 2136 cm⁻¹ respectivamente, correspondientes a la vibración simétrica de elongación de Si-H (**Ilustración 20**). Mientras que las bandas correspondientes a vibraciones simétricas de flexión propias de silanos terciarios (R₃SiH)– aparecen a 882 y 816 cm⁻¹, respectivamen-

te,(62) semejante a lo observado en el ligante metilado (**PSi**₃^{Me}: s, ω -(Si-H) 887 cm⁻¹). Varios autores señalan que las frecuencias para las bandas de estiramiento simétrico del enlace Si-H se ven directamente afectadas por el incremento de la electronegatividad de los sustituyentes enlazados al átomo de silicio, lo que aumenta directamente la polarización del enlace Si-H y también incrementa su fuerza de oscilación.(63) Por tal motivo, es congruente observar que las bandas v-(Si-H) y ω -(Si-H) en el espectro de FT-IR de **PSi**₃^{Ph} se encuentran a una frecuencia más alta, ya que cuenta con dos carbonos con hibridación sp^2 (de los fenilos) enlazados al átomo de Si.

Ilustración 21. RMN de ${}^{31}P{}^{1}H$ (202 MHz, C₆D₆, 298 K) de los ligantes **PSi**₃^R

Por otro lado, mediante espectroscopía de RMN se pueden observar todos los núcleos activos, de los isotopos: ¹H, ¹³C, ²⁹Si, ³¹P. Todos los espectros de los ligantes PSi3^{iPr} y PSi3^{Ph} (así como PSi3^{Me}, comparación), fueron adquiridos citado solamente para а temperatura ambiente en una disolución de C_6D_6 . Los desplazamientos guímicos para las señales sencillas examinadas en el espectro de RMN de ${}^{31}P{}^{1}H$ son δ -30.0 y δ -30.3 ppm, respectivamente, para cada ligante (vs δ -28.4 ppm para el fósforo en

PSi₃^{Me}; referencia externa: $H_3PO_4 \delta$ 0.0 ppm, ver **Ilustración 21**), los cuales son desplazamientos representativos para fosfinas tri-arílicas y sin coordinar a centros metálicos.(64)

Ilustración 22. RMN-2D HMQC ¹H-²⁹Si (600-120 MHz, C₆D₆, 298 K) de **PSi₃**^{Ph}

Asimismo, en el espectro de RMN de ²⁹Si{¹H}{³¹P} correspondiente a **PSi**₃^{iPr} se observa una señal simple a δ 6.07 ppm(ver **Anexo 7**); mientras que mediante un espectro de dos dimensiones HMQC ¹H-²⁹Si se revela una sola señal centrada a δ -14.0 ppm para el ligante **PSi**₃^{Ph} (**Ilustración 22**); en ambos casos, los desplazamientos de las señales se relacionan con la naturaleza de los tres átomos de silicio equivalentes en estos ligantes con alta simetría (*C*_{3v}) y también coinciden con una geometría tetraédrica alrededor de éstos (*vs* δ-12.0 ppm en **PSi₃^{Me}**), es decir, sin interacciones intramoleculares P-Si.

Ilustración 23. RMN-2D HSQC ¹H-¹³C{¹H}{³¹P} (500-125 MHz, C₆D₆, 298 K) de **PSi₃**^{iPr}

Tanto en los espectros de RMN de ¹³C{¹H} como de ¹H de ambos ligantes **PSi**₃^{iPr} y **PSi**₃^{Ph}, podemos observar las señales características para el metileno que es parte importante de la articulación entre el átomo de P y los tres átomos de Si; y ésta aparece en δ 2.59 ppm (br. s.) en el espectro de ¹H para ligante **PSi**₃^{iPr}, mientras que para el ligante **PSi**₃^{Ph} aparece en δ 3.10 ppm (d, ³*J*_{HH} 2.80 Hz) (**Ilustración 24**). En el espectro de RMN de ¹³C{¹H} las señales para los mismos CH₂ aparecen en δ 18.1 ppm (d, ³*J*_{CP} 20.8 Hz) y δ 22.0 ppm (d, ${}^{3}J_{CP}$ 21.0 Hz) para **PSi**₃^{iPr} y **PSi**₃^{Ph} respectivamente (*vs* **PSi**₃^{Me}: δ 23.4 ppm, d, ${}^{3}J_{CP}$ 19.3 Hz) (ver **Ilustración 24**).

Ilustración 24. Región selecta del espectro de RMN ¹H (400 MHz, C₆D₆, 298 K) para la señal derivada del enlace Si-H de los ligantes **PSi₃**^{Ph} y **PSi₃**^{Ph}

En los espectros de RMN de ¹H de ambos compuestos estudiados, se detectan señales a frecuencias más altas atribuidas a los protones del fragmento Si-H centradas en δ 3.99 ppm para el ligante **PSi**₃^{iPr} como una señal ancha (¹J_{SiH} 185 Hz) y en δ 5.13 ppm para el compuesto **PSi**₃^{Ph} con multiplicidad compleja (**Ilustración 24**), de la cual se pueden calcular las constantes |³J_{HH}, ³J_{HH}, ²J_{HH}| 2.8 Hz y ¹J_{SiH} de 204 Hz (*vs* δ 4.26 ppm, nd, ¹J_{SiH} 189 Hz para **PSi**₃^{Me}). Tanto las constantes de acoplamiento ¹J_{SiH} como los desplazamientos químicos

 δ_{SiH} sugieren que el enlace Si-H en **PSi**^{iPr} está un poco más polarizado (Si^{δ+}-H^{δ-}) y por lo tanto es de carácter menos covalente comparado con el de sus congéneres **PSi**^{Me} y **PSi**^{Ph}; equiparando así, lo observado mediante espectroscopía de infrarrojo.

2.3 Conclusiones del Capítulo II

- Los ligantes tris-sililados aquí expuestos fueron sintetizados exitosamente extendiendo la metodología utilizada por nuestro grupo de investigación y obtenidos en muy buenos rendimientos; que a juzgar por sus espectros de RMN y los resultados arrojados en el AE, los ligantes también son reproducidos con una pureza altamente significativa.
- Los ligantes muestran diferencias espectroscópicas (IR; RMN de ¹H, ³¹P) sutiles pero de gran importancia para su uso como ligantes. Así, la variación en la polarización del enlace Si-H pudo ser comprobada. Además, estructuralmente también se lograron variaciones importantes, aportando diferentes ángulos de cono para nuestras fosfinas funcionalizadas con silanos terciarios.

CAPÍTULO III

A lo largo de este capítulo se discutirá acerca de la reactividad de los ligantes **PSi₃^{iPr} y PSi₃^{Ph}** hacia [Pt(PPh₃)₃] en la obtención de nuevos complejos organometálicos en los que el ligante se coordina a través de sus cuatro sitios de coordinación generando especies estructuralmente interesantes en las que dos de los tres fragmentos sililo coordinados al centro de platino lo hacen en una disposición inusual (termodinámicamente desfavorable) *trans*-[Si-Pt-Si].(65)

3.1 Resutados y discusión de la reacción de los ligantes PSi₃^R hacia [Pt(PPh₃)₃]

En la actualidad se ha estudiado la reactividad de ligantes potencialmente tetradentados hacia metales transicionales (sección 2.1.3).(66-68) Nuestro grupo de investigación se ha dado a la tarea de explorar la coordinación de ligantes conformados por un centro de fósforo rodeado de tres fragmentos Si-H hacia metales de transición. Sin embargo, se ha visto que el ligante PSi_3^{Me} lleva a la formación de un complejo de platino en el que el ligante se modifica drásticamente coordinándose a través del átomo de fósforo y dos de sus tres átomos de silicio (complejo $[Pt^{II}(\kappa^3 - PSi_3^{Me})(PPh_3)]$ que fue obtenido y caracterizado previamente); el tercer enlace Si-H se activa en el centro metálico simultáneamente con un enlace C-H de un metileno de uno de los dos fragmentos unidos al Pt, llevando a la formación concertada de un nuevo enlace intramolecular Si-C y a la liberación de H₂. De éste tercer fragmento auto-enlazado, un hidrógeno del grupo CH₂ se ve afectado por una interacción anagóstica con el centro metálico. En este novedoso complejo de Pt^{II}, también permanece dentro de su esfera de coordinación una molécula de PPh₃. Ésta se intercambió por otros ligantes monodentados donadores sigma y de esta manera se moduló el grado de la interacción anagóstica [H-C-H…Pt], mas este comportamiento se detallará en el siguiente capítulo.

Ilustración 25. Reactividad de los ligantes PSi_3^R (R = Me, ^{*i*}Pr,o Ph)hacia [Pt(PPh₃)₃] obtenidos en este trabajo de investigación

En contraste, de la reactividad del ligante PSi_3^{Ph} con el mismo precursor de Pt⁰ se obtiene al complejo [Pt^{IV}H(κ^4 -PSi₃^{Ph})PPh₃] como un polvo fino y blanco, que fue completamente caracterizado mediante RMN de ¹H, ¹³C, ²⁹Si y ³¹P; además de espectroscopía FT-IR y análisis elemental (ver capítulo 7).

Ilustración 26. Espectro parcial (campo alto) de RMN de ¹H (500 MHz, CD_2Cl_2 , 302 K) del complejo tripodal [Pt^{IV}H(κ^4 -PSi₃^{Ph})PPh₃]

Aunque la solubilidad de este complejo es prácticamente nula para la mayoría de los disolventes comúnmente utilizados en nuestro laboratorio (CDCl₃, C₆D₆, Tolueno-d₈, CD₃CN, THF-d₈); [Pt^{IV}H(κ^4 -PSi₃^{Ph})PPh₃] presenta poca solubilidad en CD₂Cl₂. En el espectro de RMN de ¹H a temperatura ambiente (**Ilustración 26**), se puede observar una señal desplazada en la región típica para hidruros metálicos (campo alto) centrada en δ -2.06 ppm con multiplicidad dd, de la cual se pueden medir las contantes de acoplamiento ²*J*_{PcisH} de 22.0 Hz y ²*J*_{PtransH} de 150 Hz. Esta señal exhibe satélites de los cuales se puede medir la constante de acoplamiento de ¹*J*_{PtH} de 1060 Hz acorde con un centro metálico de Pt(IV). También en este espectro se pueden observar tres conjuntos de señales de las cuales se pueden integrar dos protones agrupados, lo que se podría pensar que cada conjunto pertenece a cada CH₂ provenientes del ligante; sin embargo, al analizar el espectro de dos dimensiones COSY ¹H-¹H se puede esclarecer que cada conjunto de señales contiene dos protones que provienen de distintos metilenos (**Ilustración 27**).

Ilustración 27. RMN-2D COSY ¹H-¹H (400 MHz, CD₂Cl₂, 298 K) de los protones bencílicos del ligante coordinado en [Pt^{IV}H(κ⁴-PSi₃^{Ph})PPh₃]

Por otro lado, en el espectro de ³¹P{¹H} adquirido a temperatura ambiente (**Ilustración 28**), se observan dos señales en un sistema AX centradas en δ 35.7 ppm y δ 29.1 ppm de ellas se puede calcular una constante ²J_{PP} = 15.2 Hz, este valor está en concordancia con una disposición *cis* de los átomos de P coordinados en el centro de platino y por lo tanto también pueden ser medidas dos contantes de acoplamiento ¹⁹⁵Pt-³¹P de 1751 Hz y 2443 Hz

respectivamente. Estos valores son comprables con los obtenidos en el complejo [$Pt^{II}(\kappa^3-PSi_3^{Me})(PPh_3)$] de 2503 Hz y 3188 Hz que son más altos debido al cambio en el estado de oxidación del metal.

Ilustración 28. Espectro de RMN de ³¹P{¹H} (202 MHz, CD₂Cl₂, 302 K) del complejo tripodal [Pt^{IV}H(κ⁴-PSi₃^{Ph})PPh₃]. *OPPh₃ como impureza

Por otro lado, en el espectro de RMN de ²⁹Si-¹H HMQC se observa una señal doble posicionada en δ 28.15 ppm, de la cual se pueden medir las constantes ²J_{PSitrans} = 151 Hz y ¹J_{PtSi} = 2130 Hz; asimismo se puede observar una señal simple a δ -4.90 ppm congruente con lo formulado en la **Ilustración 25** en donde los átomos de Si que se encuentran coordinados en posición *trans*-[Si-Pt-Si] (**Ilustración 29**).

Ilustración 29. RMN-2D HMQC ¹H-²⁹Si{¹H} (500-99 MHz, CD₂Cl₂, 302 K) del complejo tripodal [Pt^{IV}H(κ⁴-PSi₃^{Ph})PPh₃].

No fue posible obtener estructuras cristalinas mediante nuestros procedimientos, en gran parte debido a la pobre solubilidad del complejo y que tiende a la precipitación de polvos amorfos. No obstante, también se realizó la caracterización del complejo [Pt^{IV}H(κ⁴-PSi₃^{Ph})PPh₃] en estado sólido mediante espectroscopia FT-IR (Ilustración 30), encontrando en su espectro una banda distintiva para la vibración del enlace Pt-H en 2020 cm⁻¹. La muestra utilizada en la caracterización por RMN fue puesta en vacío para la evaporación del disolvente y posteriormente sometida a análisis elemental encontrando el siguiente porcentaje para la fórmula

propuesta: C₇₆H₆₄P₂PtSi₃·CD₂Cl₂: C, 65.58; H, 5.15 (calculado: C, 65.50; H, 4.92).

Ilustración 30. Espectro FT-IR del complejo [$Pt^{IV}H(\kappa^4-PSi_3^{Ph})PPh_3$] adquirido en pastilla de KBr. v(Pt-H) = 2020 cm⁻¹

En la literatura existe evidencia de muy pocos compuestos que presentan la coordinación de más de dos grupos sililo dentro de la misma esfera de coordinación del centro metálico. Uno de estos ejemplos es el ligante tris-sililado reportado por Shimada y colaboradores en el año 2001.(69) En donde demuestran la coordinación del ligante (2-SiH₃-C₆H₄)₂SiH₂ (**L26**) de forma mono (κ^{1} -*Si*) y bidentada (κ^{2} -*SiSi*) hacia paladio a partir de la reacción con diversos precursores de Pd⁰ a pesar de ser un ligante potencialmente tridentado (**Ilustración 30**).

Ilustración 31. Trabajo reportado por Shimada y colaboradores. Reactividad del ligante **L26** (*SiSiSi*) frente a metales del grupo 10 (69, 70)

Poco tiempo después, también se reportó la síntesis del complejo bis(sililo)(η^2 -SiH)Ni^{II} (C52) derivado del ligante L26 y el precursor [Ni(Et₂PCH₂CH₂PEt₂)(PEt₃)₂].(70) El complejo C52 fue formulado con una geometría de bipirámide trigonal distorsionada con un fragmento η^2 -SiH, un sililo y la difosfina coordinados en las posiciones ecuatoriales; mientras que en disolución a 193 K, el

comportamiento fluxional de **C52** asume la coordinación tridentada que a juzgar por lo observado mediante RMN de ²⁹Si y ¹H, el complejo adopta un arreglo tris(sililo)(hidruro)Ni^{IV} (**C52'**). Según los autores, los derivados de Pt^{IV} análogos a **C52'** se sintetizaron directamente a partir de los compuestos [Pt(R₂PCH₂CH₂PR₂)(PEt₃)₂] (R = Et o Cy); sorprendentemente, los complejos resultantes de Pt^{IV} octaédricos son muy estables, por ejemplo el complejo tris(sililo)(hidruro)Pt^{IV} **C53** no muestra signo de descomposición incluso calentando a una temperatura de 170 °C en disolución de tolueno.(71)

Ilustración 32. Espectro de RMN de ${}^{31}P{}^{1}H{}$ (202 MHz, C₆D₆, 298 K) del complejo tripodal [Pt^{IV}H(κ^4 -PSi₃^{iPr})PPh₃] (crudo de reacción)

De la reacción del ligante PSi3^{iPr} y Pt(PPh₃)₃ en tolueno a reflujo, se obtiene evidencia de la formación del complejo $[Pt^{V}H(\kappa^4-$ PSi₃^{iPr})PPh₃]; fue soportada únicamente mediante espectroscopia de RMN de ¹H y de ³¹P{¹H} (**Ilustraciones 32 y 33**). La solubilidad de esta especie es mejorada al contener grupos iso-propilo en lugar de fenilo sobre el átomo de silicio. No obstante, esta misma propiedad lleva a la descomposición (o rearreglo porque cambia la coloración y desaparece la señal del hidruro en el espectro de RMN de ¹H) del complejo después de menos de 2 horas de haberse obtenido o al cambiar drásticamente la polaridad del disolvente, a pesar de encontrarse bajo atmosfera de Ar. Previo al cambio de la coloración en la disolución (de amarillo a rojizo) se observa la formación del complejo [$Pt^{IV}H(\kappa^4-PSi_3^{iPr})PPh_3$] como producto mayoritario en el crudo de reacción, a considerar por lo observado en el espectro de RMN de ¹H (Ilustración 33): una señal característica para el hidruro Pt^{IV}-H a δ -2.42 ppm flangueado por satélites de los que se pueden medir la constante de acoplamiento ¹⁹⁵Pt-¹H de 1080 Hz. En el respectivo espectro de ${}^{31}P{}^{1}H$ (**Ilustración 32**) se observa un equilibrio similar al visto para el crudo de reacción del complejo $[Pt^{IV}H(\kappa^4 - PSi_3^{Ph})PPh_3]$. En él se observa a δ 27.88 ppm una señal ancha, con constantes de acoplamiento P-Pt de 2553 Hz, dando muestra de la coordinación del átomo de P a un centro de Pt^{IV}. Asimismo se puede detectar una señal muy ancha a 2.52 ppm. dando

muestra del rápido intercambio en disolución de la PPh³ coordinada trans al grupo sililo.

Ilustración 33. Espectro de RMN de ¹H (500 MHz, C₆D₆, 298 K) del complejo tripodal $[Pt^{IV}H(\kappa^4-PSi_3^{IPr})PPh_3]$. Crudo de reacción

3.2 Resultados y discusión de la reactividad del complejo [$Pt^{IV}H(\kappa^4-PSi_3^{Ph})PPh_3$] hacia pequeñas moléculas y la obtención del derivado [$Pt^{IV}H(\kappa^4-PSi_3^{Ph})P(OPh)_3$]

Como se abordó en el capítulo II sección 2.1.3, los complejos tripodales han tenido gran auge en las últimas décadas. En las transformaciones catalíticas, el diseño de este tipo de complejos conduce a la activación de sustratos estables específicos, tal es el caso de los complejos (κ^4 - P_3Si)-FeMe (**C47**, **C48**) derivados de los ligantes respectivos (R_2P -2- C_6H_4)₃SiH ($R = {}^iPr$ **L24**; Ph **L25**) que fueron reportados por J. Peters, que exhiben gran selectividad en la captura de compuestos como N_2 , NH_3 o N_2H_2 en la posición apical de una estructura BPT restringida por el ligante; sugiriendo que los compuestos basados en una simetría cercana a la C_3 son indiscutiblemente viables en el estudio de activación de moléculas pequeñas, tal y como ocurre en el proceso de fijación del N_2 .(56) Por otro lado, las especies (κ^4 - P_3Si)-Pt(II)⁺ derivadas de los complejos **C44**-**C46** (**Ilustración 17**) también presentan coordinaciones débiles de moléculas pequeñas como CH₂Cl₂, Et₂O, THF, tolueno, C₆H₆ o H₂ en el sitio vacante apical de una geometría pirámide trigonal inusual en especies de Pt(II) d⁸.(55)

Existen tantas variantes de sistemas tripodales que la combinación de átomos donadores dentro de estas estructuras es extensa (72) (ver también sección 2.1.3). Sin embargo, a continuación describiré estructuras *PSi*₃ que son resultado de este trabajo de investigación y las primeras en ser reportadas.

A pesar de la baja solubilidad en CH_2Cl_2 del complejo [Pt^{IV}H(κ^4 -PSi₃^{Ph})PPh₃], se estudió su reactividad ya que es aislable y mucho más estable que su congénere isopropilado [Pt^{IV}H(κ^4 -PSi₃^{iPr})PPh₃]. Esto constó en hacerlo interactuar con diversas

60

moléculas pequeñas con la intención de probarlo posteriormente en algún tipo de catálisis adecuada a este modelo, por ejemplo hidrosililación o hidrogenación de compuestos orgánicos insaturados. A pesar de los cambios realizados en las condiciones de reacción (temperatura, concentración), el complejo [$Pt^{IV}H(\kappa^4-PSi_3^{Ph})PPh_3$] no presenta cambio alguno al interaccionar con H₂, CO, C₂H₄, Et₃SiH, piridina, PCy₃ o PMe₃. Únicamente, presenta un cambio significativo al combinarlo con P(OPh)₃ en una relación molar 1:1.5 a temperatura ambiente (**Ilustración 34**). Transformándose rápidamente (10 minutos) en el nuevo complejo [$Pt^{IV}H(\kappa^4-PSi_3^{Ph})P(OPh)_3$], el cual pudo ser identificado únicamente mediante RMN de ¹H y ³¹P{¹H} (ver anexos del 15 al 18) debido a que tiene una vida corta de aproximadamente <2 horas.

Ilustración 34. Reactividad del complejo [Pt^{IV}H(κ⁴-PSi₃^{Ph})PPh₃] hacia trifenilfosfita
 3.3 Conclusiones del Capítulo III

 Nuestros complejos tripodales exhiben poca estabilidad en disolución (cuestión de horas), mas en estado sólido, el complejo aislado $[Pt^{IV}H(\kappa^4-PSi_3^{Ph})PPh_3]$ es bastante estable: aproximadamente 3 meses bajo atmósfera inerte (Ar). Dicha estabilidad depende en gran medida del número de sililos coordinados y en especial del sililo *trans* al ligante PR₃ que debido a su fuerte efecto *trans* se promueve un sitio vacante y en consecuencia el complejo se vuelve más reactivo.

Aún así fuimos capaces de coordinar los tres átomos de silicio al centro de Pt mediante la adición oxidativa de los enlaces Si-H al intercambiar los sustituyentes metilo por isopropilos y fenilos, dejando de lado las acoplamientos intramoleculares Si-C del ligante.

★ La reactividad del complejo [Pt^{IV}H(κ^4 -PSi₃^{Ph})PPh₃] hacia moléculas pequeñas es limitada pero extraordinariamente efectiva frente a trifenilfosfita para formar el complejo [Pt^{IV}H(κ^4 -PSi₃^{Ph})P(OPh)₃]. Esto se debe probablemente a la miscibilidad de la fosfita en CH₂Cl₂, ya que no muestra una tendencia clara en cuanto a la reacción con ligantes monodentados menos voluminosos como PMe₃. Tampoco muestra afinidad por aquellas moléculas que tiene la habilidad de comportarse como donador σ o aceptor π de electrones.

62

CAPÍTULO IV

En este cuarto capítulo se expone la reactividad del complejo [Pt^{II}(κ^3 -PSi₃^{Me})(PPh₃)] hacia moléculas pequeñas. El reemplazo de la molécula de PPh₃ coordinada por otros ligantes neutros (CO, PMe₃, P(OPh)₃, C₂H₄) lleva al estudio más detallado de una interacción anagóstica [C-H…Pt], el cual es el primer ejemplo descrito en la literatura para complejos sililados [Si-M].(61) También en este capítulo se encuentra descrita la modulación de esta rara interacción dependiente del ligante auxiliar presente en la esfera de coordinación del centro metálico de Pt^{II}.

4.1 Antecedentes: Interacciones C-H···M

La importancia de las interacciones y el modelo de enlace que ocurre entre los fragmentos E-H (E = H, B, C, Si, Sn, N, O, etc.) y diversos centros metálicos han sido un foco de atención fomentado por el gran interés que se tiene en conocer la naturaleza de estas interacciones (73) y usarlo de manera favorable en aplicaciones catalíticas (74) e incluso biológicas (75). En esta sección de este trabajo de investigación, me enfocaré en el estudio de las interacciones que ocurren ente los enlaces C-H y centros metálicos.

Ilustración 35. Parámetros de interacciones agósticas versus anagósticas (78)

Comenzaré con el término agóstico, que fue introducido por Brookhart y Green en 1983 (76) exclusivamente para referirse a aquellos compuestos organometálicos con interacciones covalentes de enlaces C-H hacia metales de transición, con orbitales *d* vacíos y por lo tanto disponibles para formar un enlace de 3c2e⁻, es decir, que el átomo de hidrógeno se encuentra enlazado simultáneamente al átomo de carbono y al átomo del metal transicional de manera covalente (ver **Ilustraciones 35** y **36**).

Ilustración 36. Estructura de rayos X del primer complejo agóstico estructuralmente caracterizado, [Ti(C₂H₅)Cl₃(Me₂PCH₂CH₂PMe₂)]. Ángulo Ti···H-C = 90.4°, distancia de enlace Ti···H = 2.22(10) Å.(77)

El término agóstico ha sido utilizado a lo largo de las últimas décadas como sinónimo de enlaces deficientes de electrones (3c2e⁻); sin embargo, en la revisión que realizaron los investigadores Brookhart, Green y Parkin (78) afirman que no lo es y que "agóstico" solo debería referirse limitadamente a interacciones covalentes CH→M (ver **Ilustración 35**). Asimismo, los autores se dieron a la tarea de ilustrar y comparar de forma más minuciosa las diferencias espectroscópicas y estructurales que existen con las interacciones "anagósticas" que son débiles y no covalentes CH…M. En la actualidad su naturaleza aún se encuentra en análisis por el principal interés de su aportación en procesos catalíticos de importancia industrial.(79, 80)

En los espectros de RMN de ¹H de los complejos **C54** y **C55** descritos en la literatura por Lippard y colaboradores se observan señales que se encuentran desplazadas hacia campo bajo por un $\Delta\delta$ = 3.32 ppm y 2.25 ppm, respectivamente, comparadas con el desplazamiento químico que presenta el mismo protón en el ligante libre (9-aminoacridina). Sin embargo, de estas señales se pueden medir constantes de acoplamiento ¹³C-¹H que resultan similares a las encontradas en el ligante sin coordinar. Normalmente, para evaluar a los complejos agósticos se usan las constantes de acoplamiento ${}^{1}J_{CH}$ que deben ser menores comparadas con los fragmentos C-H libres, debido a la reducción en el orden de enlace carbono-hidrógeno. Indistintamente, las distancias de enlace H…Pt^{II} en C54 y C55 se encuentran cercanas a los 2.5 Å apuntando a posibles interacciones débiles de hidrógenos con centros metálicos d⁸; de esta manera ellos sugirieron y acuñaron el término "anagóstico" para referirse apropiadamente a esta inusual interacción C-H···M.(81) Dos años más tarde, los investigadores Venanzi y colaboradores confirmaron lo

establecido por Lippard para interacciones débiles CH…M(d⁸) con el reporte de la síntesis y caracterización del complejo de Rh^I **C56**, en el que nuevamente observan un desplazamiento hacia campo alto del protón que interacciona con el centro metálico.(82) No obstante, en este trabajo los autores denominaron como "pregóstica" a este tipo de interacción con el metal, sugiriendo que son un paso previo para convertirse en agósticas haciendo alusión también a interacciones "pre-agósticas", pero ambas designaciones no son apropiadas ya que infieren una futura interacción con el metal de manera covalente como ocurre en un enlace de 3c2e⁻ y sin embargo este fenómeno no es energéticamente favorable en estas especies.(83)

Ilustración 37. Complejos anagósticos descritos en la literatura (81, 82)

4.2 Resultados y discusión para la obtención del complejo [Pt^{II}(κ³-PSi₃^{Me})PMe₃]

Tras la adición de PMe₃ a una disolución de C₆D₆ del complejo [Pt^{II}(κ^3 -PSi₃^{Me})PPh₃] se observa inmediatamente un cambio en la coloración de amarillo brillante a amarillo pálido, dando indicio de la coordinación de la PMe₃, generando el nuevo complejo [$Pt^{II}(\kappa^{3}-PSi_{3}^{Me})PMe_{3}$] tal y como se ejemplifica en la siguiente Ilustración.

Ilustración 38. Reactividad del complejo [Pt^{II}(κ³-PSi₃^{Me})PPh₃] hacia moléculas pequeñas: P(OPh)₃, CO, PMe₃, C₂H₄, H₂, Et₃SiH, PCy₃ y piridina

Para la caracterización de este nuevo complejo es prioritario mencionar lo que se observa en el espectro de RMN de ${}^{31}P{}^{1}H$ que fue medido a temperatura ambiente (298 K) y en C₆D₆ como disolvente (**Ilsutración 39**)

Ilustración 39. Espectro de RMN de ³¹P{¹H} (202 MHz, C₆D₆, 298 K) del complejo pinza [Pt^{II}(κ³-PSi₃^{Me})PMe₃] + PPh₃ libre

En el espectro de la ilustración anterior, se observa que el ³¹P del ligante espectador **PSi₃^{Me}** se encuentra en δ 0.49 ppm; de esta señal doble se puede medir una constante de acoplamiento de ²J_{PP} = 357 Hz y que ésta se encuentra ligeramente desplazada hacia campo alto ($\Delta\delta$ = 1.42 ppm) con respecto a la señal del mismo fragmento examinado en el complejo [**Pt^{II}**(κ ³-**PSi₃^{Me}**)**PPh₃**]. A frecuencias más bajas se observa la contraparte de este sistema AX centrado en δ - 24.2 ppm originado por la coordinación de la PMe₃ al Pt^{II} (vs δ -62 ppm para la PMe₃ libre); de esta señal también se puede medir el mismo valor de ²J_{PP} de 357 Hz, dando cuenta de la configuración *trans* que han adoptado ambos átomos de P alrededor del centro metálico. De estas dos señales se pueden medir contantes de acoplamiento ¹⁹⁵Pt-³¹P de 2324 Hz y 2838 Hz, respectivamente, congruentes con el estado de oxidación del centro metálico (**Ilustración 39**).

En este compuesto como en el resto de sus congéneres [Pt^{II}(κ^3 -PSi₃^{Me})L], el ligante PSi₃^{Me} modificado se comporta como un ligante espectador mientras que la PPh₃ procede como actor al descoordinarse cuando otro ligante neutro llega a unirse al centro metálico mediante un mecanismo asociativo (Ilustración 40). En este caso en particular, una molécula de PMe₃ se coordina al centro de Pt^{II} quedando en una configuración *trans*-[P(ligante)-Pt-PMe₃]. Como es de esperarse, las propiedades electrónicas en el centro metálico cambian considerablemente de acuerdo a las fosfinas coordinadas a él. Además de que PMe₃ es una fosfina menos voluminosa (84), de acuerdo con su ángulo de cono, la PMe₃ dona más densidad electrónica al centro metálico; en consecuencia, se observa un cambio en la interacción anagóstica que presenta el centro de platino con el hidrógeno de un metileno propio del ligante modificado PSi₃^{Me}.

Ilustración 40. Mecanismo propuesto para la obtención de las especies $[Pt^{II}(\kappa^{3} - PSi_{3}^{Me})L]$. L = CO, PMe₃, P(OPh)₃

Como ya se dijo anteriormente, para el estudio de las interacciones anagósticas es crucial obtener información mediante RMN de ¹H (**Ilustración 41**). Así, en el respectivo espectro de este complejo podemos ver en la región alquílica las señales correspondientes a los hidrógenos bencílicos del fragmento quelante derivado del ligante **PSi₃^{Me}** a δ 4.57 ppm (dd, ²J_{HH} = 13.6 Hz, ⁴J_{HP} = 1.2 Hz, 1H, CH₂Si, anagóstico), 2.56 ppm (d, ²J_{HH} = 12.4 Hz, 1H, CH₂Si), 2.44 ppm (dd, ²J_{HH} = 12.4 Hz, ⁴J_{HP} = 5.2 Hz, 1H, CH₂Si), 2.10 ppm (dd, ²J_{HH} = 13.2 Hz, ⁴J_{HP} = 2.8 Hz, 1H, CH₂Si geminal al anagóstico) y al metino a δ 2.35 ppm (d, ⁴J_{HP} = 6 Hz, 1H). Asimismo podemos observar

a campo alto las señales correspondientes a los metilos diasterotópicos del ligante PSi_3^{Me} a δ 0.57 ppm (s, ${}^3J_{PtH}$ = 10.0 Hz, 3H), 0.36 ppm (s, 3H), 0.35 ppm (s, 3H), 0.26 ppm (s, 3H), 0.20 ppm (s, 3H), -0.48 (s, 3H) y del ligante PMe₃ a δ 1.31-1.19 ppm (m, 9H).

Ilustración 41. Espectro de RMN de ¹H (400 MHz, C₆D₆, 298 K) del complejo pinza [Pt^{II}(κ³-PSi₃^{Me})PMe₃]. Ampliación de 4.75-1.98 ppm (región bencílica)

Efectivamente, la diferencia en el desplazamiento químico de uno de los protones bencílicos comparado con el resto del conjunto de señales ($\Delta\delta$ = 2.47 ppm con respecto del protón geminal, **Tabla 1**) es evidencia de esta interacción anagóstica. Por otro lado, en el espectro de dos dimensiones ¹H-²⁹Si{¹H} HMQC se pueden observar tres señales para el núcleo ²⁹Si a δ -5.47 ppm, 22.67 ppm y 37.14 ppm (**Ilustración 42**). La primera señal corresponde al átomo de silicio contenido en el brazo que incluye a la interacción anagóstica; los dos últimos datos corresponden con las señales de los átomos de silicio enlazados al centro metálico de Pt^{II} en [Pt^{II}(κ³-PSi₃^{Me})PMe₃].

Ilustración 42. Espectro de RMN 2D ¹H-²⁹Si{³¹P} HMQC (500-99 MHz, C₆D₆, 298 K) del complejo pinza [$Pt^{II}(\kappa^{3}-PSi_{3}^{Me})PMe_{3}$]. Región alquílica

El complejo en estudio, también nos servirá como modelo para la evaluación de la intensidad y naturaleza de las interacciones anagósticas presentes en esta familia de complejos pinza. Se llevaron a cabo estudios teóricos con un nivel de teoría PBEO-D3/def-TZVP², de ellos se obtuvieron parámetros estructurales, cargas naturales |e| y las propiedades del punto crítico de enlace (BPC-Bond Critical Point) para la interacción anagóstica C-H…Pt (**Tabla 2**). Por ejemplo, se encontró que los datos computacionales para los desplazamientos

² Los cálculos fueron realizados de manera colaborativa con el grupo de investigación del Dr. Gabriel Merino, en el Departamento de Física Aplicada del CINVESTAV unidad Mérida, Yucatán, México

químicos de RMN de ¹H en benceno de las interacciones anagósticas y el hidrógeno geminal son semejantes a los obtenidos experimentalmente (ver **Tabla 1**).

Complejo	RMN de ¹ Η δ anagóstico ppm	RMN de ¹ Η δ geminal ppm	Δδ / ppm		
[Pt ^{II} (κ ³ -PSi ₃ ^{Me})PPh ₃]	4.60 (4.76)	2.30 (2.33)	2.30 (2.44)		
[Pt ^{II} (κ^3 -PSi ₃ ^{Me})PMe ₃]	4.57 (4.66)	2.10 (2.12)	2.47 (2.54)		
[Pt ^{II} (κ ³ -PSi ₃ ^{Me})P(OPh) ₃]	4.16 (4.29)	2.06 (1.97)	2.10 (2.32)		
[Pt ^{II} (κ ³ -PSi ₃ ^{Me})CO]	3.79 (3.85)	2.10 (2.26)	1.69 (1.59)		
Las valores calculados están en paréntesis					

Tabla 1. Desplazamientos químicos de RMN de 1H de los hidrógenos anagósticos y
geminales.

También los datos computacionales arrojaron información acerca de los ángulos y distancias de enlace de las interacciones anagósticas, además se encontró que la carga natural en el átomo de platino de cada complejo siempre es negativa y positiva para el átomo de hidrógeno involucrado en dicha interacción en estos complejos; en el complejo [Pt^{II}(κ^3 -PSi₃^{Me})PMe₃] ésta es de q(Pt) = -0.615 (vs -0.653 en el complejo de partida) y q(H) = 0.279 (vs 0.273 del complejo de partida) lo que nos indica que en ambos complejos la interacción es de naturaleza electrostática atractiva. En el caso particular del complejo [Pt^{II}(κ^3 -PSi₃^{Me})PMe₃], el ángulo de enlace calculado para C-H…Pt es de 141.4° (idéntico al calculado para el complejo [Pt^{II}(κ^3 -PSi₃^{Me})PPh₃]), mientras que la distancia H…Pt es de 2.389 Å (vs 2.470 Å en $[Pt^{II}(\kappa^{3}-PSi_{3}^{Me})PPh_{3}]$); indicando que los datos están en línea con lo establecido en la **Ilustración 35** de la sección previa. También se obtuvo la representación de la superficie generada entre el átomo de hidrogeno anagóstico y el centro de platino de cada complejo $[Pt^{II}(\kappa^{3}-PSi_{3}^{Me})L]$, lo que efectivamente refleja una interacción no covalente (**Ilustración 43**).

Azul, atractiva; Verde, débil; Rojo, repulsiva

Ilustración 43. Esquemas de los estudios NCI (Noncovalent index) de los complejos $[Pt^{II}(\kappa^{3}-PSi_{3}^{Me})L]$. Las interacciones anagósticas están señaladas con las flechas

	Complejos				
Parámetros	[Pt ^{II} (x ³ -PSi ₃ ^{Me})PPh ₃]	[Pt ^{II} (k ³ -PSi ₃ ^{Me})PMe ₃]	[Pt ^{II} (k ³ -PSi ₃ ^{Me})P(OPh) ₃]	[Pt"(k³-PSi ₃ ^{Me})CO]	
r(C-H…Pt)	2.470	2.389	2.387	2.413	
r(C-H)	1.109	1.111	1.109	1.109	
Θ(X-H…Pt)	141.4	141.4	141.2	139.6	
q(Pt)	-0.653	-0.615	-0.713	-0.496	
q(H)	0.273	0.279	0.271	0.245	
$\rho(r_c)$	0.0209	0.0244	0.0242	0.0231	
$ abla^2 ho(r_c)$	0.0541	0.0632	0.0640	0.0609	
H(r _c)	-0.0007	-0.0014	-0.0013	-0.0011	

Tabla 2. Cargas naturales (en |e|) y propiedades del punto crítico de enlace (BCP)calculadas para las interacciones anagósticas C-H…Pt

4.3 Resultados y discusión para la obtención del complejo $[Pt^{II}(\kappa^{3}-PSi_{3}^{Me})P(OPh)_{3}]$

A una disolución de C_6D_6 del complejo $[Pt^{II}(\kappa^3-PSi_3^{Me})PPh_3]$ se agregó P(OPh)₃ en una relación molar 1:1.5 en un tubo de RMN con válvula de teflón tipo Young. Después de la adición, el color amarillo brillante inicial da lugar a una coloración pálida debido a la coordinación de la trifenilfosfita al centro de Pt, habiendo conversión >99 % al complejo $[Pt^{II}(\kappa^3-PSi_3^{Me})P(OPh)_3]$, el cual también forma parte de esta familia de complejos con interacciones anagósticas. La caracterización de dicha interacción se realizó primeramente mediante RMN de ¹H (**ilustración 44**). En este espectro se pueden observar un conjunto de señales de los protones bencílicos del fragmento [**PSi**₃^{Me}].

Ilustración 44. Espectro parcial de RMN de ¹H (500 MHz, C₆D₆, 298 K) del complejo [$Pt^{II}(\kappa^{3}-PSi_{3}^{Me})P(OPh)_{3}$]

Empezando con la localización de la interacción anagóstica a δ 4.16 ppm (dd, ²J_{HH} = 14 Hz, ⁴J_{PH} = 1.2 Hz) que se encuentra a $\Delta\delta$ 2.10 ppm desplazado de su protón geminal que aparece centrado en δ 2.06 ppm (dd, ²J_{HH} = 14 Hz, ⁴J_{HP} = 2.8 Hz). Las señales para el metileno que no interacciona con el centro metálico, se encuentran en δ 2.62 ppm (d, ²J_{HH} = 12.4 Hz) y 2.55 ppm (dd, ²J_{HH} = 12.4 Hz, ⁴J_{HP} = 4.8 Hz). Mientras que el CH derivado del acoplamiento intermolecular Si-CH-Si se encuentra localizado en δ 2.35 ppm (d, ${}^{4}J_{HP}$ = 6.8 Hz). A frecuencias más bajas, se encuentran las señales para los metilos diasterotópicos a δ 0.87 ppm (s, 3H), 0.60 ppm (s, 3H), 0.42 ppm (s, 3H), -0.05 ppm (s, 3H), -0.18 ppm (s, 3H) y -0.52 ppm (s, 3H).

Ilustración 45. Espectro de RMN de ${}^{31}P{}^{1}H$ (202 MHz, C_6D_6 , 298 K) del complejo [$Pt^{II}(\kappa^3-PSi_3^{Me})P(OPh)_3$]. *OPPh₃ como impureza

En el espectro de RMN de ³¹P{¹H} se observa un sistema AX (**Ilustración 45**). La señal para el P del ligante modificado espectador **PSi₃^{Me}** se encuentra desplazada a δ -1.62 ppm (d, ²J_{PP} = 552 Hz, ¹J_{PPt} = 2488 Hz), que comparada con la del complejo inicial se encuentra desplazada por $\Delta\delta$ 3.53 ppm hacia campo alto. La señal correspondiente al P de la trifenilfosfita coordinada se encuentra a campo bajo alrededor de δ 122 ppm, de la cual se puede medir una constante de acoplamiento ³¹P-³¹P-*trans* de 552 Hz acorde a la disposición de ambos átomos de fósforo coordinados al centro de Pt^{II} en [Pt^{II}(κ^3 -PSi₃^{Me})P(OPh)₃]. Ambas señales del sistema AX se encuentran flanqueadas por satélites del isótopo ¹⁹⁵Pt de los cuales se pueden medir las constantes de acoplamiento de ¹J_{PtP} = 2488 Hz y 5394 Hz, respectivamente.

Ilustración 46. Espectro de RMN 2D ¹H-²⁹Si HMQC (500-99 MHz, C₆D₆, 298 K) del complejo pinza [Pt^{II}(κ³-PSi₃^{Me})P(OPh)₃]. Región alquílica

Además, en el espectro de RMN HMQC ¹H-²⁹Si{³¹P} HMQC (500-99.36 MHz, C₆D₆) adquirido a temperatura ambiente, se pueden observar claramente tres señales para los átomos de Si química y

magnéticamente inequivalentes del complejo en estudio a δ 37.15 (s, Si-CH-<u>Si</u>-Pt), 22.50 (s, CH₂Si-Pt), 5.30 (s, <u>Si</u>-CH-Si-Pt).³

De una disolución del complejo $[Pt^{II}(\kappa^{3}-PSi_{3}^{Me})P(OPh)_{3}]$ en tolueno con capas de pentano, crecieron cristales adecuados para su análisis por difracción de rayos X. Además de los datos obtenidos por RMN, también los datos cristalográficos nos muestran que la interacción anagóstica se preserva a pesar de la sustitución del ligante PPh₃ por P(OPh)₃. La distancia C-H…Pt (el hidrógeno fue localizado) es de 2.42(2) Å mientras que el valor calculado computacionalmente a un nivel teórico de PBEO-D3/def2-TZVP (ver Tabla 2) fue ligeramente menor (2.387 Å). El ángulo Pt…H-C experimental medido es de 148.13(2)° que también es comparable con el valor calculado por DFT (141.2°). Estos valores que describen a la interacción anagóstica en el complejo $[Pt^{II}(\kappa^3 - PSi_3^{Me})P(OPh)_3]$ están acorde a lo puntualizado en la Ilustración 43 de la sección 4.2. $[Pt^{\parallel}(\kappa^3)$ -Continuando con la caracterización del complejo PSi₃^{Me})P(OPh)₃] mediante DRX (Ilustración 47), podemos corroborar la disposición trans de los átomos de silicio [Si-Pt-Si] con un ángulo cercano a la idealidad para una geometría cuadrada plana de 174.04(2)° que incluso es más obtuso que el encontrado en el complejo de partida de 169.43(4)° [o en C41 de 155.16(2)°,

³ Los experimentos de RMN de ²⁹Si fueron realizados colaborativamente con el grupo de investigación de la Dra. Sylviane Sabo-Etienne, en el Laboratoire de Chimie de Coordination de la Université de Toulouse (Paul Sabatier), Francia.

Ilustración 14], incluso es el más llano para especies *trans*-[Si-Pt(II)-Si] hasta ahora conocidas. En cuanto a las distancias de enlace Pt-Si podemos encontrar que son similares [2.4131(6) y 2.4471(6) Å], dato análogo al encontrado para el complejo [$Pt^{II}(\kappa^3-PSi_3^{Me})PPh_3$]. Asimismo, de la estructura resuelta, se puede corroborar la información obtenida mediante RMN de ³¹P porque el ángulo [P-Pt-P] es de 176.69(2)° que nuevamente se considera muy cercano a la idealidad (180°).

Ilustración 47. Estructura de Rayos X del complejo pinza anagóstico $[Pt^{II}(\kappa^{3} - PSi_{3}^{Me})P(OPh)_{3}]$

4.4 Resultados y discusión para la obtención del complejo
 [Pt^{II}(κ³-PSi₃^{Me})CO]

Ilustración 48. Espectro de RMN de ${}^{31}P{}^{1}H{}$ (162 MHz, C₆D₆, 298 K) del complejo **[Pt^{II}(\kappa^{3}-PSi₃^{Me})CO]**. *OPPh₃ como impureza

En un aparto Fisher-Porter se disolvió el complejo $[Pt^{II}(\kappa^{3}-PSi_{3}^{Me})PPh_{3}]$ en C₆D₆ y se expuso a 3 atmósferas de CO a temperatura ambiente, observando nuevamente un cambio en la coloración de un amarillo brillante a un amarillo intenso en cuestión de minutos. La obtención del nuevo complejo $[Pt^{II}(\kappa^{3}-PSi_{3}^{Me})CO]$ fue propuesta mediante lo observado por RMN de ¹H, ³¹P{¹H} y ¹³C{¹H}; además de FT-IR. En el espectro de RMN de ³¹P{¹H} se observa una señal simple a

δ -1.43 ppm flanqueada por satélites de los cuales se puede medir una constante de acoplamiento ${}^{3}J_{PtP}$ = 2782 Hz. La señal se ve desplazada por Δδ 3.35 ppm con respecto al complejo de partida.

Ilustración 49. Espectro de RMN de ¹H (400 MHz, C₆D₆, 298 K) del complejo [Pt^{II}(κ³-PSi₃^{Me})CO]. Ampliación de los protones bencílicos

Por otro lado, en el espectro de RMN de ¹H medido a temperatura ambiente se observa la señal característica de la interacción anagóstica centrada en δ 3.79 ppm (d, ²J_{HH} = 14.2 Hz) mientras que el hidrógeno geminal aparece en δ 2.10 ppm (dd, ²J_{HH} = 14.2 Hz, ⁴J_{PH} = 2.8 Hz) midiendo una diferencia de $\Delta\delta$ 1.69 ppm entre ambas señales. El resto de las señales para los hidrógenos bencílicos aparecen a δ 2.71 ppm (dd, ²J_{HH} = 12.8 Hz, ²J_{PH} = 4.8 Hz, 1H, CH₂Si), 2.57 ppm (d, ²J_{PH} = 6.0 Hz, 1H, SiCH) y 2.40 ppm (d, ²J_{HH} = 12.8 Hz,

CH₂Si). Mientras que los protones de los metilos diasterotópicos aparecen a frecuencias más bajas como es de esperarse en δ 0.83 ppm (s, 3H, ${}^{3}J_{PtH} = 17.2$ Hz), 0.43 ppm (s, 6H, ${}^{3}J_{PtH} = 13.2$ Hz), 0.37 ppm (s, 3H, ${}^{3}J_{PtH} = 12.4$ Hz), 0.10 ppm (s, 3H), y -0.62 ppm (s, 3H). Asimismo los datos computacionales calculados en un nivel de teoría PBE0-D3/def2-TZVP demuestran que los valores experimentales son afines a la estructura propuesta para el complejo [Pt^{II}(κ^{3} -PSi₃^{Me})CO], al arrojar desplazamientos químicos a 3.85 ppm para el hidrógeno que participa en la interacción anagóstica y su geminal a 2.26 ppm con un diferencia de Δδ = 1.59 ppm (Ilustración 44, Tabla 2).

Ilustración 50. Espectro de RMN de ¹³C{¹H} (100 MHz, C₆D₆, 298 K) del complejo [**Pt^{II}**(κ³-**PSi**₃^{Me})**CO**]. Ampliaciones de la señal de CO y de la región alquílica

Ilustración 51. Espectro de FT-IR del complejo [$Pt^{II}(\kappa^3-PSi_3^{Me})CO$] adquirido en disolución de C₆D₆ a temperatura ambiente en una celda de KBr

Es importante mencionar que el complejo se mantiene intacto por un largo periodo (más de cinco meses) al llenar el tubo de RMN que lo contiene con 1 atm de CO en mezcla con Ar (ver más detalles en el capítulo VII). Delo contrario, en ausencia total del gas (CO) y con la presencia de la PPh₃ en el medio, se promueve rápidamente la formación del producto de partida en menos de 30 minutos. Aunque es corto, es tiempo suficiente para caracterizarlo mediante espectroscopia de IR en disolución de C₆D₆ en una celda de KBr. En el espectro correspondiente, se puede observar una banda a 2024 cm⁻¹ característica para una coordinación terminal de una molécula de CO a metales transicionales. Concertadamente, la señal vista en el espectro de RMN de ¹³C{¹H} a δ 201 ppm (d, ²J_{PC} = 121 Hz) corrobora la coordinación *trans*-[P-Pt-CO] al átomo de fosforo del ligante **PSi₃^{Me}**.

4.5 Resultados y discusión para la obtención del complejo $[Pt^{IV}(\kappa^3-PSi_3^{Me})C_2H_4]$

Ilustración 52. Espectro parcial de RMN de ¹H (400 MHz, C_6D_6 , 298 K) del complejo [$Pt^{IV}(\kappa^3-PSi_3)C_2H_4$].

Como se muestra en la **Ilustración 38**, la reacción entre el complejo [$Pt^{II}(\kappa^3-PSi_3^{Me})PPh_3$] disuelto en C₆D₆ y etileno (2 atm, 30 min dinámico y 4 días estático) lleva a la formación mayoritaria del complejo [$Pt^{IV}(\kappa^3-PSi_3^{Me})C_2H_4$]. Este complejo fue formulado acorde a lo observado mediante RMN de ¹H, ³¹P{¹H} y ¹³C{¹H}, en donde se observa que el equilibrio se desplaza hacia el complejo de partida,
debido a la presencia de PPh₃ en el medio y a que el enlace $P \rightarrow Pt$ es energéticamente favorecido.

Es de gran importancia mencionar que la reacción se intentó varias veces. En la primera de ellas, el complejo de partida contenía una pequeña cantidad de OPPh₃, además de que el disolvente fue utilizado sin ningún tratamiento extra de secado. Por lo tanto, durante la reacción se favoreció la coordinación del etileno al centro metálico ya que la PPh₃ liberada se oxidó también en OPPh₃ evitando su re-coordinación (apoyados en el espectro de ³¹P{¹H}). La reacción se llevó a cabo en un aparato Fisher-Porter e inmediatamente al término de ésta, la disolución se degasó y dentro de la caja de

guantes se transfirió a un tubo de RMN con válvula tipo Young; finalmente el tubo se llenó nuevamente con 1 atm de C₂H₄. La caracterización rutinaria se realizó mediante RMN de ¹H y ³¹P{¹H}. En el espectro de protón se observa la coordinación del etileno con dos señales a δ 2.96 ppm (dd, ${}^{3}J_{H-H(trans)}$ 10.0 Hz, ${}^{3}J_{H-P}$ 4.4 Hz, 2H) y 2.84 ppm (dd, ³J_{H-H(trans)} 10.0 Hz, ³J_{H-P} 4.4 Hz, 2H). En ambas señales se pueden ver satélites de ¹⁹⁵Pt aunque no es posible medir certeramente la constante de acoplamiento ${}^{2}J_{HPt}$, sin embargo con base en el desplazamiento químico se sugiere que el enlace doble C-C se encuentra activado (más carácter sp^3 que sp^2). Cerca de esta señal se encuentran cinco más que pertenecen a los protones bencílicos del ligante espectador **PSi₃^{Me}** a δ 4.37 ppm (d, ⁴J_{H-P} 6.0 Hz, 1H, SiCH), 3.31 ppm (dd, ²J_{H-H} 14.0 Hz, ⁴J_{P-H} 2.4 Hz, 1H, CH₂Si)), 2.44 ppm (dd, ²J_{H-H} 13.2 Hz, ⁴J_{H-P} 9.2 Hz, 1H, CH₂Si), 2.12 ppm (d, ²J_{H-H} 14.0 Hz, 1H, CH_2Si) y 1.95 ppm (d, ²J_{H-H} 14.0 Hz, 1H, CH_2Si). A frecuencias más bajas del espectro se encuentran las señales atribuidas a los metilos diasterotópicos enlazados a los átomos de Si a δ 0.46 ppm (s, 3H, SiMe₂), 0.11 ppm (s, 3H, SiMe₂), -0.16 ppm (s, 3H, SiMe₂), -0.32 ppm (s, 3H, SiMe₂), -0.34 ppm (s, 3H, SiMe₂) y -0.41 ppm (s, 3H, SiMe₂). La tendencia en los δ_{H} del hidrógeno anagóstico de los compuestos $[Pt^{II}(\kappa^{3}-PSi_{3})L]$ hasta ahora vistos son comparables entre sí, contrastando notablemente con el ahora obtenido para el complejo $[Pt^{IV}(\kappa^3 - PSi_3)C_2H_4]$, probablemente se debe a que la coordinación del

etileno al centro metálico esté comprometiendo el estado de oxidación del metal (Pt^{IV}) y de igual forma la configuración del ligante, posiblemente como ocurre con el complejo **C42** (**Ilustración 15**, sección 2.1.2), en el que el ligante prefiere un rearreglo *facial* alrededor del centro metálico, promoviendo que el metileno se aleje del átomo de Pt y en consecuencia la interacción anagóstica [C-H…Pt] se frustre.

Ilustración 54. Espectro de RMN 2D ¹H-¹³C HSQC (500-125 MHz, C₆D₆, 298 K) del complejo [$Pt^{IV}(\kappa^3-PSi_3^{Me})C_2H_4$]. Región alquílica

Por otro lado en el espectro de RMN de ³¹P{¹H} se revela una señal a δ 32.27 ppm (s, ¹J_{P-Pt} 3171 Hz, **Ilustración 53**). Nuevamente la información no es comparable con la obtenida homólogamente de sus congéneres.

 $[Pt^{IV}(\kappa^3 - PSi_3^{Me})C_2H_4] + [Pt^{II}(\kappa^3 - PSi_3^{Me})PPh_3]$ con ampliaciones

A pesar de los esfuerzos realizados, el complejo no pudo ser aislado debido a su rápida descomposición en disolución bajo nuestras condiciones experimentales. Tampoco fue enteramente reproducible debido a que en intentos subsecuentes, la trifenilfosfina descoordinada no se oxidó, permitiendo su re-coordinación al centro metálico. Con la intención de favorecer el equilibrio hacia el compuesto deseado, se llenó el tubo de RMN con 1 atm de etileno, alargando la existencia en el tubo del complejo [Pt^{IV}(κ³-PSi₃)C₂H₄]. Así, experimentos de RMN de ¹³C fueron posibles de realizar para detectar la coordinación del etileno y su naturaleza. En mezcla con el complejo de partida, en el espectro 2D HSQC ¹H-¹³C{¹H} se observa dos señales a δ 53.53 y 53.41 ppm congruentes con la activación del enlace doble C-C del etileno (**Ilustración 54**). Adicionalmente, del experimento DEPT de ¹³C{¹H} se corroboran estas señales al aparecer con fase negativa (**Ilustración 55**).

4.6 Conclusiones del Capítulo IV

En los complejos [Pt^{II}(κ³-PSi₃^{Me})PPh₃], [Pt^{II}(κ³-PSi₃^{Me})P(OPh)₃], [Pt^{II}(κ³-PSi₃^{Me})PMe₃] y [Pt^{II}(κ³-PSi₃^{Me})CO] que presentan la interacción anagóstica [C-H···Pt], ésta es modulada por el ligante auxiliar y su capacidad de actuar como aceptor π acorde a la siguiente tendencia: PPh₃ < PMe₃ < P(OPh)₃ < CO</p>

Los cálculos DFT muestran claramente que el carácter de enlace de la interacción anagóstica [C-H…Pt] es mayormente electrostático.

★ La estructura propuesta para el complejo [Pt^{IV}($κ^3$ -PSi₃^{Me})C₂H₄] también se encuentra en línea con la idea de que la sustitución de la PPh₃ (en el complejo [Pt^{II}($κ^3$ -PSi₃^{Me})PPh₃]) ocurre en presencia de otro ligante aceptor π tal como etileno. Sin embargo, la forma de coordinarse al centro metálico es lo que provoca el cambio en el estado de oxidación y la interrupción de la interacción anagóstica. Aunque es bien sabido que un centro metálico π-básico débil como en este caso el Pt^{II}, promueve una coordinación neutra del etileno, lo que ocurre aquí es que los sililos coordinados al Pt^{II} le aportan suficiente densidad electrónica y éste se comporta como un centro π básico fuerte, originando la formación del matalaciclopropano por la fuerte retrodonación del centro metálico al LUMO⁴ del ligante. Propuesta que también se basa en los desplazamientos químicos de los ¹H y ¹³C vinílicos hacia campo alto con respecto al etileno libre (δ_{H} 5.3 ppm; δ_{C} 123.2 ppm)

⁴ Orbital π^* del enlace C=C

CAPÍTULO V

Este capítulo contiene el estudio realizado de las fosfinas trissililadas frente al precursor dimérico $[Ir(\mu-CI)(\eta^4-cod)]_2$ (**C2**). Los complejos obtenidos muestran coordinaciones tri o tetradentadas, con fragmentos colgantes o interacciones [(Si-H)-Ir]. También se presentan estructuras diméricas o monoméricas que resultan interesantes a la hora de estudiar su uso como catalizadores. Algunas de estas estructuras son diméricas de valencia mixta Ir^I-Ir^{III} , que se estabilizan gracias al efecto quelato del ligante coordinado y principalmente al efecto estérico de los sustituyentes sobre el átomo de silicio.

5.1 Resultados y discusión para la obtención del complejo [Ir^{III}CI(PSi₃^{Me}H)]₂

Anteriormente, se había estudiado la reactividad del complejo $[Ir(\mu-Cl)(\eta^4-cod)]_2$ (C2) hacia el ligante PSi₃^{Me} en tolueno o benceno como disolventes. Sin embargo, pequeñas cantidades adventicias de agua presentes en el disolvente, llevaron a la formación directa del complejo C57, del que resalta la formación de un enlace [Si-O-Si] dentro de su estructura promovida por el centro metálico, este nuevo fragmento siloxano une a los ligantes que se han coordinado de manera tridentada [κ^3 -*SiPSi*] a través del átomo de P y dos átomos de Si a cada Ir. oxidándolos de Ir¹ a Ir^{III}: mientras que se mantiene una estructura dimérica mediante ligantes puente µ-Cl (Ilustración 56). Entonces, la presencia de alguna especie intermediaria con interacciones [Ir-(Si-H)] o con fragmentos silano colgantes fue hipotetizada. En la tarea del aislamiento de alguna de estas especies intermediarias, se intentaron diferentes condiciones de reacción; así, de la suspensión del compleio **C2** y la disolución del ligante **PSi**^{3^{Me}} en pentano seco, tras 16 horas de agitación a temperatura ambiente, se obtuvo al complejo $[Ir^{III}CI(PSi_3^{Me}H)]_2$ de fórmula $[Ir(\mu-CI)P{[\eta^2-(H SiMe_2$)CH₂C₆H₄][(0-C₆H₄)CH₂SiMe₂]}]₂ (**Ilustración 56**).(85)

Ilustración 56. Reactividad del ligante PSi_3^{Me} frente al dímero $[Ir(\mu-Cl)(\eta^4-cod)]_2$ (C2) en pentano y su subsecuente reacción con agua

En el espectro de RMN de ¹H, se pueden detectar señales a δ 2.13 ppm (d, ²J_{HH} = 14.4 Hz, 6H) y 2.05 ppm (dd, ²J_{H-H} = 14.4 Hz; ⁴J_{PH} = 3.2 Hz, 6H) correspondientes a los protones bencílicos del ligante. Mientras que a δ -0.55 ppm se encuentra una señal ancha que se atribuye al hidrógeno de los fragmentos [(Si-H)…Ir] y de la cual es medida una constante de acoplamiento ¹H-²⁹Si de 42 Hz. Este valor nos indica que la interacción- σ del enlace Si-H es fuerte y que éste se encuentra considerablemente activado. Además, en el espectro se pueden observar señales simples correspondientes a los grupos metilo unidos al átomo de silicio a δ 0.41 ppm (s, 18H) y 0.53 ppm (s, 18H) (**Ilustración 57**). Por otro lado, en el espectro de RMN de ¹³C{¹H} adquirido a temperatura ambiente, se pueden observar dos señales simples centradas en δ 2.22 ppm y 2.93 ppm correspondientes a los átomos de carbono de los metilos del ligante, mientras que a δ 27. 6 ppm se observa una señal única que se atribuye al carbono de los metilenos del ligante **PSi₃^{Me}** coordinado, con multiplicidad doble debido a la constante ³J_{PC} = 11 Hz (**Ilustración 58**).

Ilustración 57. Espectro de RMN de ¹H (400 MHz, C₆D₆, 303 K) del complejo [IrIIICl((PSi₃^{Me}H)]₂. Expansiones de las señales de los protones bencílicos y η^2 -(Si-H)Ir. * Grasa siliconada como impureza.

En el espectro de RMN de ${}^{31}P{}^{1}H{}$ (C₆D₆, temperatura ambiente) se observa un señal simple que aparece a δ 0.21 ppm (**Ilustración 59**). Del mismo modo solo se observa una señal simple en el espectro de RMN de 29 Si medido a 293 K centrada en δ 10.0 ppm y que correlaciona con las señales de los metilenos, metilos y del Si-H, sugiriendo que existe un intercambio rápido del átomo de hidrogeno entre los tres átomos de silicio unidos al metal (ver Anexo 35). Aunque la temperatura de adquisición se redujo hasta 180 K, no fue posible bloquear este proceso de intercambio (ver Anexo 33). En estado sólido, en el espectro de IR del complejo [Ir^{III}Cl(PSi₃^{Me}H)]₂ se muestra un modo de vibración *v*-Si-H…Ir a 2019 cm⁻¹(vs 2119 cm⁻¹ del ligante **PSi₃^{Me}** libre), corroborando lo observado mediante RMN en disolución (Ilustración 60).

Ilustración 58. Espectro parcial de RMN de ¹³C{¹H} (175 MHz, C₆D₆, 298 K) del complejo [Ir^{III}Cl((PSi₃^{Me}H)]₂. *Grasa siliconada como impureza, el resto de la señales corresponden al complejo C57

Ilustración 60. Espectro de FT-IR del complejo [Ir^{III}CI((PSi₃^{Me}H)]₂ adquirido a temperatura ambiente en una pastilla de KBr

98

Se llevó a cabo la reactividad del compuesto $[Ir^{III}Cl(PSi_3^{Me}H)]_2$ frente a un exceso (10 equivalentes) de agua y se observa en cuestión de minutos cómo éste se convierte en el complejo **C57** al monitorearlo mediante RMN de ¹H y de ³¹P{¹H}. Sin embargo, en ausencia de agua, la señal a δ 0.21 ppm en el espectro de RMN de ³¹P{¹H} desaparece al estar en disolución por >24 horas, para formar especies no detectables al menos por estas técnicas (ver **Ilustraciones 56** y **61**).

Ilustración 61. Seguimiento por RMN de ${}^{31}P{}^{1}H{}$ (162 MHz, C₆D₆, 298 K) del complejo [Ir^{III}Cl((PSi₃^{Me}H)]₂ en disolución: a) con C₆D₆ con agua después de 30 min y b) C₆D₆ seco (sobre K activado) después de 20 h

5.2 Resultados y discusión para la obtención del complejo [Ir^I-Ir^{III}(PSi₃^{iPr}Cl)]

Siguiendo las condiciones de reacción para la obtención del complejo $[Ir^{III}Cl(PSi_3^{Me}H)]_2$; de una mezcla heterogénea del compuesto C2 y una disolución del ligante PSi_3^{iPr} en pentano seco y después de dejarlo en agitación durante 3 horas, se obtiene en un rendimiento del 95% el complejo $[(cod)Ir(\mu-H)(\mu-Cl)Ir\{\kappa^3-(SiPSi)-P(o-C_6H_4CH_2Si'Pr_2Cl)\}]$ ($[Ir^I-Ir^{III}(PSi_3^{iPr}Cl)]$) que fue ampliamente caracterizado como se detalla a continuación.(30)

Ilustración 62. Reactividad del ligante PSi_3^{iPr} frente al dímero $[Ir(\mu-CI)(\eta^4-cod)]_2$ (C2) en pentano. Obtención del complejo $[Ir^I-Ir^{III}(PSi_3^{iPr}CI)]$

En el espectro de RMN de ¹H (**Ilustración 63**), podemos observar en la región de hidruros, una señal doble a δ -4.83 ppm, de la cual se puede medir una constante de acoplamiento ¹H-³¹P de ²J_{HP} = 56 Hz perteneciente al hidrógeno puente localizado entre los dos centros de iridio en posición *trans* al átomo de fósforo.

En el mismo espectro pero a frecuencias más altas, se pueden distinguir las señales debidas a los metilenos de los brazos del ligante coordinado al Ir^{III} a δ 3.14 ppm (d, ²J_{HH} = 16.4 Hz, 1H), 2.78 ppm (d, ²J_{HH} = 14.8 Hz, 1Hi), 2.67 ppm (dd, ²J_{HH} = 13.6 Hz, ⁴J_{PH} 4.8 Hz, 1H), 2.55 ppm (d, ²J_{HH} = 14.4 Hz, 1H), 2.53 ppm (d, ²J_{HH} = 16.4 Hz, 1H) y 2.25 ppm (d, ²J_{HH} = 13.6 Hz, 1H). También en este espectro se pueden distinguir las señales atribuidas a los metinos del cod coordinado al centro metálico (Ir^I) a δ 4.69 ppm (m, 1H), 4.53 ppm (m, 2H) y 4.48 ppm (m, 1H) (ver Anexos 36 y 37).

Ilustración 63. Espectro de RMN de ¹H (400 MHz, C₆D₆, 303 K) del complejo [Ir¹-Ir^{III}(PSi₃^{iPr}CI)]. Ampliación de la región bencílica

Por otro lado, en el espectro de ³¹P{¹H} se observa únicamente una señal simple a δ 2.75 ppm para el fósforo del ligante coordinado al Ir^{III}. Asimismo, en el espectro HMQC ¹H-²⁹Si se perciben tres señales simples acorde al complejo de la **Ilustración 62** a δ 34.1 ppm para el silicio colgante, a 26.9 ppm y 17.5 ppm correspondientes a los sililos unidos al centro de Ir^{III} (**Ilustración 64**, ver Anexo 38).

Ilustración 64 (Izquierda) Espectro de RMN de ³¹P{¹H} (162 MHz, C₆D₆, 296 K) del complejo [Ir^I-HCI-Ir^{III}(PSi₃^{iPr}CI)]. (Derecha) Espectro de RMN 2D HMQC ¹H-²⁹Si (500-99 MHz, C₆D₆, 297 K) del complejo [Ir^I-Ir^{III}(PSi₃^{iPr}CI)].

De una disolución de tolueno con capas de pentano seco crecieron cristales a temperatura ambiente apropiados para su análisis por DRX (**Ilustración 65**).

Ilustración 65. Estructura de rayos X del complejo [Ir^I-Ir^{III}(PSi₃^{iPr}Cl)]

De la estructura molecular resuelta a 100 K, se confirmó que los centros de iridio (Ir^{III}-Ir^I: Ir1-Ir2) están unidos por un átomo de Cl (Cl1) y un hidrógeno localizado (H100). Igualmente de esta colección se resuelve una geometría cuadrada plana alrededor del centro de Ir^I (Ir2) en la que se coordina una molécula de η^4 -cod que persiste de la materia prima. Las distancias de enlace Ir2 al centro del enlace C40-C41 es de 2.014(2) Å y al centro del enlace C44-C45 es de 1.992(3) Å. Efectivamente, los otros dos sitios alrededor de este centro de Ir^I con esta geometría son tomados por los ligantes puente y las distancias de enlace Ir2-Cl1 e Ir2-H100 son de 2.3691(9) Å y de 1.62(3) Å, respectivamente. Además, una geometría pirámide de base cuadrada (PBC) se reveló alrededor del átomo de Ir^{III} (Ir1). La posición apical es tomada por un sililo con una distancia de enlace Ir1-Si1 de 2.334(1) Å, mientras que el segundo sililo coordinado se encuentra en la base de esta geometría y la distancia de enlace Ir1-Si2 medida es de 2.3164(9) Å. En la posición *trans* a este sililo se ubica un átomo de cloro y la distancia de enlace Ir1-Cl1 es de 2.5561(9) Å, de aquí también se puede medir en ángulo Si2-Ir1-Cl1 de 163.50(3)°. Las otras dos posiciones de la base de esta estructura PBC son tomadas por un átomo de P (P1) y *trans* a él se localiza el átomo de H (H100). La distancia de enlace P1-Ir1 es de 2.273(1) Å, la distancia del enlace Ir1-H100 es de 1.78(3) Å y el ángulo P1-Ir1-H100 es de 172.3(12)° (**Ilustración 65**).

Simultáneamente, de la estructura resuelta se puede medir una distancia de enlace Ir1-Ir2 de 2.8167(5) Å que es equiparable con la suma de radios covalentes de 2.82 Å y es menor que la suma de radios de van der Waals de 3.41 Å, aludiendo que podría existir una interacción entre los dos centros metálicos en el complejo **[Ir^I-HCI-Ir^{III}(PSi₃^{iPr}CI)]**.

Revisando la literatura (**Ilustración 66**) para soportar lo descrito en el párrafo anterior, solo se encuentran muy pocos ejemplos de complejos diméricos de iridio de valencia mixta que

104

están puenteados a la vez por ligantes μ -H y μ -Cl, que sean directamente comparables con el nuestro.

Ilustración 66. Estructuras de complejos diméricos de iridio. El complejo **C58** fue reportado por J. Lewis en 1985 (86). Mientras que los complejos **C59** y **C60** fueron reportados por Churchill en 1977 (87)

De hecho, solo un compuesto representa exactamente este tipo de estructura, el complejo C58 reportado en 1985 por J. Lewis $[n^{4}-(cod)Ir^{I}(\mu-H)(\mu-CI)Ir^{III}H_{2}(PPh_{3})_{2}].$ general (86) formula con Evidentemente, la distancia entre los dos centros de iridio Ir¹-Ir¹¹¹ se hidrógeno los puentea, acorta por el que resultando estructuralmente de 2.827(2) Å. Una comparativa directa de este fenómeno es el complejo [Cp*ClIr^{III}(µ-H)(µ-Cl)Ir^{III}ClCp*] **C59** donde la distancia Ir-Ir es de 2.903(1) Å insinuando que existe una interacción entre ellos, mientras que en el dímero $[Cp^*Cllr^{III}(\mu-Cl)]_2$ C60 la

distancia Ir^{III}-Ir^{III} es de 3.769(1) Å y los autores descartaron cualquier tipo de interacción.(87)

5.2.1 Resultados y discusión de la reactividad del complejo $[Ir^{I-}Ir^{III}(PSi_3{}^{\rm iPr})]$ frente a Et_3SiH

A una disolución homogénea del complejo $[Ir^{I}-Ir^{III}(PSi_{3}^{IPr})]$ en C_6D_6 se agregaron dos equivalentes de Et_3SiH . Después de 30 minutos de agitación se detectó mediante RMN la formación del complejo monomérico $[Ir^{III}(PSi_{3}^{IPr})CI]$ de fórmula: $[IrCl{\kappa^3-(SiPSi)-P(o-C_6H_4CH_2Si'Pr_2CI)}]$ (Ilustración 67).

Ilustración 67. Reactividad del complejo [Ir^I-Ir^{III}(PSi₃^{iPr}Cl)] con Et₃SiH

En el espectro de RMN de ¹H adquirido a temperatura ambiente del crudo de reacción se puede calcular que el complejo

[Ir^I-Ir^{III}(PSi₃^{iPr})] se consume en un 100% durante la reacción y se detecta la formación de dos complejos nuevos. A campo alto desaparece la señal del hidruro puente del complejo de partida y aparece una nueva señal simple a δ -15.63 ppm atribuible a la formación del complejo con estructura "taburete de piano" [(η^{6} -C₆D₆)Ir^{III}H(SiEt₃)₂] **[Areno-Ir^{III}]**, también se observan tres señales traslapadas que se atribuyen a los fragmentos [Et₃Si⁻] enlazados al centro de Ir^{III} a δ 1.10 ppm (t, ³J_{HH} = 7.5 Hz, 18 H, CH₃), 0.93 ppm (q, 4H, CH₂) y 0.80 ppm (q, 8H, CH₂) (**Ilustración 68**).

Ilustración 68. Espectro de RMN de ¹H (500 MHz, C₆D₆, 298 K) de la mezcla de los complejos [Ir^{III}(PSi₃^{iPr})CI] y [Areno-Ir^{III}]. Ampliaciones del hidruro y región alquílica

Ilustración 69. Espectro de RMN de ¹³C{¹H} (125 MHz, C₆D₆, 298 K) de la mezcla de los complejos [Ir^{III}(PSi₃^{iP})CI] y [Areno-Ir^{III}] y ampliaciones de las regiones: arriba aromática; en medio alquílica y abajo del C₆D₆ coordinado al centro de iridio

La señal para el benceno coordinado se detecta a δ 5.39 ppm (s, 6H) cuando la reacción se lleva a cabo en C₆H₆, observando un intercambio rápido por C₆D₆ al disolverlo en él (ver Anexo 40). Este comportamiento nos lleva a la caracterización por RMN de ¹³C{¹H} donde se puede analizar este complejo al mostrar en el espectro una señal a δ 93.94 ppm (t, ¹J_{CD} 26 Hz, η^6 -C₆D₆) de la molécula del benceno coordinado (**Ilustración 69**). A frecuencias más bajas se observan las señales del fragmento sililo [-SiEt₃] a δ 12.62 ppm (s, CH₂) y 10.10 ppm (s, CH₃). En el espectro de RMN HMQC de ¹H-²⁹Si la señal para los fragmentos [Si] del complejo [**Areno-Ir^{III}**] se centran en δ 4.06 ppm. Este complejo descompone rápidamente en disolución, en menos de 8 horas aparecen partículas oscuras en el tubo de RMN (ver Anexo 41). Sin embargo, las señales propias del complejo [Ir^{III}(PSi₃^{iPr})CI] persisten.

[Ir^{III}(PSi₃^{iPr})CI] y su ampliación

En el espectro de RMN de ¹H adquirido a temperatura ambiente se observa un sistema AB que se atribuyen a los metilenos del brazo colgante del ligante a δ 3.65, 3.37 ppm (patrón AB q, J_{AB} = 15 Hz, 2H). Asimismo, los metilenos de los brazos coordinados se distinguen ligeramente desplazados hacia campo alto como sistemas AB con constantes ⁴ J_{PH} adicionales a δ 2.27, 2.22 [patrón AB, J_{AB} = 15 Hz, 2H: 2.27 ppm (J_{AB} = 15 Hz, 1H, CH₂), 2.22 ppm (J_{AB} = 15 Hz, ⁴ J_{HP} = 3 Hz, 1H)] y δ 2.17, 2.08 [patrón AB, J_{AB} = 15 Hz, 2H: 2.17 ppm (dd, J_{AB} = 15.0 Hz, ${}^{4}J_{HP}$ 5.5 Hz, 1H), 2.08 ppm (J_{AB} = 15 Hz, 1H)]. Otro dato significativo para la caracterización de este complejo es el espectro de RMN de ${}^{31}P{}^{1}H$ en el que se observa una señal simple a δ 8.00 ppm que concuerda con la naturaleza del complejo (**Ilustración 70**).

El complejo [Ir^{III}(PSi₃^{iPr})Cl] se separa por cristalización mediante evaporación lenta de C₆D₆ a temperatura ambiente, aislándose en un 45% de rendimiento. De esta manera, la fórmula del complejo se verificó mediante análisis elemental calculado para: $C_{39}H_{60}Cl_2$ IrPSi₃ de: C, 51.63; H, 6.67 que es equiparable con el obtenido: C, 51.61; H, 6.69. También se seleccionó un cristal adecuado para su análisis por DRX y al resolver los datos colectados a 100 K, se esclareció la estructura molecular del complejo [Ir^{III}(PSi₃^{iPr})CI] el cual podría describirse como un complejo de 14 electrones (Ilustración 71). El brazo colgante del ligante coordinado permanece lejos del centro metálico aunque esta especie está deficiente de electrones. También, en la optimización de esta estructura mediante cálculos computacionales DFT (PBE1PBE Def2TZVP) con la que además fueron calculadas posibles interacciones no covalentes, no se halló alguna de algún átomo con el centro metálico. Por lo tanto, la geometría alrededor del átomo central podría ser vista como un balancín distorsionado ($C_{2\nu}$). Las distancias de enlace alrededor del centro metálico son: Ir1-P1 de 2.2172(7) Å, Ir1-Cl1 2.3024(7) Å, Ir1-Si1 2.3397(7) e Ir1-Si2 2.3288(6)

110

Å, mientras que los ángulos alrededor del átomo de Ir^{III} son: P1-Ir1-Cl de 158.39(2) Å, P1-Ir1-Si1 de 109.81(2) Å, P1-Ir1-Si2 de 95.79(2) Å y Si1-Ir1-Si2 de 102.22(2) Å (**Ilustración 71**). Para calcular el grado de distorsión de esta geometría se utilizó la ecuación que se muestra a continuación:

 $\tau_4 = 360^\circ - (\alpha + \beta)/141^\circ$

Ilustración 71. Estructura de rayos X del complejo [Ir^{III}(PSi₃^{iPr})CI]

El valor calculado τ_4 fue propuesto por Robert P. Houser y colaboradores para evaluar cuantitativamente la geometría alrededor del centro metálico de complejos tetra-coordinados en donde las geometrías T_d y D_{4h} son los extremos de este rango. Precisamente, si τ_4 = 1.00 es índice de una geometría T_d , mientras que un valor de $\tau_4 = 0.00$ justifica una geometría D_{4h} ; los valores de τ_4 de las estructuras intermedias incluyendo la pirámide trigonal ($\tau_4 \approx 0.85$) y el balancín ($\tau_4 \approx 0.70 \pm 0.02$) caen dentro del rango establecido por los autores. El cálculo es muy sencillo de realizar, solamente se deben localizar los valores de α y β que corresponden a los ángulos más grandes en torno al centro metálico.(88) Así, se calculó el valor de τ_4 para el complejo [Ir^{III}(PSi₃^{IPr})CI] de 0.65, expresando una correlación con una geometría de balancín:

$$\tau_4 \left[Ir^{III} (PSi_3^{iPr}) Cl \right] = 360^\circ - (158.39 + 109.81)/141^\circ = 0.65$$

En la literatura existe un complejo de Ir^{III} (**C61**) reportado en el año 2014 (89), en el que al centro metálico se unen dos fragmentos sililo (κ^2 -*SiSi*), un átomo de cloro y uno de fósforo (PCy₃) en una geometría balancín, semejante a lo examinado en nuestro complejo **[Ir^{III}(PSi₃^{iPr})CI]** (**Ilustración 72**). Comparativamente, el complejo **C61** según los autores, es estabilizado por dos interacciones agósticas γ-C-H, debilitadas por la fuerte influencia *trans* de los fragmentos sililo. En disolución, el complejo **C61** se encuentra en equilibrio con su isómero de 16 electrones (κ^3 -*SiOSi*) **C62**, al observar mediante RMN de ¹H una pequeña cantidad de éste.(89)

Ilustración 72. Complejos C61 y C62 descritos por Tobita et al. (89)
5.2.2 Reactividad del complejo [Ir^l-Ir^{III}(PSi₃^{iPr})] con otros ligantes

Como parte de este trabajo de investigación, fue probada la reactividad del complejo de valencia mixta [Ir^I-Ir^{III}(PSi₃^{iPr})] hacia otras moléculas pequeñas con el fin de ilustrar la afinidad hacia los sustratos que se utilizarán como modelos de catálisis (siguiente Capítulo). La reactividad con etileno lleva rápidamente a la ruptura del dímero probablemente por el exceso del sustrato va que la estequiometría juega un papel importante y no puede ser controlada usando nuestras condiciones (Anexos 42 y 43). Por el contrario la reactividad de [Ir^I-Ir^{III}(PSi₃^{iPr})] con ciclohexeno no se lleva a cabo, a juzgar por lo que se observa por RMN, ya que el complejo y el sustrato continúan sin interaccionar hasta pasadas 72 horas (Ver anexo 44). Por otro lado, de la reacción del complejo de valencia mixta con PPh₃, debido a la naturaleza donadora σ de la fosfina lleva rápidamente a la ruptura del dímero, produciendo principalmente al complejo [Ir^{III}(PSi₃^{iPr})Cl] y varios subproductos en analogía con lo

reportado para la reacción del complejo **C58** + PPh₃ que rápidamente descompone.(86)

La reacción del complejo $[Ir^{I}-Ir^{III}(PSi_{3}^{IPr})]$ y P(OPh)₃ fue exitosamente estudiada *in situ* en un tubo de RMN con válvula de teflón Young. Por lo tanto la caracterización se llevó a cabo exclusivamente mediante RMN de ¹H y ³¹P{¹H}. A través de estas técnicas se logra detectar la formación de la mezcla de los complejos $[Ir^{III}(PSi_{3}^{IPr})CI]$, $[Ir^{I}H(cod)(P(OPh)_{3})_{2}]$ (más otros productos), en el espectro de protón se observan varias señales de hidruros en concordancia con la descomposición del complejo de partida Ilustración 73. Además, en el espectro de RMN de ³¹P{¹H} se observan señales para esta propuesta que se centran en δ 96.23, 87.10 y 81.29 ppm (Anexos 45 y 46).

5.3 Resultados y discusión para la obtención del complejos [Ir^I-Ir^{III}(PSi₃^{Me})] y [Ir^I-Ir^{III}(PSi₃^{Ph})]

La estabilidad del complejo de valencia mixta **[Ir^I-Ir^{III}(PSi₃^{iPr})]** se debe en gran medida a factores electrónicos y estéricos que aportan los isopropilos unidos al átomo de silicio. En el esfuerzo por obtener a los análogos, se buscaron las condiciones adecuadas para la reacción de **C2** frente a los ligantes **PSi₃^{Me} y PSi₃^{Ph}** hasta encontrar las que favorecieron la formación de los complejos **[Ir^I-Ir^{III}(PSi₃^{Me})]** y **[Ir^I-Ir^{III}(PSi₃^{Ph})]**, respectivamente (**Ilustración 74**). Aunque inestables y con bajas conversiones, la identificación de ambos complejos de valencia mixta se realizó únicamente mediante RMN de ¹H y ³¹P{¹H}, comparando con los datos bien establecidos para el complejo isopropilado.

Ilustración 74. Reactividad de los ligantes PSi_3^R hacia $[Ir(\mu-CI)(\eta^4-cod)]_2$

En los espectros parciales de RMN de ¹H mostrados en la **Ilustración 75(a,b)**, se hace énfasis en la aparición de las señales dobles de la región de hidruros, semejantes a la observada para el puente μ -H del complejo [Ir¹-Ir^{III}(PSi₃^{IPr})], que es característica de estas especies. Por otro lado, en la **Ilustración 75(c,d)** se exponen los espectros de RMN de ³¹P{¹H} también para ambas especies [Ir¹-Ir^{III}(PSi₃^{Me})] y [Ir¹-Ir^{III}(PSi₃^{Ph})], en los que se observan señales simples a δ 4.39 y 3.11 ppm, respectivamente. Cabe señalar que las señales extras en el espectro de RMN de ³¹P{¹H} de la **Ilustración 75(c)** a 0.21 y -4.58 ppm corresponden a los complejos [Ir^{III}CI(PSi₃^{Me}H)]₂ y C57, respectivamente (ver **Ilustración 56**).

Ilustración 75. Espectros parciales de RMN de ¹H (200 MHz, C₆D₆, 298 K) y de ³¹P{¹H} (81 MHz, C₆D₆, 298 K) de las especies: (a,c) [Ir^I-Ir^{III}(PSi₃^{Me}CI)] y (b,d) [Ir^I-Ir^{III}(PSi₃^{Ph}CI)]

5.4 Conclusiones del Capítulo V

★ La reactividad de los ligantes PSi_3^R hacia $[Ir(\mu-Cl)(\eta^4-cod)]_2$ (C2) bajo diferentes condiciones de reacción llevan a la formación de complejos diméricos con interesantes propiedades químicas. En el caso del complejo $[Ir^{III}Cl(PSi_3^{Me}H)]_2$ observamos que el ligante PSi_3^{Me} adopta una coordinación tetradentada formando dos enlaces Si-Ir y un enlace η^2 -(Si-H)-Ir sumados a la coordinación del P. Cabe señalar que el rendimiento de este complejo es muy bueno y que antecede a la formación de un puente siloxano. Sugiriendo la posibilidad de que este complejo pudiera actuar como catalizador en la formación de siloxanos a partir de silanos terciarios.

De la reacción de PSi₃^{iPr} y C2, se favorece la formación del complejo de valencia mixta [Ir^I-Ir^{III}(PSi₃^{iPr}CI)] con un alto rendimiento, abriendo la posibilidad de que una nueva familia de complejos sea estudiada. Por otro lado, los complejos análogos [Ir^I-Ir^{III}(PSi₃^{Me}CI)] y [Ir^I-Ir^{III}(PSi₃^{Ph}CI)] una vez obtenidos son inestables, aún en estado sólido. Además de que se obtienen en muy bajos rendimientos.

De este grupo de complejos es importante enfatizar que la síntesis del compuesto [Ir^I-Ir^{III}(PSi₃^{iPr}CI)] se realizó de manera relativamente sencilla, ya que es una característica apreciable en catálisis. La reactividad hacia moléculas pequeñas de manera estequiométrica o en exceso lleva finalmente a la formación del complejo deficiente de electrones [Ir^{III}(PSi₃^{iPr})CI].

117

CAPÍTULO VI

En este capítulo se describen los resultados de modelos utilizados para la sililación de alquenos catalizada por el complejo de valencia mixta [Ir^I-Ir^{III}(PSi₃^{iPr})]. A continuación se despliega una introducción que contiene trabajos relacionados a nuestro presente proyecto de investigación.

6.1 Antecedentes: Sililcaión e hidrosililación catalítica

A pesar de la gran utilidad en la industria de los complejos de platino (catalizador de Karstedt) en la catálisis homogénea de

hidrosililación de alquenos y sililación deshidrogenante, estas transformaciones sufren del acompañamiento de productos secundarios, como los derivados de la hidrogenación del alqueno, isomerización, oligomerización/polimerización y/o redistribución de los silanos (**Ilustración 76**).

La selectividad en la obtención de los productos derivados de la sililación deshidrogenante depende en cierta medida de la longitud de la cadena del alqueno terminal.(90) El paso clave en este mecanismo es la inserción del alqueno en enlaces M-H o M-Si para dar productos de hidrosililación o sililación deshidrogenante (formación de vinil o alilsilanos), de hecho, el paso esperado en dichas reacciones es la transferencia β -H que es competitiva en el complejo intermedio que se forma durante la reacción.(91) El ejemplo más común de lo descrito en este párrafo, es la reacción de hidrosililación catalizada por compuestos de platino (entre otros metales transicionales) que comúnmente siguen el mecanismo de Chalk-Harrod y el mecanismo de Chalk-Harrod modificado (**Ilustración 77**).(92)

Ilustración 77. Mecanismo del ciclo catalítico de Chalk-Harrod y Chalk-Harrod modificado para la sililación de olefinas.

Contrario a las reacciones de hidrosililación, la sililación deshidrogenante catalizada por metales es la menos estudiada debido a que en un principio estos derivados eran contemplados como productos secundarios no deseados. Sin embargo ahora son

Ilustración 78. Mecanismo propuesto por H. Berke y colaboradores para la sililación de alquenos con silanos terciarios catalizada por complejos de renio

considerados de gran valor en síntesis orgánica, por eso se han explorado otros metales de bajo costo como el Zn (93) o Cu (94),

hasta algunos más costosos como Re (95) usando fosfinas voluminosas como ligantes monodentados e hidruros alrededor de su esfera de coordinación. La sililación de alquenos con silanos terciarios fue estudiada con estos complejos de Re¹ y un mecanismo fue propuesto con base en lo observado por RMN (**Ilustración 78**).

Paul J. Chirik y colaboradores han reportado la sililación de octeno catalizada por complejos pinza bis(imino)piridina de cobalto. La sililación de α-olefinas incorporando silanos terciarios y bajo ciertas condiciones es altamente selectiva para la producción de alilsilanos. Por ejemplo, la reacción de 1-octeno con Et₃SiH (relación molar 2:1) catalizada por el complejo **C63** al 0.5% sin disolvente a 23 °C; genera la formación de la mezcla E/Z (3:1) del compuesto trietil(oct-2-en-1-il)silano (**Ilustración 79**).(90)

Ilustración 79. Reacción de sililación de 1-Octeno catalizada por C63

Hartwig y Cheng han reportado la actividad catalítica regioselectiva de funcionalizaciones C-H de arenos con varios complejos de Rh y diversos ligantes bidentados de nitrógeno o de
fósforo. La selección más productiva para estas transformaciones fue utilizar al complejo dimérico $[Rh(coe)_2OH]_2$ y el ligante **L27** como catalizador en la sililación de arenos sustituidos con HSiMe(OTMS)_2 como fuente de silicio y con ciclohexeno como aceptor de hidrógeno. Las transformaciones se llevaron a cabo en THF como disolvente durante 12 a 36 horas a 45 °C (**Ilustración 80a**).(96)

Ilustración 80. Sililación de arenos. a) Catalizada con [Rh] y L27. b) Catalizada con [Ir] y L28

Un año más tarde, los mismos autores reportaron la actividad catalítica que presenta el complejo dimérico [Ir(cod)OMe]₂ con ligantes derivados de fenantrolina para la sililación de arenos; extendiéndola a hetroarenos y compuestos farmacéuticos. En

general, las condiciones usadas en estas transformaciones catalíticas consisten en utilizar al 1.5 % mol al complejo de Ir^I y al ligante **L28** al 3.1 % mol; con un moderado exceso del silano HSiMe(OTMS)₂ y ciclohexeno como aceptor de hidrógeno (**Ilustración 80b**).(97)

Ilustración 81. Sililación de especies insaturadas catalizada por metales alcalinos

La sililación de heterociclos también ha sido explorada para catalizadores con metales alcalinos. Una alternativa descrita en la literatura es la observada por Grubbs y colaboradores en el que K^tOBu cataliza de manera eficiente heteroarenos o compuestos de interés farmacéutico. La mayoría de las pruebas se llevaron a cabo con derivados del indol. Por ejemplo, la sililación del 1-metil-indol procede mayoritariamente sobre la posición 2 de esta estructura y con una menor conversión hacia la sililación sobre la posición 3 (20:1) (**Ilustración 81a**).(98) A pesar de presentar una extensa gama de sustratos, ninguno de ellos es realizada hacia compuestos insaturados no cíclicos. Por otro lado, Pawlúc y colaboradores exploraron con éxito la sililación deshidrogenante de alquinos terminales en presencia de NaHBEt₃ como catalizador. Las reacciones se llevaron a cabo con algún hidrosilano (primario, secundario o terciario) el alquino y la sal de sodio (relación molar 1:1:0.1) en tolueno como disolvente a 100 °C. Obteniendo en la mayoría de los casos mezclas de sililación del alquino, sin embargo con el silano terciario HSiMe(OTMS)₂ se obtuvieron resultados más selectivos para la monosililación de hasta un 100 % calculado por CG aunque con conversiones bajas (47 %) (**Ilustración 81b**).(99)

Catalizadores: $Fe_2(CO)_9$, $Fe_3(CO)_{12}$, $Ru_3(CO)_{12}$, $Os_3(CO)_{12}$

Ilustración 82. Catálisis de sililación de alquenos con metales del grupo 8

También, los metales del grupo 8 presentan actividad catalítica en la sililación de alquenos. En especial los complejos con carbonilos como $Fe_2(CO)_9$, $Fe_3(CO)_{12}$, $Ru_3(CO)_{12}$ y $Os_3(CO)_{12}$. La reacción de estireno con Et_3SiH catalizada por estos compuestos,

lleva a la formación mayoritaria del producto derivado de la sililación deshidrogenante y minoritaria del derivado de la hidrosililación en algunos de los casos. El catalizador más eficiente y selectivo para esta transformación fue aquella evaluada con Fe₃(CO)₁₂ (Ilustración 82). A pesar de la eficiencia de este catalizador, la sililación para 1-hexeno con Et₃SiH no es selectiva, ya que produce al compuesto vinilsililado en un 6 % (compuesto B de la Ilustración 76), el compuesto alilsililado en un 17 % (compuesto C de la Ilustración 76) y al compuesto derivado de la hidrosililación en un 7 % (compuesto A de la Ilustración 76), entre otros productos no especificados por los autores.(100) Un progreso en el uso de Fe como catalizador para la obtención del derivado de la sililación (formación de enlaces C-Si), fue una estrategia de acoplamiento cruzado entre Et₃SiH y estireno (y derivados). También, esta consta de usar peróxido de di-tertbutilo como agente oxidante, con tertbutanol como disolvente a 100 °C durante 24 horas. Obteniendo conversiones del 80 % con alta selectividad para el isómero E (Ilustración 83).(101)

Ilustración 83. Sililación de estireno con FeCl₂ como catalizador al 20 % mol en presencia de peróxido de di-tertbutilo

6.2 Resultados y discusión de la sililación de alquenos con el complejo [Ir^I-Ir^{III}(PSi₃^{iPr})]

De acuerdo con los antecedentes presentados en este capítulo, nos inspiramos para examinar la capacidad catalítica de nuestros complejos. Inicialmente, se exploró la actividad catalítica para sililación deshidrogenante de alquenos con el complejo de valencia mixta aquí nombrado como [Ir^I-Ir^{III}(PSi₃^{iPr})] (ver Ilustración 65).

	Sustrato	Producto A		Producto I	В				
-	<u>Et</u> [ir] ۵ CH ₂ (t. ar	3 SiH . 1 % mol Cl ₂ , 20 h nbiente	+ SiEt ₃	\sim	SiEt ₃				
/	$\begin{array}{c c} & & & & \\ \hline \textbf{Et_3SiH} & & & & \\ \hline \textbf{[ir] 0.1 \% mol} \\ CH_2Cl_2, 20 h \\ t. ambiente \end{array} + \begin{array}{c} & & & \\ & & \\ \hline \textbf{SiEt_3} & + & \\ & & \\ \hline \textbf{SiEt_3} & + & \\ \hline $								
Entrada	Sustrato	Catalizador [lr]	Conversión (%) ^A	Producto A (%) ^A	Producto B (%) ^A				
1	Cis-2-hexeno	[Ir(µ-Cl)(cod)]₂	10.63	61.51	38.49				
2	Cis-2-hexeno	[Ir ^l -Ir ^{III} (PSi ₃ ^{iPr})]	25.93	41.31	58.69				
3	Trans-2-hexeno	$[Ir(\mu-CI)(cod)]_2$	1.77	60.24	39.76				
4	Trans-2-hexeno	[Ir ^I -Ir ^{III} (PSi ₃ ^{iPr})]	5.94	45.64	54.36				
5	Trans-3-hexeno	[Ir(µ-Cl)(cod)] ₂	4.23	50.02	48.98				

Tabla 3. Reacciones de sililación de hexenos catalizadas por complejos de [Ir]

6	Trans-3-hexeno	[Ir ^I -Ir ^{III} (PSi ₃ ^{iPr})]	28.71	41.87	58.13				
La relación molar sustrato:Et ₃ SiH es 1:1 en una escala de 0.1 mmol en 100 μL de disolvente. ^A Las conversiones fueron calculadas mediante CG con									
respecto al Et ₃ SiH consumido durante la reacción.									

Primero, las pruebas consistieron en la transformación de diferentes isómeros de hexeno: *cis*-2-hexeno, *trans*-2-hexeno y *trans*-3-hexeno; utilizando Et₃SiH como fuente de silicio y diclorometano como disolvente. Tras 20 horas de agitación a temperatura ambiente, se obtienen en diferentes proporciones los productos etiquetados para fines prácticos como A y B (ver **Ilustración 76**). Comparando con la actividad catalítica del dímero $[Ir(\mu-Cl)(cod)]_2$ (**C2**), que es precursor sintético de nuestros complejos, se observa una importante mejora en los porcentajes de conversión al incorporar nuestros ligantes a la estructura dimérica, tal y como se puntualiza en la **Tabla 3** (Entradas 2, 4 y 6).

Con respecto a las transformaciones de 1-Hexeno a trietil(hex-1-en-1-il)silano, se obtienen resultados un tanto más complejos, en los que se observa la obtención de alquilsilanos, vinilsilanos y alilsilanos (este último en mayor proporción) (productos A, B y C respectivamente; **Ilustración 76**). Incluso incrementando la temperatura también es posible observar cantidades importantes de algún oligómero (producto F, **Tabla 4**).

Tabla 4. Reacciones de sililación de 1-Hexeno catalizadas por complejos de [Ir]

El estudio de catálisis con el mismo complejo **[Ir^I-Ir^{III}(PSi₃^{iPr})]**, se extendió hacia alquenos como ciclohexeno y estireno. Los resultados obtenidos mediante CG-MS arrojan información acerca de la producción de compuestos sililados deseados. El resultado más sobresaliente descrito en la **Tabla 5**, entradas 11 y 13. En estas fila podemos observar de manera condensada la información de dicha reacción entre estireno y trietilsilano con el complejo de valencia mixta como catalizador al 0.1 mol % en THF como disolvente a 80 °C y agitación durante 20 horas. Sin aditivos (entrada 11) y en presencia de 1-hexeno como aceptor de hidrógeno. En la primera se observa una conversión del 64.70 % mientras que en la segunda se observa una mejora del 7.52 %. En ambas solo se observan picos mediante CG que corresponden exclusivamente con la obtención de los productos A y B, hidrosililación (mayoritario) y sililación deshidrogenante (minoritario), respectivamente. Con ambos sustratos en estudio (estireno y ciclohexeno) se observa que el uso de THF como disolvente en lugar de CH₂Cl₂, mejora drásticamente el transcurso de la reacción desde nulas conversiones hasta 40.06 % en el caso de ciclohexeno y hasta 77.22 % de conversión para estireno.

Sustrato + Et ₃ SiH [Condiciones] [Condiciones]									
rada	rrato	zador	Condiciones			ión (%) ^A	A (%) A c	o B (%) ^A	
Entr	Sust	Catali	Disolvente	Т (°С)	t (h)	Convers	Product	Product	
1	Ciclohexeno	[Ir ^l -Ir ^{III} (PSi ₃ ^{iPr})]	CH ₂ Cl ₂	t. a.	20	0.92		100	
2	Ciclohexeno	[Ir ^l -Ir ^{III} (PSi ₃ ^{iPr})]	Neat	t. a.	20	0.58		100	
3	Ciclohexeno	[lr(μ-Cl)(cod)] ₂	CH ₂ Cl ₂	t. a.	20	N.C.			
4	Ciclohexeno	[Ir ^l -Ir ^{III} (PSi ₃ ^{iPr})]	THF	40	20	27.81	73.42	26.58	
5	Ciclohexeno	[Ir ^I -Ir ^{III} (PSi ₃ ^{iPr})]	THF	80	20	40.06	74.52	25.48	
6	Estireno	[Ir ^I -Ir ^{III} (PSi ₃ ^{iPr})]	CH ₂ Cl ₂	t. a.	20	0.67	46.15	53.85	
7	Estireno	[Ir ^I -Ir ^{III} (PSi ₃ ^{iPr})]	Neat	t. a.	20	0.49	42.76	52.76	

Tabla 5. Reacciones de sililación de alquenos catalizadas por complejos de [Ir]

8	Estireno	[Ir(µ-Cl)(cod)] ₂	CH ₂ Cl ₂	t. a.	20	N.C.		
9	Estireno	[Ir ^I -Ir ^{III} (PSi ₃ ^{iPr})]	THF	40	20	31.79	31.51	68.49
10	Estireno	[Ir ^l -Ir ^{III} (PSi ₃ ^{iPr})]	THF	60	20	49.29	26.75	73.25
11	Estireno	[Ir ^I -Ir ^{III} (PSi ₃ ^{iPr})]	THF	80	20	64.70	15.03	84.97
12	Estireno	[Ir ^l -Ir ^{III} (PSi ₃ ^{iPr})]	THF	80	13	34.75	27.46	72.54
13	Estireno ^B	[Ir ^l -Ir ^{III} (PSi ₃ ^{iPr})]	THF	80	20	77.22	27.68	72.32
14	Estireno ^c	[Ir ^l -Ir ^{III} (PSi ₃ ^{iPr})]	THF	80	20	52.19	27.21	72.79
	La relación molar sustrato Et-SiH es 1:1 en una escala de 0.1 mmol en 100 ul de							

La relación molar sustrato:Et₃SiH es 1:1 en una escala de 0.1 mmol en 100 μ L de disolvente.^{*A*} Las conversiones fueron calculadas mediante CG con respecto al Et₃SiH consumido durante la reacción. ^{*B*} En presencia de hexeno como aceptor de H₂ (relación molar 1:1 con respecto al silano). ^{*C*} En presencia de ciclohexeno como aceptor de H₂ (relación molar 1:1 con respecto al silano).

El mecanismo propuesto para estas transformaciones catalíticas comienza con la AO del silano hacia el átomo de iridio en el complejo catalizador (**CCat**) para crear a la especie **T1**, seguido de la coordinación del algueno al centro metálico que da origen a T2. El alqueno se adiciona a través del enlace Ir-H o Ir-Si para formar a las especies T3 o T4, respectivamente. T3 da lugar únicamente al alquilsilano correspondiente y así regenera a CCat vía ER. En cambio, la especie **T4** en presencia de una molécula más del silano, lleva a la obtención del compuesto alilsililado y nuevamente a la especie T1 que en presencia del alqueno y mediante metátesis lleva a la creación de la especie **T5** que rápidamente libera al compuesto vinilsililado desplazado por una molécula del sustrato que estabiliza al complejo T6 dihidrogenado. Este último transfiere los hidrógenos al compuesto insaturado mediante ER para así regenerar al CCat. Sin embargo, en presencia de una molécula extra del sustrato, T6 también produce acoplamientos C-C en alquenos de cadena larga para dar lugar al derivado de la oligomerización a través de **T7** (**Ilustración 84**).

Ilustración 84. Mecanismo propuesto para las reacciones entre alquenos y silanos catalizadas por complejos de Ir correspondientes a ésta sección y las subsecuentes.

6.3 Resultados y discusión de la sililación de alquenos con precursores metálicos y ligantes

La selectividad de nuestros ligantes de unirse a los centros metálicos aquí estudiados, estabilizan la formación de **[Ir^I-Ir^{III}(PSi₃^{iPr})]** (**Ilustración 65**) y el complejo de 14 electrones **C64**(30), por tal motivo, se propuso otro método exploratorio de catálisis, que consiste en agregar en el mismo seno de la reacción al complejo precursor seguido del ligante correspondiente, aditivos (si es necesario) y el sustrato acompañado de Et₃SiH, en un disolvente adecuado a diferentes temperaturas. La formación de los complejo deseados **[Ir^I-Ir^{III}(PSi₃^{iPr})]** y **C64**, no se notó alterada o inhibida por la presencia de los sustratos y demás reactivos.

En la **Tabla 6**, se resumen los resultados de las catálisis siguiendo el método anunciado en el párrafo anterior. Las pruebas de la mezcla de **C2** con el ligante **PSi**₃^{iPr} para la transformación de 1-Hexeno es bastante más eficiente, comparada con el ensayo con **C2** y **PSi**₂^{iPr}; ambas pruebas realizadas en THF a 80 °C y agitación durante 20 horas. En la entrada 2 no se observa conversión hacia ninguno de los productos, mientras que en la entrada 6 se anota una conversión del 66.03 % de la cual la mayor parte corresponde a los derivados alil-sililados (61.01 %) mientras que un 32.54 % corresponde al compuesto hidrosililado y un 6.45 % al vinil-sililado. Una vez más comparando la eficiencia de los ligantes y el complejo resultante en estas transformaciones, tenemos que en la entrada 4 se describe la transformación de estireno catalizada por la mezcla de **C2** y **PSi**₂^{iPr} que lleva a la obtención mayoritaria del compuesto derivado de la hidrosililación. En contraste, cuando se usa la mezcla de **C2** y **PSi**₃^{iPr} como catalizador, se obtiene en mayor proporción al derivado de la sililación deshidrogenante aunque con menor porcentaje de conversión (entrada 8). Por otro lado, en el intento de transformar al ciclohexano en sus derivados sililados, ambas mezclas fueron infructíferas (entradas 3 y 7).

S.,	strato + Et	[Ir] 0.1 _SiHLigant	% mol e ^[B, C]	ol Producto A Producto ^{C]} Alquilsilano ₊ Vinilsilano			icto B silano		
	Sustrato + Et ₃ SiH THF, T(°C), 20 h Producto C Alilsilano Alilsilano								
Entrada	Sustrato	Catalizador o precursor metálico	Ligante	τ (°)	Conversión (%) ^A	Producto A (%) ^A	Producto B (%) ^A	Producto C (%) ^A	
1	1-Hexeno	[lr(μ-Cl)(cod)] ₂	PSi ₂ ^{iPr}	40	N.C.				
2	1-Hexeno	[Ir(µ-Cl)(cod)] ₂	PSi ₂ ^{iPr}	80	N.C.				
3	Ciclohexeno	[Ir(μ-Cl)(cod)] ₂	PSi ₂ ^{iPr}	80	N.C.				
4	Estireno	[Ir(μ-Cl)(cod)] ₂	PSi ₂ ^{IPr}	80	76.57	67.14	32.86		
5	1-Hexeno	[Ir(μ-Cl)(cod)] ₂	PSi ₃	40	51.69	22.91	4.74	72.35	
6	1-Hexeno	[Ir(μ-Cl)(cod)] ₂	PSi ₃ ^{IPT}	80	66.03	32.54	6.45	61.01	
7	Ciclohexeno	[lr(µ-Cl)(cod)]₂	PSi ₃ ^{IPT}	80	N.C.				

8	Estireno	[Ir(µ-Cl)(cod)] ₂	PSi ₃ ^{iPr}	80	48.86	19.75	80.25	
9	1-Hexeno	C64 ^D		80	N.C.			
10	Estireno	C64 ^{<i>E</i>}		80	44.49	60.55	39.45	

Tabla 6. Reacciones de sililación de alquenos catalizadas por complejos de [Ir]. La relación molar sustrato:Et₃SiH es 1:1 en una escala de 0.1 mmol en 100 μL de disolvente. ^A Las conversiones fueron calculadas mediante CG con respecto al Et₃SiH consumido durante la reacción. ^B Relación molar Metal:Ligante 1:2 con el fin de obtener *in situ* al complejo **C64**. ^C Relación molar Metal:Ligante 1:1 con el fin de obtener *in situ* al complejo **C64**. ^C Relación molar Metal:Ligante 1:1 con el fin de obtener *in situ* al complejo **[Ir¹-Ir^{III}(PSi₃^{iPr})]**. ^D En presencia de ciclohexeno como aceptor de H₂ (relación molar 1:1 con respecto al silano). ^E En presencia de hexeno como aceptor de H₂ (relación molar 1:1 con respecto al silano). **C2** = [Ir(µ-CI)(cod)]₂. N. C. = No hay conversión detectable.

Profundizando más en lo que se describe en la **Tabla 6**, la transformación de 1-Hexeno hacia sus derivados sililados, solo se efectúa al utilizar la mezcla de **C2** y **PSi**³^{iPr} ya que al usar el complejo **C64** aislado tampoco se observa indicio de evolución de la reacción, aún en presencia de aceptores de hidrógeno (entrada 9). Además en la entrada 10 se observa una transformación reducida con respecto a lo observado en la entrada 4, con una diferencia del 32.08 % de conversión aunque con porcentajes similares de los productos sililados en ambos experimentos (% producto A > % producto B).

La transformación de estireno con Et₃SiH fue monitoreada mediante RMN de ¹H a temperatura ambiente. Esta reacción se usó como modelo debido a que su transformación es más selectiva, además de que existe menor traslape de las señales en el espectro. El monitoreo se realizó 5 minutos después de haber hecho la mezcla. En el espectro se observan a δ 3.71 ppm (sept, 1H), 1.04 ppm (t, 9H) y 0.65 ppm (qd, 6H) las señales correspondientes al silano libre mientras que a δ 5.22 ppm (d, 1H), 5.78 ppm (d, 1H) y 5.75 ppm (dd, 1H) se encuentran las señales de los protones vinílicos del estireno sin reaccionar. 24 horas después de reacción a temperatura ambiente se observan las señales del producto derivado de la sililación deshidrogenante, en un porcentaje del 14 % de acuerdo con las integrales medidas con un *delay* entre los pulsos de 30 s (**Ilustración 85**). Después del calentamiento se observan las señales más claras de los productos y se mide una conversión del 35 % (**Ilustración 85**).

Solo por mencionar, los métodos modelo usados en la catálisis de sililación de alquenos aquí desarrollados, se intentaron

extender hacia otros centros metálicos (Co y Pt). Con miras a desplegar lo planteado en los objetivos de esta tesis (sección 1.4), no obstante los resultados fueron desfavorecedores (Ver Anexo 66, **Tabla 7**).

6.4 Conclusiones del Capítulo VI

- Las pruebas exitosas para las transformaciones de alquenos hacia sus derivados sililados bajo las condiciones aquí desarrolladas, muestran una mejora al utilizar THF como disolvente en lugar de CH₂Cl₂, por ejemplo entrada 1 vs entrada 4 de la Tabla 5. Así mismo, incrementando la temperatura existe una mejora considerable.
- Las transformaciones sin utilizar disolvente no fueron exitosas en todos los casos, sin embargo, en algunos modelos se obtuvieron resultados positivos como en el caso de la entradas 2 y 7 de la Tabla 5 y sobre todo la entrada 2 de la Tabla 4.
- En general, el uso de aditivos como aceptores de hidrógeno mejoró las transformaciones, pero no hubo un efecto significativo en la selectividad. El mejor aceptor de hidrógeno en nuestro estudio fue 1-hexeno vs ciclohexeno
- La inserción de nuestro ligante PSi₃^{iPr} dentro de la estructura dimérica de C2 potencializó la actividad catalítica de sililaciones con este precursor hasta en un 80 %.

- ✤ Mantener la estructura dimérica puenteada por HCl en el [Ir^I-Ir^{III}(PSi₃^{iPr})] comparada con una compleio estructura monomérica (complejo C64), es ventajoso al momento de llevar a cabo estas transformaciones porque se promueve la adición oxidativa del enlace Si-H del silano al centro metálico. Lo que podría dar inicio al ciclo catalítico propuesto en la **Ilustración 84**. Se podría pensar que el compuesto C2 debería de tener una mejor actividad catalítica por presentar dos centros metálicos de Ir¹ que son susceptibles a adiciones de enlaces Si-H. Sin embargo, el complejo **C2** arroja resultados menos favorables probablemente debido a que la labilidad de los enlaces Ir…Cl ocasionan la ruptura y pérdida de la estructura dimérica y el consecuente envenenamiento del catalizador. De esta manera la tendencia para la actividad catalítica observada para estos modelos es: $[Ir^{I}-Ir^{III}(PSi_{3}^{iPr})] > C2 > C64 > CoX_{2} (X = Br, I) > [Pt^{II}(\kappa^{3}-$ PSi₃^{Me})(PPh₃)]
- Las pruebas aquí mostradas tienen un alto impacto en las transformaciones catalíticas de sililación de alquenos, ya que se utilizaron complejos que no son onerosos de sintetizar además de que se obtienen sobresalientes resultados empleando condiciones de reacción de suaves a moderadas.

CAPÍTULO VII

En este capítulo se desarrolla la sección experimental de este trabajo de investigación.

7.1 Condiciones generales

La manipulación de los compuestos fue hecha siguiendo las técnicas Schlenk estándar y caja de guantes (< 0.1 ppm de O_2) y Ar o N_2 como gases inertes. Los solventes fueron secados con el agente apropiado según la literatura.

Los complejos $[Ir(\mu-Cl)(\eta^4-cod)]_2$ y $[Pt(PPh_3)_3]$ fueron sintetizados siguiendo los procedimientos ya reportados en la literatura. Los precursores comercialmente disponibles así como disolventes deuterados fueron utilizados tal cual fueron adquiridos de Sigma Aldrich o Alfa Aesar a menos que se indique lo contrario.

Los espectros de RMN fueron adquiridos en varios espectrómetros propios del CIQ: Varian Mercury 200 MHz (4.7 T), Varian Inova 400 MHz (9.4 T), Varian Mercury Plus 400 MHz (9.4 T) y Bruker AVANCE III HD 500 MHz (11.74 T). Los experimentos de RMN adquiridos en el Laboratorio de Química de Coordinación de la Universidad de Toulouse en Francia, fueron obtenidos de los espectrómetros: Bruker AVANCE III 400 MHz, Bruker AVANCE III 500 y Bruker AVANCE NEO 600 MHz con sistema de variación de temperatura. En la sección de catálisis, los experimentos de RMN fueron adquiridos en el Departamento de Química de la Universidad del Estado de Mississippi en Estados Unidos, en los equipos: Bruker AVANCE 300 MHz y Bruker AVANCE 500 MHz. Los desplazamientos químicos son dados en partes por millón (ppm) y las constantes de acoplamiento en Hertz (Hz).

Los análisis estructurales por difracción de rayos X fueron colectados a temperatura ambiente en el difractómetro perteneciente al CIQ: Bruker Smart Apex equipado con un detector bidimensional CCD y con dispositivo de baja temperatura. Los espectros de infrarrojo se realizaron en el equipo NICOLELT 6700 que se encuentra en el laboratorio 207 de CIQ (UAEM)

Los análisis mediante espectrometría de masas, fueron realizados en equipo de Masas de Alta Resolución JMS700-JEOL propio de nuestro centro de investigaciones (CIQ, UAEM)

Los análisis de cromatografía de gases fueron realizados en el cromatógrafo de gases acoplado a masas CG-MS Agilent Technology modelo 6890-plus que se encuentra en el área analítica del CIQ-UAEM. Mientras que varios cromatogramas fueron adquiridos en el cromatógrafo Shimadzu QP-2010S acoplado a masas (EI) perteneciente al Departamento de Química de la Universidad del Estado de Mississippi en Estados Unidos.

7.2 Síntesis del complejo [$Pt^{II}(\kappa^3-PSi_3^{Me})PPh_3$]

El ligante **PSi₃^{Me}** (48.7 mg, 0.10 mmol) y [Pt(PPh₃)₃] (100 mg, 0.10 mmol) se disolvieron en 10 mL de tolueno con agitación vigorosa (aproximadamente 200 rpm) y se calentaron a 333 K durante 4 h. Después de este tiempo, la solución se enfrió a temperatura ambiente y se evaporó a presión reducida. El sólido se lavó tres veces con 0.5 mL de hexano frío (10-15 °C) y luego se secó a vacío para proporcionar un polvo amarillo brillante (rendimiento 83.6 mg, 88%).

Crecieron cristales amarillos adecuados para análisis de difracción de rayos X a partir de soluciones de C_6H_6 /hexano en temperatura ambiente (evaporación lenta). Punto de fusión: 406 K. Análisis elemental calculado para C₄₅H₅₀P₂PtSi₃·C₆H₆: C, 60.63; H, 5.59. Encontrado: C, 60.30; H, 5.46. **RMN de** ¹**H** (400 MHz, C₆D₆, 298 K): δ 7.95 (dd, ${}^{3}J_{HH}$ = 7.8 Hz, ${}^{3}J_{HP}$ = 11.4 Hz, 1H, m-bencilo), 7.83 (pseudo t, ${}^{3}J_{HH}$ = 8.0 Hz, ${}^{3}J_{HP}$ = 8.8 Hz, 1H, *m*-bencilo), 7.57 (*pseudo* t, ${}^{3}J_{HH}$ = 8.8 Hz, ${}^{3}J_{HH} = 8.8$ Hz, 1H, *m*-bencilo), 7.29 (*ddd*, ${}^{3}J_{HH} = 7.5$ Hz, ${}^{3}J_{HH} = 11.7$ Hz, ${}^{4}J_{HH} = 1.7$ Hz, 6H, $o-Ph_{3}P$), 7.26 (t, ${}^{3}J_{HH} = 7.2$ Hz, 1H, *m*-bencilo), 7.18 (*d*, traslapado, 1H, *o*-bencilo), 7.10 (*t*, ³*J*_{HH} = 7.8 Hz, 1H, *p*bencilo), 6.98 (m, 9H, m + p-Ph₃P), 6.92 (t, ³J_{HH} = 7.6 Hz, 1H, mbencilo), 6.85 (t, ${}^{3}J_{HH}$ = 7.4 Hz, 1H, *p*-bencilo), 6.82 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 1H, o-bencilo), 6.81 (d, ${}^{3}J_{HH}$ = 7 Hz, 1H, o-bencilo), 6.75 (t, ${}^{3}J_{HH}$ = 6.4 Hz, 1H, *m*-bencilo), 6.73 (t, ${}^{3}J_{HH}$ = 6.4 Hz, 1H, *p*-bencilo), 4.60 (*dd*, ${}^{2}J_{HH}$ = 13.2 Hz, ${}^{4}J_{PH}$ = 2 Hz, 1H, CH₂Si), 2.55 (d, ${}^{2}J_{HH}$ = 12.8 Hz, 1H, CH₂Si), 2.36 (*dd*, ²*J*_{HH} = 12.8 Hz, ⁴*J*_{PH} = 4.8 Hz, 1H, *CH*₂Si), 2.32 (*d*, ⁴*J*_{PH} = 6.4 Hz, 1H, SiCH), 2.30 (*dd*, ${}^{2}J_{HH}$ = 13.2 Hz, ${}^{4}J_{PH}$ = 4.8 Hz, 1H, *CH*₂Si), 0.28 (*s*, 3H, SiMe), 0.22 (s, 3H, SiMe), -0.02 (s, 3H, SiMe), -0.24 (s, 3H, SiMe), -0.48 (s, 3H, SiMe), -0,50 (s, 3H, SiMe). RMN de ¹³C{¹H} (100 MHz, C_6D_6 , 298 K): δ 152.69 (*d*, J_{CP} = 15.0 Hz, C_{arom}), 151.52 (*d*, J_{CP} = 10.0 Hz, C_{arom}), 143.64 (*d*, J_{CP} = 16.0 Hz, C_{arom}), 136.75 (*dd*, J_{CP} = 52 Hz, J_{CP} = 3.0 Hz C_{arom}), 134.79 (*d*, J_{CP} = 12.0 Hz, C_{arom}), 134.21 (*br.s*, C_{arom}), 133.95 (pseudo t, J_{CP} = 3.0 Hz, C_{arom}), 133.03 (d, J_{CP} = 10.0 Hz, C_{arom}), 132.67 (*d*, $J_{CP} = 8.0$ Hz, C_{arom}), 132.45 (*d*, $J_{CP} = 9.0$ Hz, C_{arom}), 131.53 (*d*, $J_{CP} = 3.0$ Hz, C_{arom}), 131.04 (*d*, $J_{CP} = 8.0$ Hz, C_{arom}), 130.33 (*s*, C_{arom}), 130.21 (*d*, $J_{CP} = 2.0$ Hz, C_{arom}), 129.62 (*d*, $J_{CP} = 3.0$ Hz, C_{arom}), 129.53 (*d*, $J_{CP} = 3.0$ Hz, C_{arom}), 129.25 (*s*, C_{arom}), 128.60 (*s*, C_{arom}) 128.49 (*d*, $J_{CP} = 3.0$ Hz, C_{arom}), 125.27 (*d*, $J_{CP} = 7.0$ Hz, C_{arom}), 123.62 (*d*, $J_{CP} = 10.0$ Hz, C_{arom}), 123.53 (*d*, $J_{CP} = 7.0$ Hz, C_{arom}), 36.7 (*d*, $^{3}J_{CP} = 17$ Hz, Si*CH*), 33.4 (*d*, $^{3}J_{CP} = 12$ Hz, Si*CH*₂), 30.9 (*d*, $^{3}J_{CP} = 13$ Hz, Si*CH*₂), 6.24 (*s*, $^{1}J_{CPt}$ 40 Hz, Si*Me*), 5.62 (*s*, $^{1}J_{CPt}$ 32 Hz, Si*Me*), 4.35 (*d*, $^{5}J_{CP} = 6$ Hz, Si*Me*), 4.03 (*d*, $^{5}J_{CP} = 3$ Hz, Si*Me*), -3.32 (*s*, Si*Me*), -4.23 (*s*, Si*Me*). **RMN de** ³¹P{¹H} (161.9 MHz, C₆D₆, 298 K): δ 32.4 (*d*, $^{2}J_{PP} = 360$ Hz, $^{1}J_{PtP} = 3188$ Hz, Pt-PPh₃), 1.91 (*d*, $^{2}J_{PP} = 360$ Hz, $^{1}J_{PtP} = 2503$ Hz, Pt-*P*(L)). **RMN de** ²⁹Si{¹H} (75.54 MHz, C₆D₆): δ 33.7 (*t*, $^{2}J_{PSi}$ 18 Hz, $^{1}J_{PtSi}$ 827 Hz), 23.8 (*dd*, $^{2}J_{PSi} = 20$ Hz, $^{2}J_{PSi} = 14$ Hz, $^{1}J_{PtSi} = 733$ Hz), -5.34 (*d*, $^{2}J_{PSi} = 2$ Hz). **IR (KBr**): 2278 cm⁻¹ (w, vSiCHSi); 1431 cm⁻¹ (m-s, δ CH₂).

7.3 Síntesis del complejo [$Pt^{II}(\kappa^3 - PSi_3^{Me})PMe_3$]

El complejo [Pt^{II}(κ³-PSi₃^{Me})PPh₃] (50 mg, 0.05 mmol) y PMe₃ (6 μL, 0.06 mmol) se disolvieron en 4 mL de benceno en agitación magnética durante 30 minutos. Luego, los volátiles fueron removidos mediante vacío dinámico durante 3 horas a temperatura ambiente. El sólido se lavó con tres porciones de 0.5 mL de pentano frío (10 - 15 °C) y luego se secó a vacío durante 4 horas, dando como resultado un polvo amarillo pálido (99% de rendimiento calculado mediante RMN).

NMR de ¹**H** (400 MHz, C₆D₆, 298 K) δ 7.42 (*pseudo* t, $|^{3}J_{HH} + {}^{3}J_{PH}| = 9$ Hz, 1H, *m*-bencilo), 7.17 (*pseudo* t, ${}^{3}J_{HH}$ = 5.5 Hz, ${}^{3}J_{HP}$ = 6 Hz, 1H, *m*bencilo), 7.08 (*pseudo* t, $|{}^{3}J_{HH} + {}^{3}J_{PH}| = 7$ Hz, 1H, *m*-bencilo), 6.84 (*m*, 3H, o-bencilo), 6.72 (m, 3H, m-bencilo + 2H p-bencilo), 6.63 (t, ${}^{3}J_{HH}$ = 7.5 Hz, 1H, *p*-bencilo), 4.57 (*dd*, ${}^{2}J_{HH}$ = 13.6 Hz, ${}^{4}J_{HP}$ = 1.2 Hz, 1H, CH₂Sianagóstico), 2.56 (d, ²J_{HH} = 12.4 Hz, 1H, CH₂Si), 2.44 (dd, ²J_{HH} = 12.4 Hz, ${}^{4}J_{HP}$ = 5.2 Hz, 1H, CH₂Si), 2.35 (*d*, ${}^{4}J_{PH}$ = 6 Hz, 1H, SiCH), 2.10 (*dd*, ²J_{HH} = 13.2 Hz, ⁴J_{PH} = 2.8 Hz, 1H, CH2Si), 1.31−1.19 (*m*, 9H, P*Me*₃), 0.57 (s, ³J_{PtH} = 10.0 Hz, 3H, SiMe₂), 0.36 (s, 3H, SiMe₂), 0.35 (s, 3H, SiMe₂), 0.26 (s, 3H, SiMe₂), 0.20 (s, 3H, SiMe₂), -0.48 (s, 3H, SiMe₂); **RNM de** ¹³C{¹H} (100 MHz, C₆D₆, 298 K) δ 151.84 (d, J_{CP} = 15.0 Hz, C_{arom}), 149.08 (d, J_{CP} = 10.0 Hz, C_{arom}), 142.58 (d, J_{CP} = 16.0 Hz, C_{arom}), 137.72 $(br. s, C_{arom})$, 134.01 (s, C_{arom}) , 132.67 $(d, J_{CP} = 8.0 \text{ Hz}, C_{arom})$, 132.09 $(d, J_{CP} = 8.0 \text{ Hz})$ J_{CP} = 8.0 Hz, C_{arom}), 132.00 (*d*, J_{CP} = 10.0 Hz, C_{arom}), 131.06 (*d*, J_{CP} = 3.0 Hz, C_{arom}), 130.36 (*d*, J_{CP} = 7.0 Hz, C_{arom}), 129.74 (*d*, J_{CP} = 10.0 Hz, C_{arom}), 129.33 (s, C_{arom}), 128.73 (d, J_{CP} = 9.0 Hz, C_{arom}), 128.37 (s, C_{arom}), 128.07 (*d*, J_{CP} = 12.0 Hz, C_{arom}), 124.46 (*d*, J_{CP} = 7.0 Hz, C_{arom}), 123.36 (d, J_{CP} = 10.0 Hz, C_{arom}), 123.03 (d, J_{CP} = 7 Hz, C_{arom}), 35.72 (d, ${}^{3}J_{CP}$ = 15.0 Hz, SiCH), 33.61 (*d*, ${}^{3}J_{CP}$ = 13.0 Hz, SiCH₂), 31.28 (*d*, ${}^{3}J_{CP}$ = 11 Hz, SiCH₂), 20.34 (d, ¹J_{CP} = 35 Hz, PMe₃), 8.46 (s, SiMe₂), 7.81 (s, SiMe₂), 7.06 (s, SiMe₂) 5.69 (s, SiMe₂), 0.94 (s, SiMe₂), -3.80 (s, SiMe₂); **RMN de** ³¹P{¹H} (202.46 MHz, C₆D₆) δ 0.49 (d, ²J_{PP} = 357 Hz, ${}^{1}J_{PtP}$ = 2324 Hz, Pt-P(L)), -24.18 (*d*, ${}^{2}J_{PP}$ = 357 Hz, ${}^{1}J_{PtP}$ = 2838 Hz, Pt-PMe₃).

7.4 Síntesis del complejo $[Pt^{II}(\kappa^3 - PSi_3^{Me})P(OPh)_3]$

El complejo [$Pt^{II}(\kappa^3 - PSi_3^{Me})PPh_3$] (50 mg, 0.05 mmol) y P(OPh)₃ (7.1 µL, 0.05 mmol) se disolvieron en 5 mL de tolueno en agitación. Después de 30 minutos, se eliminaron todos los volátiles a presión reducida. El sólido resultante se lavó tres veces con 0.5 mL de pentano frío (10-15 °C) y luego se secó a vacío para proporcionar un polvo amarillo (52 mg, 99% de rendimiento). Cristales amarillos adecuados para el análisis por difracción de rayos X fueron cultivados a partir de soluciones de tolueno con capas de pentano a temperatura ambiente. **RMN de** ¹H (500 MHz, C₆D₆, 298 K) δ 7.62 $(dd, {}^{3}J_{HH} = 9 \text{ Hz}, {}^{3}J_{PH} = 18 \text{ Hz}, 2H, m\text{-bencilo}), 7.40 (pseudo t, |{}^{3}J_{HH} + 10 \text{ Hz})$ ${}^{3}J_{PH}| = 9$ Hz, 1H, *m*-bencilo), 7.22 (*d*, ${}^{3}J_{HH} = 8$ Hz, 6H, o-OPh), 6.86 (*t*, ${}^{3}J_{HH}$ = 8 Hz, 6H, *m*-POPh), 6.81 (t, ${}^{3}J_{HH}$ = 7.5 Hz, 1H, *m*-bencilo), 6.75 (t, 3H, p-POPh), 6.73 (d, traslapado, 3H, o-bencilo), 6.71 (t, traslapado, 2H, *m*-bencilo), 6.68 (t, ${}^{3}J_{HH}$ = 7.5 Hz, 1H, *p*-bencilo), 6.65 (t, ${}^{3}J_{HH}$ = 7 Hz, 1H, *p*-bencilo), 6.60 (t, ${}^{3}J_{HH}$ = 6.5 Hz, 1H, *p*-bencilo), 4.16 (*dd*, ${}^{2}J_{HH}$ = 14 Hz, ${}^{4}J_{PH}$ = 1.2 Hz, 1H, CH₂Si, anagóstico), 2.62 (d, ${}^{2}J_{HH}$ = 12.4 Hz, 1H, CH₂Si), 2.55 (*dd*, ${}^{2}J_{HH}$ = 12.4 Hz, ${}^{4}J_{PH}$ = 4.8 Hz, 1H, CH₂Si), 2.35 (*d*, ${}^{4}J_{PH}$ = 6.8 Hz, 1H, SiCH), 2.06 (*dd*, ${}^{2}J_{HH}$ = 14 Hz, ${}^{4}J_{PH}$ = 2.8 Hz, 1H, CH₂Si, geminal del anagóstico), 0.87 (s, 3H, SiMe), 0.60 (s, 3H, SiMe), 0.42 (s,

3H, SiMe), -0.05 (s, 3H, SiMe), -0.18 (s, 3H, SiMe), -0.52 (s, 3H, Si*Me*). **RMN de** ¹³C{¹H} (100 MHz, C₆D₆, 298 K) δ 152.19 (*d*, J_{PC} = 15.1 Hz, C_{arom}), 152.03 (*d*, J_{PC} = 5.0 Hz, C_{arom}), 150.31 (*d*, J_{PC} = 10.0 Hz, C_{arom}), 143.15 (*d*, J_{PC} = 16.3 Hz, C_{arom}), 134.31 (*pseudo t*, J_{PC} = 2.5 Hz, C_{arom}), 134.09 (*d*, J_{PC} = 6.3 Hz, C_{arom}), 133.66 (*d*, J_{PC} = 6.3 Hz, C_{arom}), 133.07 (*d*, J_{PC} = 10.0 Hz, C_{arom}), 132.61 (*d*, J_{PC} = 7.5 Hz, C_{arom}), 132.44 $(d, J_{PC} = 10.0 \text{ Hz}, C_{arom})$, 131.04 $(d, J_{PC} = 7.5 \text{ Hz}, C_{arom})$, 130.19 $(d, J_{PC} = 10.0 \text{ Hz})$ 10.0 Hz, Carom), 130.06 (s, Carom), 129.81 (s, Carom), 129.62 (s, Carom), 129.14 (s, C_{arom}), 128.59 (d, J_{PC} = 11.3 Hz, C_{arom}), 128.00 (s, traslapado C_{arom}), 127.07 (s, C_{arom}) 126.60 (d, J_{PC} = 3.0 Hz, C_{arom}), 125.18 (d, J_{PC} = 7.5 Hz, C_{arom}), 124.40 (s, C_{arom}), 123.76 (d, J_{PC} = 10.0 Hz, C_{arom}), 35.8 (d, ${}^{3}J_{PC}$ = 15 Hz, SiCH), 33.8 (*d*, ${}^{3}J_{PC}$ = 11 Hz, SiCH₂), 32.3 (*d*, ${}^{3}J_{PC}$ = 13 Hz, SiCH₂), 7.98 (d, ²J_{PC} = 6.30 Hz, SiMe₂), 7.65 (s, SiMe₂), 7.25 (s, SiMe₂), 5.55 (d, J_{PC} = 2.5 Hz, SiMe₂), 0.23 (s, SiMe₂), -3.36 (s, SiMe₂). RMN de ³¹P{¹H} (161.9 MHz, C₆D₆) δ 122.3 (*d*, ²J_{PP} = 552 Hz, ¹J_{PtP} = 5394 Hz, $P(OPh)_3$], -1.62 (d, ${}^2J_{PP}$ = 552 Hz, ${}^1J_{PtP}$ = 2488 Hz, P-ligante). **RMN** bidimensional HMQC ¹H-²⁹Si{¹H}{³¹P} (500-99.36 MHz, C₆D₆) δ 37.15 (s, Si-CH-Si-Pt), 22.50 (s, CH₂Si-Pt), 5.30 (s, Si-CH-Si-Pt). Análisis elemental calculado para: C₄₅H₅₀O₃P₂PtSi₃: C, 55.14; H, 5.14. Encontrado: C, 54.84; H, 5.07.

7.5 Síntesis del complejo [$Pt^{II}(\kappa^3 - PSi_3^{Me})CO$]

En un aparato Fischer-Porter se degasó una disolución del complejo [$Pt^{II}(\kappa^3 - PSi_3^{Me})PPh_3$] (50 mg, 0,05 mmol) en 0.6 mL de C₆D₆, posteriormente, se colocó bajo 3 atm de CO y se agitó durante 30 minutos. Después de este tiempo, la solución se colocó dentro de la caja seca para analizar mediante RMN e IR (conversión del 99% por RMN). RMN de ¹H (400 MHz, C₆D₆, 298 K) δ 7.72 (pseudo t, $|^{3}J_{HH}$ + ${}^{3}J_{PH}$ = 9.6 Hz, 1H, *m*-bencilo), 7.60 (*dd*, ${}^{3}J_{HH}$ = 8 Hz, ${}^{3}J_{PH}$ = 12 Hz, 1H, *m*-bencilo), 7.56 (*pseudo* t, ${}^{3}J_{HH}$ = 8.8 Hz, 1H, m-bencilo), 7.30 (*dd*, ${}^{3}J_{HH}$ = 6.8 Hz, ${}^{3}J_{HH}$ = 10.8 Hz, 1H, *m*-bencilo), 7.04 (*m*, 1H, *m*-bencilo), 6.85-6.80 (m, 2H, o-bencilo), 6.75-6.59 (m, traslapado, 3H, p-bencilo, 1H, *m*-bencilo, 1H, *o*-bencilo), 3.79 (*d*, ${}^{2}J_{HH}$ = 14.2 Hz, 1H, CH₂Si anagóstico), 2.71 (dd, ²J_{HH} = 12.8 Hz, ⁴J_{PH} = 4.8 Hz, 1H, CH₂Si), 2.57 (d, ${}^{4}J_{PH}$ = 6.0 Hz, 1H, SiCH), 2.40 (*d*, ${}^{2}J_{HH}$ = 12.8 Hz, CH₂Si), 2.10 (*dd*, ${}^{2}J_{HH}$ = 14.2 Hz, ${}^{4}J_{PH}$ = 2.8 Hz, 1H, CH₂Si), 0.83 (s, 3H, ${}^{3}J_{PtH}$ = 17.2 Hz, SiMe), 0.43 (s, 6H, ${}^{3}J_{PtH} = 13.2$ Hz, SiMe), 0.37 (s, 3H, ${}^{3}J_{PtH} = 12.4$ Hz, SiMe), 0.10 (s, 3H, SiMe), -0.62 (s, 3H, SiMe). RMN de ¹³C{¹H} (50 MHz, C₆D₆, 298 K) δ 196.54 (s, CO), 191.52 (s, CO), 151.67 (d, J_{PC} = 14.0 Hz, C_{arom}), 149.83 (d, J_{PC} = 10.5 Hz, C_{arom}), 142.96 (d, J_{PC} = 15.5 Hz, C_{arom}), 136.30 (s, C_{arom}) , 135.62 (s, C_{arom}) , 134.41 $(d, J_{PC} = 3.5 \text{ Hz}, C_{arom})$, 132.43 (d, J_{PC}) = 9.5 Hz, C_{arom}), 131.38 (*d*, J_{PC} = 9.0 Hz, C_{arom}), 130.62 (*br. s*, C_{arom}), 130.44 (d, J_{PC} = 10.0 Hz, C_{arom}), 130.13 (s, C_{arom}), 130.02 (s, C_{arom}), 128.92 (s, C_{arom}), 128.74 (s, C_{arom}), 128.33 (s, C_{arom}), 125.31 (d, J_{PC} = 8.0

Hz, C_{arom}), 124.54 (*d*, J_{PC} = 10.0 Hz, C_{arom}), 124.04 (*d*, J_{PC} = 8.0 Hz, C_{arom}), 35.49 (*d*, ${}^{3}J_{PC}$ = 13.5 Hz, SiCH), 32.22 (*d*, ${}^{3}J_{PC}$ = 11.5 Hz, SiCH₂), 32.06 (*d*, ${}^{3}J_{PC}$ = 11.0 Hz, SiCH₂), 7.29 (*s*, ${}^{5}J_{PC}$ = 7.5 Hz, ${}^{2}J_{PtC}$ = 40 Hz, 2-SiMe₂), 6.24 (*s*, ${}^{2}J_{PtC}$ = 39.5 Hz, SiMe₂), 3.72 (*d*, ${}^{2}J_{PtC}$ = 48 Hz, SiMe₂), 0.85 (*s*, SiMe₂), -3.67 (*s*, SiMe₂). RMN de ${}^{31}P{}^{1}H{}$ (161.9 MHz, $C_{6}D_{6}$) δ -1.44 (*s*, ${}^{1}J_{PtP}$ = 2782 Hz). **IR** ($C_{6}D_{6}$) 2024 cm⁻¹ (*s*, vCO).

7.6 Síntesis del ligante **PSi₃**^{Ph}

La fosfina P{(o-C₆H₄)CH₃}₃ (1 g, 3.3 mmol) se disolvió en 30 mL de hexano y luego se agregaron tres equivalentes de TMEDA (1.48 ml, 9.9 mmol). Posteriormente, una solución titulada de ⁿBuLi en hexano (3,96 ml, 9,9 mmol) fue adicionada. Después de agitarse durante 16 horas (overnight), la mezcla de reacción rojiza se enfrió a 195 K para añadir con una jeringa una cantidad esteguiométrica de ClSiPh₂H (1.9 mL, 9.9 mmol). La suspensión blanquecina se dejó calentar a temperatura ambiente y se agitó durante 12 horas más, después de lo cual se eliminaron los líguidos volátiles por destilación a presión reducida. El sólido blanco se disolvió en 15 mL de tolueno y se lavó con 15 mL de hexano: rendimiento del 94% (7,88 g, 9,3 mmol). **RMN de** ¹**H** (400 MHz, C₆D₆, 298 K) δ 7.59–7.42 (*m*, 10H), 7.14–6.79 (*m*, 32H), 5.13 (*pseudo* q, $|{}^{3}J_{HH} + {}^{3}J_{HH} + {}^{5}J_{PH}| = 2.8$ Hz, 3H, $|^{1}J_{SiH}|$ = 204 Hz, Si-H), 3.02 (*d*, $^{3}J_{HH}$ = 2.8 Hz, CH₂). RMN de $^{13}C{^{1}H}$ (100 MHz, C₆D₆, 298 K) δ 144.54 (*d*, J_{PC} = 26.0 Hz, Carom), 135.81 (*s*,

C_{arom}), 134.80 (s, C_{arom}), 134.67 (s, C_{arom}), 134.44 (d, $J_{PC} = 10.0$ Hz, C_{arom}), 130.17 (d, $J_{PC} = 5.0$ Hz, C_{arom}), 129.82 (s, C_{arom}), 129.14 (s, C_{arom}), 128.21 (s, C_{arom}), 125.86 (s, C_{arom}), 22.03 (d, $J_{PC} = 21$ Hz, CH₂). **RMN de** ³¹P{¹H} (202.5 MHz, C₆D₆) δ -30.32 (s); **IR** (KBr) 2136 (s, vSi-H), 816 cm⁻¹ (s, ω Si-H). Análisis elemental calculado para C₅₇H₅₁PSi₃: C, 80.42; H, 6.04. Encontrado: C, 80.14; H, 6.11.

7.7 Síntesis del complejo [$Pt^{IV}H(\kappa^4-PSi_3^{Ph})PPh_3$]

El ligante PSi₃^{Ph} (43.3 mg, 0.051 mmol) y el compuesto [Pt (PPh₃)₃] (50 mg, 0.051 mmol) se disolvieron en 10 mL de tolueno y luego se calentaron a reflujo durante la noche. Luego, los compuestos volátiles se eliminaron a presión reducida y el sólido se lavó tres veces con CH₃CN frío (10-15 °C) y luego se secó a vacío para producir un polvo blanco (86%, 57.2 mg). La pureza se verificó por RMN en CD₂Cl₂. Posteriormente, la muestra se evaporó a vacío y se sometió a análisis elemental. RMN de ¹H (400 MHz, CD₂Cl₂, 298 K) δ 8.95 (*dd*, ${}^{3}J_{HH}$ = 6.4 Hz, ${}^{3}J_{PH}$ = 18 Hz, 1H, CH_{arom}), 7.85 (*dd*, ${}^{3}J_{HH}$ = 7.6 Hz, ${}^{3}J_{PH}$ = 16.4 Hz, 1H, CH_{arom}), 7.64 (*dd*, ${}^{3}J_{HH}$ = 6.0 Hz, ${}^{3}J_{PH}$ = 30.8 Hz, 5H, CH_{arom}), 7.43–6.92 (*m*, 48H), 6.73 (*pseudo* t, $|{}^{3}J_{HH} + {}^{3}J_{PH}| = 9.2$ Hz, 1H, CH_{arom}), 6.65 (*t*, ³*J*_{HH} = 7.2 Hz, 1H, CH_{arom}), 6.34 (*br. d*, 1H, CH_{arom}), 6.25 $(dd, {}^{3}J_{HH} = 3.6 \text{ Hz}, {}^{3}J_{HH} = 7.6 \text{ Hz}, 5\text{H}, \text{CH}_{arom}), 2.98 (d, {}^{2}J_{HH} = 12.8 \text{ Hz}, 2\text{H},$ traslapado con otra señal de un CH₂), 2.08 (d, ${}^{2}J_{HH}$ = 14 Hz, 1H, CH₂), 2.06 (d, ${}^{2}J_{HH}$ = 13.6 Hz, 1H, CH₂), 1.77 (d, ${}^{2}J_{HH}$ = 13.2 Hz, 1H, CH₂), 1.70

 $(d, {}^{2}J_{HH} = 13.6 \text{ Hz}, 1\text{H}, \text{CH}_{2}), -2.06 [dd, {}^{2}J_{PH(cis)} = 22.0 \text{ Hz}, {}^{2}J_{PH(trans)} = 150$ Hz, ¹J_{PtH} = 1060 Hz, 1H, Pt-H]. **RMN de** ¹³C{¹H} (100 MHz, CD₂Cl₂, 298 K) δ 147.76 (*d*, J_{PC} = 13.6 Hz, C_{arom}), 146.90 (*d*, J_{PC} = 3.8 Hz, C_{arom}), 144.65 (s, J_{PtC} = 16.7 Hz, C_{arom}), 143.12 (s, C_{arom}), 142.76 (s, C_{arom}), 142.48 (s, C_{arom}), 141.64 (s, C_{arom}), 137.56 (s, C_{arom}), 137.30 (d, J_{PC} = 4.0 Hz, C_{arom}), 137.10 (s, C_{arom}), 136.85 (d, J_{PC} = 15 Hz, C_{arom}), 136.40 (s, Carom), 135.82 (s, Carom), 135.50 (s, Carom), 135.41 (s, Carom), 135.04 (s, C_{arom}), 134.74 (s, C_{arom}), 134.60 (d, J_{PC} = 12.4 Hz, C_{arom}), 134.43 (s, C_{arom}), 134.33 (s, C_{arom}), 134.14 (s, C_{arom}), 133.72 (d, J_{PC} = 5.1 Hz, C_{arom}), 133.10 (s, C_{arom}), 132.40 (d, J_{PC} = 8.0 Hz, C_{arom}), 132.25 (d, J_{PC} = 5.8 Hz, C_{arom}), 131.60 (s, C_{arom}), 131.33 (d, J_{PC} = 5.1 Hz, C_{arom}), 130. 92 (s, C_{arom}), 130.82 (s, C_{arom}), 130.65 (s, C_{arom}), 129.88 (s, C_{arom}), 129.81 (s, C_{arom}), 129.30 (s, C_{arom}), 129.02 (d, J_{PC} = 5.7 Hz, C_{arom}), 128.84 (s, C_{arom}), 128.53 (*d*, J_{PC} = 9.5 Hz, C_{arom}), 128.15 (*d*, J_{PC} = 3.5 Hz, C_{arom}), 127.99 (s, C_{arom}), 127.62 (s, C_{arom}), 127.53 (s, C_{arom}), 124.39 (d, J_{PC} = 17.5 Hz, C_{arom}), 124.05 (*d*, J_{PC} = 14.7 Hz, C_{arom}), 123.80 (*d*, J_{PC} = 7.3 Hz, C_{arom}), 25.46 (*dd*, ³*J*_{PC} = 4.8 Hz, ³*J*_{PC} = 15.7 Hz, CH₂Si-Pt-PPh₃), 22.17 (*s*, CH₂Si-Pt-SiCH₂), 20.64 (*s*, CH₂Si-Pt-SiCH₂). **RMN de** ³¹P{¹H} (202.5 MHz, CD_2Cl_2) δ 35.7 (*d*, ${}^2J_{PP}$ = 15.2 Hz, ${}^1J_{PtP}$ = 1751 Hz, PPh₃), 29.09 (*d*, ${}^{2}J_{PP}$ = 15.2 Hz, ${}^{1}J_{PtP}$ = 2443 Hz, P-ligante). **RMN bidimensional HMQC** de ¹H-²⁹Si{¹H} (500 -99.4 MHz, CD₂Cl₂) δ 28.15 [d, ²J_{P-Si(trans)} = 151 Hz, ¹J_{Pt-Si} = 1230 Hz, *trans*-Si-Pt-P], -4.90 (*s*, *trans*-Si-Pt-Si). **IR** (KBr) 2020 cm⁻¹ (w-m, vPt-H). Análisis elemental calculado para $C_{76}H_{64}P_2PtSi_3$ ·CD₂Cl₂: C, 65.50; H, 4.92. Encontrado: C, 65.58; H, 5.15.

7.8 Síntesis del ligante **PSi**₃^{iPr}

En un matraz Schlenk, se disolvieron 1.0 g (3,3 mmol) de tris-(o-tolilo)fosfina en 50 mL de pentano con agitación magnética durante 10 minutos. Luego se agregaron 1.53 mL (10 mmol) de TMEDA, seguido de 6.4 mL (10 mmol) de ⁿBuLi a la solución de la fosfina y se dejaron agitar a temperatura ambiente durante 18 horas. Posteriormente, se adicionó gota a gota 1.7 mL (11.3 mmol) de diisopropilclorosilano a la solución heterogénea rojiza, la posterior agitación durante 18 horas produio una mezcla de color blanco que luego se purificó por cromatografía de silica/celita en una columna instantánea utilizando pentano (30 mL) como eluvente. Después de eliminar los compuestos volátiles usando presión reducida, el compuesto se obtuvo como un líquido viscoso (1.9 g, 87% de rendimiento). **RMN de** ¹**H** (400 MHz, C₆D₆, 298 K): δ 7.29 – 7.24 (*m*, 3H, CH_{arom}), 7.1–7.06 (*m*, 6H, CH_{arom}), 6.88 (*t*, J_{HH} 7.5 Hz, 3H, CH_{arom}), 4.11 (br. s, J_{SiH} 184.6 Hz, 3H, Si-H), 2.7 (br. s, 6H, CH₂), 1.18 (br. s, CH and CH₃). **RMN de** ¹³C{¹H} (100.6 MHz, C₆D₆, 298 K): 145.68 (*d*, J_{PC}) 26.4 Hz, Cipso), 135.20 (d, J_{PC} = 10.1 Hz, Cipso), 134.84 (s, C_{arom}), 129.96 (d, J_{PC} = 4.2 Hz, C_{arom}), 129.03 (s, C_{arom}), 125.51 (s, C_{arom}), 19.42 (s, CH₃), 19.29 (s, CH₃), 18.13 (d, J_{PC} 20.8 Hz, CH₂), 11.27 (s, CH). RMN

de ³¹P{¹H} (161.9 MHz, C₆D₆, 298 K): -30.03 (*s*). RMN DEPT ²⁹Si{¹H} (79.5 MHz, C₆D₆, 298 K): 5.81 (*d*, $J_{PSi} = 2.3$ Hz). IR (KBr): 2102 cm⁻¹ (*s*, vSi-H). Análisis elemental calculado para C₃₉H₆₃PSi₃: C: 72.38, H: 9.81; Experimental: C: 72.43, H: 9.45.

7.9 Síntesis del complejo [Ir^{III}Cl(PSi₃^{Me}H)]₂

Los compuestos $[Ir(\mu-Cl)(cod)]_2$ (50 mg, 0.07 mmol) y PSi₃^{Me} (71 mg, 0.15 mmol) se degasaron en un matraz Schlenk y luego se agregaron 15mL de pentano. La solución heterogénea se agitó durante dos horas a temperatura ambiente. El precipitado resultante se lavó dos veces con 0.5 mL de pentano frío (10-15 °C) para producir un sólido amarillo claro. Rendimiento del 97% (103 mg). RMN de ¹H (400 MHz, C₆D₆, 293 K) δ: 6.99 (*tt*, ⁴J_{PH} 1.6 Hz, ⁴J_{HH} 1.6 Hz; ³J_{HH} 7.6 Hz, 6H, CH_{aromático}), 6.93 (dd, ³J_{PH} 11.2 Hz; ³J_{HH} 7.6 Hz, 6H, CH_{aromático}), 6.86 (pt, ³J_{HH} 5.6 Hz, 6H, CH_{aromatico}), 6.73 (dt, ⁴J_{PH} 1.6 Hz, ³J_{HH} 7.6 Hz, 6H, CH_{aromatico}), 2.13 (d, ²J_{HH} 14.4 Hz, 6H, CH₂), 2.05 (dd, ²J_{HH} 14.4 Hz; ⁴J_{PH} 3.2 Hz, 6H, CH₂), 0.55 (br. s, ¹J_{SiH} 42.0 Hz, 2H, σ(SiH)), 0.41 (s, 18H, CH₃), 0.53 (s, 18H, CH₃). ¹³C{¹H} NMR (C₆D₆, 175 MHz, 293 K) δ: 147.3 (d, ¹J_{PC} 13.5 Hz, C_{inso-P}), 132.5 (d, ²J_{PC} 5.6 Hz, C_{inso-C}), 131.6 (d, ³J_{PC} 1.75 H, CH_{aromatico}), 131.5 (d, ²J_{PC} 8.93 Hz, CH_{aromatico}), 128.6 (s, CH_{aromatico}), 125.3 (d, ³J_{PC} 8.75 Hz, CH_{aromatico}), 27.6 (d, ³J_{PC} 11.4 Hz, CH₂), 2.22 (s, CH₃), 2.93 (s, CH₃). ³¹P{¹H} NMR (161.9 MHz, C₆D₆, 293 K) δ: 0.21 (s). IR (KBr): v(Ir···H–Si) 2019 cm⁻¹, ω (Si–H) 796 cm⁻¹.

7.10 Obtención del complejo [Ir^I-HCl-Ir^{III}(PSi₃^{iPr}Cl)]

El compuesto PSi3^{iPr} (29 mg, 0.044 mmol) se disolvió en 2 ml de pentano y se agregó a una mezcla del compuesto dimérico $[Ir(\mu -$ Cl)(cod)]₂ (30 mg, 0.044 mmol) en pentano (2 mL) La suspensión se agitó a temperatura ambiente durante 2 horas y gradualmente el sólido se convirtió en naranja. Finalmente, se filtró y luego se secó al vacío. Rendimiento del 95% (51 mg, 0.042 mmol). Cristales adecuados para el análisis de rayos X se hicieron crecer por evaporación lenta de una solución de tolueno en capas con pentano seco a temperatura ambiente. ¹H NMR (400 MHz, C_6D_6 , 298 K) δ 7.62 (dd, J_{HH} 7.6 Hz, J_{HP} 4.8 Hz, 1H, CH_{arom}), 7.43 (*pseudo* t, |J_{HH} + J_{HP}| 7.6 Hz, 1H, CH_{arom}), 7.13-6.96 (m, 7H, CH_{arom} traslapado), 6.84 (t, J_{HH} 7.6 Hz, 1H, CH_{arom}), 6.75 (t, J_{HH} 7.6 Hz,1H, CH_{arom}), 4.69 (m, 1H, CHCOD), 4.53 (m, 2H, CH-cod), 4.48 (m, 1H, CH-COD), 3.14 (d, J_{HH} 16.4 Hz, 1H, CH₂-Si), 2.78 (d, J_{HH} 14.8 Hz, 1H, CH₂-Si), 2.67 (dd, J_{HH} 13.6 Hz, J_{HP} 4.8 Hz, 1H, CH₂-Si), 2.55 (d, J_{HH} 14.4 Hz, H, CH₂-Si), 2.53 (d, J_{HH} 16.4 Hz, 1H, CH₂-Si), 2.25 (d, J_{HH} 13.6 Hz, 1H, CH₂-Si), 2.12-1.95 (m, 3H, CH₂cod), 1.89-1.79 (m, 2H, 1-CH₂-cod + CH-ⁱPr), el resto de las señales para el bacalao coordinado se superponen con las de los grupos isopropilo de 1.62 a 1.11 ppm, pero algunas señales para CH₃-iPr se pueden diferenciar en: 1.38 (d, J_{HH} 7.6 Hz, 3H, CH_3 -^{*i*}Pr), 1.35 (d, J_{HH} 7.6 Hz, 3H, CH₃-ⁱPr), 1.31 (d, J_{HH} 7.2 Hz, 3H, CH₃-ⁱPr), 1.28 (d, J_{HH} 7.2 Hz, 3H, CH_{3} -^{*i*}Pr), 1.21 (d, J_{HH} 7.6 Hz, 3H, CH_{3} -^{*i*}Pr), de 1.09 a 1.02 ppm hav

seis dobletes superpuestos que corresponden a 18H of CH_3 -^{*i*}Pr, 0.70 (d, J_{HH} 7.6 Hz, 3H, CH_3 -^{*i*}Pr), -4.83 (d, J_{HP} 56 Hz, 1H, Ir^{III} -(μ -H)- Ir^{I}). ¹³C{¹H} NMR (100 MHz, C₆D₆, 298 K) δ 148.9 (d, J_{CP} 13.2 Hz, P-C_{ipso}), 148.8 (d, J_{CP} 13.6 Hz, P-C_{ipso}), 143.6 (d, J_{CP} 10.2 Hz, P-C_{ipso}), 136.0 (s, C_{arom}) 135.5 (s, C_{arom}), 134.3 (d, J_{CP} 5.4 Hz, C_{arom}), 133.8 (d, J_{CP} 8.4 Hz, C_{arom}), 132.5 (d, J_{CP} 5.4 Hz, C_{arom}), 132.2 (d, J_{CP} 8.6 Hz, C_{arom}), 132.0 (d, J_{CP} 7.8 Hz, C_{arom}), 130.9 (d, J_{CP} 7.8 Hz, C_{arom}), 130.3 (d, J_{CP} 1.5 Hz, C_{arom}), 126.9 (s, C_{arom}), 126.3 (s, C_{arom}), 125.9 (d, J_{CP} 8.4 Hz, C_{arom}), 125.5 (d, J_{CP} 8.9 Hz, C_{arom}), 125.2 (d, J_{CP} 8.5 Hz, C_{arom}), 124.7 (s, C_{arom}), 69.8 (s, CH-COD), 68.2 (s, CH-COD), 58.7 (s, CH-COD), 58.0 (s, CH-COD), 35.0 (s, CH2-COD), 32.7 (s, CH₂-COD), 30.7 (s, CH₂-COD), 29.3 (s, CH₂-COD), 25.4 (d, J_{CP} 12 Hz, CH₂-Si, traslapados), 25.3 (s, CH₃), 24.7 (d, J_{CP} 4.9 Hz, CH₂-Si), 23.7 (s, CH-Si), 22.8 (d, J_{CP} 13.8 Hz, CH₂-Si), 22.4 (s, CH₃), 21.1 (s, CH₃), 20.7 (s, CH₃), 20.2 (s, CH₃), 20.0 (s, CH₃), 19.9 (s, CH₃), 19.5 (s, CH-Si), 19.0 (s, CH-Si), 18.4 (s, CH-Si), 18.1 (s, CH₃), 17.9 (s, 2CH₃), 17.8 (s, CH₃), 16.4 (s, CH-Si), 16.0 (s, CH-Si), 15.8 (s, CH₃). ${}^{31}P{}^{1}H{}$ NMR (162 MHz, C₆D₆, 298 K) δ 2.75 (s). HMQC ${}^{1}H{}^{-29}Si{}^{31}P{}$ (500–99.4 MHz, C₆D₆, 298 K) δ 34.1 (s, Si-Cl), 26.9 (s, Si-Ir), 17.5 (s, Si-Ir). Anal. Calculado para C₄₇H₇₃Cl₂Ir₂PSi₃: C, 46.71; H, 6.09. Experimental: C, 46.69; H, 6.11.

155

7.11 Síntesis de los complejos [Ir^{III}(PSi₃^{iPr})Cl] y [Areno-Ir^{III}]

El complejo [Ir^I-HCI-Ir^{III}(PSi₃^{iPr}CI)] se disolvió en 0.5 ml de benceno. Luego, se agregaron dos equivalentes de Et₃SiH y se continuó la agitación durante 30 minutos más, luego los compuestos volátiles se eliminaron al vacío. La reacción se produjo rápidamente con una conversión del 100% en [Ir^{III}(PSi₃ⁱPr)Cl] y [Areno-Ir^{III}], que se observó mediante espectroscopia de RMN. El complejo [Ir^{III}(PSi₃ⁱPr)CI] se separó por cristalización por evaporación lenta de benceno a temperatura ambiente (rendimiento aislado 45%). RMN de ¹H de **[Ir^{III}(PSi**₃^{*i*}**Pr)Cl]** (500 MHz, C₆D₆, 298 K) δ 7.78 (dd, J_{HH} 7.5 Hz, J_{HP} 4.5 Hz, 1H, CH_{arom}), 7.20 (dd, J_{HH} 7.5 Hz, J_{HP} 11.0 Hz, CH_{arom} traslapado con la señal de benceno residual), 7.08-6.90 (m, 8H, CH_{arom}), 6.73-6.67 (m, 2H, CH_{arom}), 3.65, 3.37 (AB q, J_{AB} 15 Hz, 2H, CH₂); 2.27, 2.22 (sistema AB, J_{AB} 15 Hz, 2H: 2.27 (J_{AB} 15 Hz, 1H, CH₂), 2.22 (J_{AB} 15 Hz, ⁴J_{HP} 3 Hz, 1H, CH₂); 2.17, 2.08 (Sistema AB, J_{AB} 15 Hz, 2H: 2.17 (dd, J_{AB} 15.0 Hz, ⁴J_{HP} 5.5 Hz, 1H, CH₂), 2.08 (J_{AB} 15 Hz, 1H, CH₂), 1.75 (sept, J_{HH} 7.5 Hz, 1H, CH-ⁱPr), 1.63 (sept, J_{HH} 7.5 Hz, 1H, CH-ⁱPr), 1.62 (sept, J_{HH} 7.5 Hz, 1H, CH-ⁱPr), 1.49 (d, J_{HH} 7.5 Hz, 3H, CH₃-ⁱPr), 1.46 (sept, J_{HH} 7.5 Hz, 1H, CH-ⁱPr), 1.37 (d, J_{HH} 7.0 Hz, 3H, CH₃-ⁱPr), 1.36 (sept, CH-ⁱPr traslapado), 1.27 (sept 7.5 Hz, 1H, CH-ⁱPr), 1.16 (d, J_{HH} 7.5 Hz, 3H, CH₃-ⁱPr), 1.15 (d, J_{HH} 7.5 Hz, 3H, CH₃-ⁱPr), 1.12 (d, J_{HH} 7.5 Hz, 3H, CH₃-ⁱPr), 1.06 (d, J_{HH} 7.5 Hz, 3H, CH₃-ⁱPr), 1.03 (d, J_{HH} 7.0 Hz, 3H, CH₃-ⁱPr), 1.01 (d, J_{HH} 7.0 Hz, 3H, CH₃-ⁱPr), 1.00 (d, J_{HH} 7.5 Hz,

3H, CH₃-^{*i*}Pr), 0.94 (d, J_{HH} 7.5 Hz, 3H, CH₃-^{*i*}Pr), 0.93 (d, J_{HH} 7.5 Hz, 3H, CH_{3} -^{*i*}Pr), 0.90 (d, J_{HH} 7.5 Hz, 3H, CH_{3} -^{*i*}Pr). RMN de ¹³C{¹H} de $[Ir^{III}(PSi_3^i Pr)CI]$ (100 MHz, C₆D₆, 298 K) δ 147.3 (d, J_{CP} 12.6 Hz, P-C_{ipso}), 146.5 (d, J_{CP} 12.4 Hz, P-C_{inso}), 142.9 (d, J_{CP} 11.2 Hz, P-C_{inso}), 133.8 (d, J_{CP} 7.4 Hz, C_{arom}), 132.6 (d, J_{CP} 6.2 Hz, C_{arom}), 132.1 (d, J_{CP} 8.4 Hz, C_{arom}), 132.0 (d, J_{CP} 8.4 Hz, C_{arom}), 131.6 (d, J_{CP} 6.3 Hz, C_{arom}), 131.2 (d, J_{CP} 8.1 Hz, C_{arom}), 130.9 (d, J_{CP} 1.6 Hz, C_{arom}), 130.8 (d, J_{CP} 2.0 Hz, C_{arom}), 130.7 (d, J_{CP} 2.1 Hz, C_{arom}), 129.9 (s, C_{arom}), 129.4 (s, C_{arom}), 128.0 (traslapado con la señal de benceno residual, Carom), 126.1 (d, J_{CP} 9.1 Hz, Carom), 125.2 (d, J_{CP} 9.0 Hz, C_{arom}), 124.9 (d, J_{CP} 9.1 Hz, C_{arom}), 25.9 (d, J_{CP} 4.9 Hz, CH₂-Si), 23.4 (s, CH₃-*i*Pr), 23.1 (s, CH-^{*i*}Pr), 21.2 (d, J_{CP} 13.8 Hz, CH₂-Si), 20.7 (s, CH₃-^{*i*}Pr), 20.6 (s, CH₃-^{*i*}Pr), 20.5 (s, CH₃-^{*i*}Pr), 20.4 (s, CH₃-^{*i*}Pr), 19.9 (s, CH-ⁱPr), 19.6(d, J_{CP} 12.8 Hz, CH₂-Si), 19.3 (s, CH₃-ⁱPr), 18.7 (s, CH-ⁱPr), 18.6 (s, CH-ⁱPr), 17.9 (s, CH₃-ⁱPr), 17.86 (s, CH₃-ⁱPr), 17.82 (s, CH₃-^{*i*}Pr), 17.7 (d, J_{CP} 1.0 Hz, CH₃-^{*i*}Pr), 17.0 (s, CH-^{*i*}Pr), 16.4 (s, CH-^{*i*}Pr), 15.7 (s, CH_3 -^{*i*}Pr), 15.5 (s, CH_3 -^{*i*}Pr). RMN de ³¹P{¹H} de [Ir^{III}(PSi₃^{*i*}Pr)CI] (162 MHz, C₆D₆, 298 K), δ 8.00 (s). Anal. Calculado. para C₃₉H₆₀Cl₂IrPSi₃: C, 51.63; H, 6.67. Experimental: C, 51.61; H, 6.69.

7.12 Condiciones experimentales para la catálisis de sililación de alquenos.

En un vial de equipado con agitación magnética y tapa de rosca de plástico bien sellada. Se adicionaron los reactivos en el siguiente orden:

1) En el caso de usar precursores metálicos, estos se agregaban en este paso. En este paso se adiciona el complejo metálico (p. ej. [Ir^I-HCI-Ir^{III}(PSi₃^{iPr}CI)]).

2) Se agrega el ligante en caso de usar al precursor metálico como catalizador en la estequiometría adecuada para formar al complejo activo *in situ*. En caso de usar al complejo ya formado se omite este paso.

3) Se agrega el disolvente, en nuestro caso se agregaron 100 μ L del disolvente. Cuando se usan precursores menos solubles se usaba hasta un volumen de 500 μ L.

4) Agitación durante 10–20 minutos dependiendo de la solubilidad de los reactivos.

5) Se adiciona la cantidad requerida de Et_3SiH .

6) Posteriormente, se adiciona un aditivo si es requerido. Por ejemplo, se agrega un aceptor de hidrógeno como ciclohexano, hexano, etc.

7) En este paso se agrega el sustrato que se desea transformar

8) Se agita inicialmente por 12 horas y se monitorea al tiempo que se establezca. Pudiendo ser a las 16 y 24 horas después de haber hecho la mezcla. La temperatura también queda a consideración. El monitoreo se realiza mediante cromatografía de gases y/o RMN de ¹H.

158
R E F E R E N C I A S

1. Crabtree RH. The Organometallic Chemistry of the Transition Metals. Third ed. United States of America: JOHN WILEY & SONS, INC; 2001.

2. Ch. Elschenbroich AS. Organometallics. New York, United State of America: VCH Publishers; 1989. 479 p.

3. Kühl O. Phosphorus-31 NMR Spectroscopy. First ed. Switzerland Springer-Verlag Berlin Heidelberg; 2008. 132 p.

4. Corey JY, Braddock-Wilking J. Reactions of Hydrosilanes with Transition-Metal Complexes: Formation of Stable Transition-Metal Silyl Compounds. Chemical Reviews. 1999 1999/01/13;99(1):175-292.

5. Delpech F, Sabo-Etienne S, Chaudret B, Daran J-C. Synthesis and Characterization of Chelating Bis(silane) Complexes [RuH2{(η 2-HSiMe2)2X}(PCy3)2] (X = C6H4, O) Containing Two Ru-(η 2-Si-H) Bonds. Journal of the American Chemical Society. 1997 1997/04/01;119(13):3167-8.

6. Sabo-Etienne S, Chaudret B. Chemistry of bis(dihydrogen) ruthenium complexes and of their derivatives. Coordination Chemistry Reviews. 1998 1998/12/01/;178-180:381-407.

7. Corey JY. Reactions of Hydrosilanes with Transition Metal Complexes. Chemical Reviews. 2016 2016/10/12;116(19):11291-435.

8. Markó IE, Stérin S, Buisine O, Mignani G, Branlard P, Tinant B, et al. Selective and Efficient Platinum(0)-Carbene Complexes As Hydrosilylation Catalysts. Science. 2002;298(5591):204.

9. Tondreau AM, Atienza CCH, Weller KJ, Nye SA, Lewis KM, Delis JGP, et al. Iron Catalysts for Selective Anti-Markovnikov Alkene Hydrosilylation Using Tertiary Silanes. Science. 2012;335(6068):567.

10. Bart SC, Lobkovsky E, Chirik PJ. Preparation and Molecular and Electronic Structures of Iron(0) Dinitrogen and Silane Complexes and Their Application to Catalytic Hydrogenation and Hydrosilation. Journal of the American Chemical Society. 2004 2004/10/01;126(42):13794-807.

11. Nakajima Y, Shimada S. Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Advances. 2015;5(26):20603-16.

12. Dioumaev VK, Procopio LJ, Carroll PJ, Berry DH. Synthesis and Reactivity of Silyl Ruthenium Complexes: The Importance of Trans Effects in C–H Activation, Si–C Bond Formation, and Dehydrogenative Coupling of

Silanes. Journal of the American Chemical Society. 2003 2003/07/01;125(26):8043-58.

13. Julio Zamora-Moreno VM-P. Versatile Silylphosphine Ligands for Transition Metal Complexation. In: Chandraleka Saravanan BB, editor. Ligand. First ed: IntechOpen; 2018. p. 29-52.

14. Seyferth D. Neopentyl Group Analogs. II. Tris-(trimethylsilylmethyl) Compounds of Phosphorus, Arsenic, Antimony and Bismuth and their Derivatives1. Journal of the American Chemical Society. 1958 1958/03/01;80(6):1336-7.

15. Holmes-Smith RD, Stobart SR, Cameron TS, Jochem K. The phosphinoethylsilyl group as a bifunctional chelate. Asymmetric induction at platinum(II). Journal of the Chemical Society, Chemical Communications. 1981 (18):937-9.

16. Holmes-Smith RD, Osei RD, Stobart SR. Phosphinoalkylsilanes: synthesis and spectroscopic properties of phosphino(silyl)methanes, 1-phosphino-2-silylethanes, and 1-phosphino-3-silylpropanes. Journal of the Chemical Society, Perkin Transactions 1. 1983 (0):861-6.

17. Auburn MJ, Holmes-Smith RD, Stobart SR. (Phosphinoalkyl)silyl complexes. 3. "Chelate-assisted" hydrosilylation: formation of enantiomeric and diastereoisomeric iridium(III) complexes with chelating (phosphinoethyl)silyl ligands. Journal of the American Chemical Society. 1984 1984/03/01;106(5):1314-8.

18. Auburn MJ, Stobart SR. (Phosphinoalkyl)silyl complexes. 5. Synthesis and reactivity of congeneric chelate-stabilized disilyl complexes of rhodium(III) and iridium(III): chlorobis[[(diphenylphosphino)ethyl]dimethylsilyl]rhodium and -iridium. Inorganic Chemistry. 1985 1985/01/01;24(3):318-23.

19. Zhou X, Stobart SR. Stereomutation at an Octahedral Transition-Metal Center: Energetics of Hydride Transit between Syn and Anti Faces of the Bis(diphenylphosphinopropyl)(methyl)silyl (biPSi) Complex RuH(biPSi)(CO)2. Organometallics. 2001 2001/05/01;20(10):1898-900.

Brost RD, Bruce GC, Joslin FL, Stobart SR. Phosphinoalkylsilyl 20. 12. Stereochemistry of Complexes. the Tridentate Bis(diphenylphosphinopropyl)silyl (biPSi) Framework: Complexation That Introduces "Face Discrimination" at Coordinatively Unsaturated Metal of Centers. X-rav Crystal and Molecular Structures Pt[SiMe(CH2CH2CH2PPh2)2]Cl, IrH[SiMe(CH2CH2CH2PPh2)2]Cl, and

RuH[SiMe(CH2CH2CH2PPh2)2](CO)21. Organometallics. 1997 1997/12/01;16(26):5669-80.

21. Grundy SL, Holmes-Smith RD, Stobart SR, Williams MA. (Phosphinoalkyl)silvl complexes. 10. Formation of chelated bis[(diphenylphosphinoethyl)(diorgano)silyl]platinum(II) complexes. Precoordination through phosphorus, intermediacy of a platinum(IV) disilyl, and diastereoisomerism at planar platinum(II) in "chelate-assisted" hydrosilylation. Inorganic Chemistry. 1991 1991/08/01;30(17):3333-7.

22. Gossage RA, McLennan GD, Stobart SR. (Phosphinoalkyl)silanes. 3.1 Poly(o-(diphenylphosphino)benzyl)silanes: Synthesis, Spectroscopic Properties, and Complexation at Platinum or Iridium. Inorganic Chemistry. 1996 1996/01/01;35(6):1729-32.

23. Ang HG, Chang B, Kwik WL. Phosphinobenzyl- and aryl-silanes and their triosmium cluster carbonyl derivatives. Journal of the Chemical Society, Dalton Transactions. 1992 (14):2161-9.

24. Zhu J, Lin Z, Marder TB. Trans Influence of Boryl Ligands and Comparison with C, Si, and Sn Ligands. Inorganic Chemistry. 2005/2005/12/01;44(25):9384-90.

25. Koller SG, Martín-Romo R, Melero JS, Colquhoun VP, Schildbach D, Strohmann C, et al. Structural Consequences of an Extreme Difference between the Trans Influence of the Donor Atoms in a Palladacycle. Organometallics. 2014 2014/12/22;33(24):7329-32.

26. Lee Y-J, Lee J-D, Kim S-J, Keum S, Ko J, Suh I-H, et al. Synthesis, Structure, and DFT Calculation of (Phosphino-o-carboranyl)silyl Group 10 Metal Complexes: Formation of Stable trans-Bis(P,Si-chelate)metal Complexes. Organometallics. 2004 2004/01/01;23(2):203-14.

27. Montiel-Palma V, Muñoz-Hernández MA, Ayed T, Barthelat J-C, Grellier M, Vendier L, et al. Agostic Si–H bond coordination assists C–H bond activation at ruthenium in bis(phosphinobenzylsilane) complexes. Chemical Communications. 2007 (38):3963-5.

28. Kalt D, Schubert U. Transition metal silyl complexes.: Part 63. Influence of the phosphane ligands and the metal complex geometry on the silyl group exchange between L2Pt(SiMe2Ph)2 (L2=R2PCH2CH2PR2 or 2PR3) and HSiR'3. Inorganica Chimica Acta. 2000 2000/08/21/;306(2):211-4.

29. Schubert U, Kalt D, Gilges H. Transition Metal Silyl Complexes LVIII [1]. Silyl Group Exchange between (R3"P)2Pt(SiR3)2 and HSiR3'. Monatshefte für Chemie / Chemical Monthly. 1999 1999/01/01;130(1):207-13. 30. Corona-González MV, Zamora-Moreno J, Muñoz-Hernández MA, Vendier L, Sabo-Etienne S, Montiel-Palma V. Exploiting the Versatility of Phosphinobenzylsilanes for the Stabilization of 14-Electron Rhodium(III) and Iridium(III) Complexes. European Journal of Inorganic Chemistry. 2019 2019/04/09;2019(13):1854-8.

31. Joslin FL, Stobart SR. (Phosphinoalkyl)silanes. 2. Synthesis and spectroscopic properties of the poly(phosphinoalkyl)silanes SiHR[(CH2)nPR'2]2 (R = Me or Ph; n = 2 or 3; R' = Ph or cyclohexyl) and SiH[(CH2)nPR'2]3 (R = Me or Ph; n = 2, R' = Ph or cyclohexyl; n = 3, R' = Ph). Inorganic Chemistry. 1993 1993/05/01;32(10):2221-3.

32. Corey JY. Reactions of Hydrosilanes with Transition Metal Complexes and Characterization of the Products. Chemical Reviews. 2011 2011/02/09;111(2):863-1071.

33. Guari Y, Sabo-Etienne S, Chaudret B. Exchange Couplings between a Hydride and a Stretched Dihydrogen Ligand in Ruthenium Complexes. Journal of the American Chemical Society. 1998 1998/05/01;120(17):4228-9.

34. Lukevics E, Arsenyan P, Pudova O. MOLECULAR STRUCTURE OF ORGANOSILICON COMPOUNDS WITH Si - Ru, Si - Rh and Si - Pd BONDS. Main Group Metal Chemistry2002. p. 415.

35. Sola E, García-Camprubí A, Andrés JL, Martín M, Plou P. Iridium Compounds with κ -P,P,Si (biPSi) Pincer Ligands: Favoring Reactive Structures in Unsaturated Complexes. Journal of the American Chemical Society. 2010 2010/07/07;132(26):9111-21.

36. Jones WD. CHAPTER 19 - Perspective and prospects for pincer ligand chemistry. In: Morales-Morales D, Jensen CM, editors. The Chemistry of Pincer Compounds. Amsterdam: Elsevier Science B.V.; 2007. p. 441-4.

37. Takaya J, Iwasawa N. Reaction of bis(o-phosphinophenyl)silane with M(PPh3)4 (M = Ni, Pd, Pt): synthesis and structural analysis of η^2 -(Si–H) metal(0) and pentacoordinate silyl metal(ii) hydride complexes of the Ni triad bearing a PSiP-pincer ligand. Dalton Transactions. 2011;40(35):8814-21.

38. Wu S, Li X, Xiong Z, Xu W, Lu Y, Sun H. Synthesis and Reactivity of Silyl Iron, Cobalt, and Nickel Complexes Bearing a [PSiP]-Pincer Ligand via Si–H Bond Activation. Organometallics. 2013 2013/06/10;32(11):3227-37.

39. Mankad NP, Whited MT, Peters JC. Terminal Fel[®]N2 and Fell····H[®]C Interactions Supported by Tris(phosphino)silyl Ligands. Angewandte Chemie International Edition. 2007 2007/07/23;46(30):5768-71. 40. Charboneau DJ, Balcells D, Hazari N, Lant HMC, Mayer JM, Melvin PR, et al. Dinitrogen-Facilitated Reversible Formation of a Si–H Bond in a Pincer-Supported Ni Complex. Organometallics. 2016 2016/09/26;35(18):3154-62.

41. Xu S, Li X, Zhang S, Sun H. Synthesis and characterization of stable tripodal silyl iron and nickel complexes. Inorganica Chimica Acta. 2015 2015/05/01/;430:161-7.

42. Connor BA, Rittle J, VanderVelde D, Peters JC. A Ni0(η 2-(Si–H))(η 2-H2) Complex That Mediates Facile H Atom Exchange between Two σ -Ligands. Organometallics. 2016 2016/03/14;35(5):686-90.

43. Takaya J, Iwasawa N. Silyl Ligand Mediated Reversible β -Hydrogen Elimination and Hydrometalation at Palladium. Chemistry – A European Journal. 2014 2014/09/08;20(37):11812-9.

44. Takaya J, Iwasawa N. Bis(o-phosphinophenyl)silane as a Scaffold for Dynamic Behavior of H–Si and C–Si Bonds with Palladium(0). Organometallics. 2009 2009/12/14;28(23):6636-8.

45. Kirai N, Takaya J, Iwasawa N. Two Reversible σ-Bond Metathesis Pathways for Boron–Palladium Bond Formation: Selective Synthesis of Isomeric Five-Coordinate Borylpalladium Complexes. Journal of the American Chemical Society. 2013 2013/02/20;135(7):2493-6.

46. Takaya J, Kirai N, Iwasawa N. Mechanistic Studies on the Stereoisomerization between Two Stereoisomeric, Isolable Five-Coordinate Borylpalladium(II) Complexes Bearing a Phenylene-Bridged PSiP-Pincer Type Ligand. Organometallics. 2014 2014/03/24;33(6):1499-502.

47. Joost M, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D. σ-SiH Complexes of Copper: Experimental Evidence and Computational Analysis. Organometallics. 2013 2013/02/11;32(3):898-902.

48. MacInnis MC, MacLean DF, Lundgren RJ, McDonald R, Turculet L. Synthesis and Reactivity of Platinum Group Metal Complexes Featuring the New Pincer-like Bis(phosphino)silyl Ligand [κ3-(2-Ph2PC6H4)2SiMe]– ([PSiP]): Application in the Ruthenium-Mediated Transfer Hydrogenation of Ketones. Organometallics. 2007 2007/12/01;26(26):6522-5.

49. Fang H, Choe Y-K, Li Y, Shimada S. Synthesis, Structure, and Reactivity of Hydridoiridium Complexes Bearing a Pincer-Type PSiP Ligand. Chemistry – An Asian Journal. 2011 2011/09/05;6(9):2512-21.

50. Mitton SJ, McDonald R, Turculet L. Synthesis and Characterization of Neutral and Cationic Platinum(II) Complexes Featuring Pincer-like

Bis(phosphino)silyl Ligands: Si–H and Si–Cl Bond Activation Chemistry. Organometallics. 2009 2009/09/14;28(17):5122-36.

51. Komuro T, Okawara S, Furuyama K, Tobita H. Silane(silyl) and Bis(silyl)hydrido Manganese Complexes with Different Mn…H…Si Interaction: Observation of Gradual Si–H Bond Activation on the Metal Center. Chemistry Letters. 2012 2012/08/05;41(8):774-6.

52. Montiel-Palma V, Muñoz-Hernández MA, Cuevas-Chávez CA, Vendier L, Grellier M, Sabo-Etienne S. Phosphinodi(benzylsilane) PhP{(o-C6H4CH2)SiMe2H}2: A Versatile "PSi2Hx" Pincer-Type Ligand at Ruthenium. Inorganic Chemistry. 2013 2013/09/03;52(17):9798-806.

53. Cuevas-Chávez CA, Zamora-Moreno J, Muñoz-Hernández MA, Bijani C, Sabo-Etienne S, Montiel-Palma V. Stabilization of Trans Disilyl Coordination at Square-Planar Platinum Complexes. Organometallics. 2018 2018/03/12;37(5):720-8.

54. Joslin FL, Stobart SR. Synthesis and structure of a silyl–rhodium(I) complex: stabilization attributable to multisite 'anchoring' of a silyl fragment. Journal of the Chemical Society, Chemical Communications. 1989 (8):504-5.

55. Tsay C, Mankad NP, Peters JC. Four-Coordinate, Trigonal Pyramidal Pt(II) and Pd(II) Complexes. Journal of the American Chemical Society. 2010 2010/10/13;132(40):13975-7.

56. Lee Y, Mankad NP, Peters JC. Triggering N2 uptake via redoxinduced expulsion of coordinated NH3 and N2 silylation at trigonal bipyramidal iron. Nature Chemistry. 2010 05/16/online;2:558.

57. Tsay C, Peters JC. Thermally stable N2 and H2 adducts of cationic nickel(ii). Chemical Science. 2012;3(4):1313-8.

58. Lee Y, Peters JC. Silylation of Iron-Bound Carbon Monoxide Affords a Terminal Fe Carbyne. Journal of the American Chemical Society. 2011 2011/03/30;133(12):4438-46.

59. Hayashi Y. Pot economy and one-pot synthesis. Chemical Science. 2016;7(2):866-80.

60. Rufino-Felipe E, Muñoz-Hernández M-Á, Montiel-Palma V. Lithium Complexes Derived of Benzylphosphines: Synthesis, Characterization and Evaluation in the ROP of rac-Lactide and ε-Caprolactone. Molecules. 2018;23(1).

61. Zamora-Moreno J, Murillo F, Muñoz-Hernández MA, Grellier M, Pan S, Jalife S, et al. Modulation of an Anagostic Interaction in SiPSi-Type Pincer Platinum Complexes. Organometallics. 2018 2018/10/22;37(20):3581-7.

62. Cardona M. Vibrational Spectra of Hydrogen in Silicon and Germanium. physica status solidi (b). 1983 1983/08/01;118(2):463-81.

63. Lucovsky G. Relation of Si–H vibrational frequencies to surface bonding geometry. Journal of Vacuum Science and Technology. 1979 1979/09/01;16(5):1225-8.

64. Pregosin PS, Kunz RW. 31P and 13C NMR of Transition Metal Phosphine Complexes: Springer Berlin Heidelberg; 1979.

65. Kim Y-J, Park J-I, Lee S-C, Osakada K, Tanabe M, Choi J-C, et al. Cis and Trans Isomers of Pt(SiHAr2)2(PR3)2 (R = Me, Et) in the Solid State and in Solutions. Organometallics. 1999 1999/03/01;18(7):1349-52.

66. Rittle J, Peters JC. Proton-Coupled Reduction of an Iron Cyanide Complex to Methane and Ammonia. Angewandte Chemie International Edition. 2016 2016/09/26;55(40):12262-5.

67. Creutz SE, Peters JC. Exploring secondary-sphere interactions in Fe-NxHy complexes relevant to N2 fixation. Chemical Science. 2017;8(3):2321-8.

68. Deegan MM, Peters JC. Electrophile-promoted Fe-to-N2 hydride migration in highly reduced Fe(N2)(H) complexes. Chemical Science. 2018;9(29):6264-70.

69. Chen W, Shimada S, Hayashi T, Tanaka M. Synthesis of a Tridentate Hydrosilane and Its Reaction with Palladium(0) Complexes. Chemistry Letters. 2001 2001/11/01;30(11):1096-7.

70. Chen W, Shimada S, Tanaka M, Kobayashi Y, Saigo K. Reaction of [2-(SiH3)C6H4]2SiH2 with Ni(Et2PCH2CH2PEt2)(PEt3)2: Characterization of n2-(Si-H)Ni and NiIV-H Complexes. Journal of the American Chemical Society. 2004 2004/07/01;126(26):8072-3.

71. Shimada S, Tanaka M. Group 10 transition-metal complexes with metal–silicon bonds derived from 1,2-disilylbenzenes and bis(2-silylphenyl)silane. Coordination Chemistry Reviews. 2006 2006/05/01/;250(9):991-1011.

72. Kuzu I, Krummenacher I, Meyer J, Armbruster F, Breher F. Multidentate ligand systems featuring dual functionality. Dalton Transactions. 2008 (43):5836-65.

73. Begum RA, Day VW, Kumar M, Gonzalez J, Jackson TA, Bowman-James K. M····H–C interaction – Agostic or not: A comparison of phenyl-versus pyridyl-bridged transition metal dimers. Inorganica Chimica Acta. 2014 2014/06/01/;417:287-93.

74. Klug CM, O'Hagan M, Bullock RM, Appel AM, Wiedner ES. Impact of Weak Agostic Interactions in Nickel Electrocatalysts for Hydrogen Oxidation. Organometallics. 2017 2017/06/26;36(12):2275-84.

75. Zhang P, Tugny C, Meijide Suárez J, Guitet M, Derat E, Vanthuyne N, et al. Artificial Chiral Metallo-pockets Including a Single Metal Serving as Structural Probe and Catalytic Center. Chem. 2017;3(1):174-91.

76. Brookhart M, Green MLH. Carbon • hydrogen-transition metal bonds. Journal of Organometallic Chemistry. 1983 1983/07/05/;250(1):395-408.

77. Dawoodi Z, Green MLH, Mtetwa VSB, Prout K, Schultz AJ, Williams JM, et al. Evidence for carbon–hydrogen–titanium interactions: synthesis and crystal structures of the agostic alkyls [TiCl3(Me2PCH2CH2PMe2)R](R = Et or Me). Journal of the Chemical Society, Dalton Transactions. 1986 (8):1629-37.

78. Brookhart M, Green MLH, Parkin G. Agostic interactions in transition metal compounds. Proceedings of the National Academy of Sciences. 2007;104(17):6908.

79. Mahmudov KT, Kopylovich MN, Guedes da Silva MFC, Pombeiro AJL. Non-covalent interactions in the synthesis of coordination compounds: Recent advances. Coordination Chemistry Reviews. 2017 2017/08/15/;345:54-72.

80. Mahmudov KT, Gurbanov AV, Guseinov FI, Guedes da Silva MFC. Noncovalent interactions in metal complex catalysis. Coordination Chemistry Reviews. 2019 2019/05/15/;387:32-46.

81. Sundquist WI, Bancroft DP, Lippard SJ. Synthesis, characterization, and biological activity of cis-diammineplatinum(II) complexes of the DNA intercalators 9-aminoacridine and chloroquine. Journal of the American Chemical Society. 1990 1990/02/01;112(4):1590-6.

82. Bortolin M, Bucher UE, Ruegger H, Venanzi LM, Albinati A, Lianza F, et al. Synthesis and 2D NMR studies of {bis(pyrazolyl)borato}rhodium(I) complexes with weak Rh.cntdot..cntdot..cntdot.H.cntdot..cntdot..cntdot.C interactions and the x-ray crystal structure of {(cyclooctane-1,5-diyl)bis(pyrazol-1-yl)borato}(1,5-cyclooctadiene)rhodium. Organometallics. 1992 1992/07/01;11(7):2514-21.

Braga D, Grepioni F, Tedesco E, Biradha K, Desiraju GR. Hydrogen
Bonding in Organometallic Crystals. 6. X–H---M Hydrogen Bonds and M--(H–X) Pseudo-Agostic Bonds. Organometallics. 1997
1997/04/01;16(9):1846-56.

84. Thammavongsy Z, Kha IM, Ziller JW, Yang JY. Electronic and steric Tolman parameters for proazaphosphatranes, the superbase core of the tri(pyridylmethyl)azaphosphatrane (TPAP) ligand. Dalton Transactions. 2016;45(24):9853-9.

85. Corona-González MV, Zamora-Moreno J, Cuevas-Chávez CA, Rufino-Felipe E, Mothes-Martin E, Coppel Y, et al. A family of rhodium and iridium complexes with semirigid benzylsilyl phosphines: from bidentate to tetradentate coordination modes. Dalton Transactions. 2017;46(27):8827-38.

86. Hlatky GG, Johnson BFG, Lewis J, Raithby PR. Homo- and heterodinuclear hydride-bridged complexes containing cyclo-octadiene: the crystal and molecular structure of $[(\eta 4-C8H12)Ir(\mu-H)(\mu-CI)IrH2(PPh3)2]$. Journal of the Chemical Society, Dalton Transactions. 1985 (6):1277-9.

87. Churchill MR, Julis SA. Crystal structure and molecular geometry of homogeneous hydrogenation catalyst .mu.-chloro-.mu.-hydrido-dichlorobis(pentamethylcyclopentadienyl)diiridium(III) and of its di-.mu.-chloro-dichlorobis- precursor. Direct comparison of .mu.-hydrido-.mu.-chloro-diiridium and di-.mu.-chloro-diiridium bridging systems. Inorganic Chemistry. 1977 1977/06/01;16(6):1488-94.

88. Yang L, Powell DR, Houser RP. Structural variation in copper(i) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, $\tau 4$. Dalton Transactions. 2007 (9):955-64.

89. Komuro T, Furuyama K, Kitano T, Tobita H. Synthesis of a 14electron iridium(III) complex with a xanthene-based bis(silyl) chelate ligand (xantsil): A distorted seesaw-shaped four-coordinate geometry and reactions leading to 16-electron complexes. Journal of Organometallic Chemistry. 2014 2014/02/01/;751:686-94.

90. Atienza CCH, Diao T, Weller KJ, Nye SA, Lewis KM, Delis JGP, et al. Bis(imino)pyridine Cobalt-Catalyzed Dehydrogenative Silylation of Alkenes: Scope, Mechanism, and Origins of Selective Allylsilane Formation. Journal of the American Chemical Society. 2014 2014/08/27;136(34):12108-18.

91. Marciniec B, Kownacka A, Kownacki I, Hoffmann M, Taylor R. Hydrosilylation vs. dehydrogenative silylation of styrene catalysed by iron(0) carbonyl complexes with multivinylsilicon ligands – Mechanistic implications. Journal of Organometallic Chemistry. 2015 2015/08/15/;791:58-65.

92. Lachaize S, Vendier L, Sabo-Etienne S. Silyl and σ -silane ruthenium complexes: Chloride substituent effects on the catalysed silylation of ethylene. Dalton Transactions. 2010;39(36):8492-500.

93. Yonekura K, Iketani Y, Sekine M, Tani T, Matsui F, Kamakura D, et al. Zinc-Catalyzed Dehydrogenative Silylation of Indoles. Organometallics. 2017 2017/09/11;36(17):3234-49.

94. Xu Z, Chai L, Liu Z-Q. Free-Radical-Promoted Site-Selective C–H Silylation of Arenes by Using Hydrosilanes. Organic Letters. 2017 2017/10/20;19(20):5573-6.

95. Jiang Y, Blacque O, Fox T, Frech CM, Berke H. Highly Selective Dehydrogenative Silylation of Alkenes Catalyzed by Rhenium Complexes. Chemistry – A European Journal. 2009 2009/02/16;15(9):2121-8.

96. Cheng C, Hartwig JF. Rhodium-Catalyzed Intermolecular C–H Silylation of Arenes with High Steric Regiocontrol. Science. 2014;343(6173):853.

97. Cheng C, Hartwig JF. Iridium-Catalyzed Silylation of Aryl C–H Bonds. Journal of the American Chemical Society. 2015 2015/01/21;137(2):592-5.

98. Toutov AA, Liu W-B, Betz KN, Fedorov A, Stoltz BM, Grubbs RH. Silylation of C–H bonds in aromatic heterocycles by an Earth-abundant metal catalyst. Nature. 2015 02/04/online;518:80.

99. Skrodzki M, Witomska S, Pawluć P. Sodium triethylborohydride as a catalyst for the dehydrogenative silylation of terminal alkynes with hydrosilanes. Dalton Transactions. 2018;47(17):5948-51.

100. Kakiuchi F, Tanaka Y, Chatani N, Murai S. Completely selective synthesis of (E)- β -(triethylsilyl) styrenes by Fe3(CO)12-catalyzed reaction of styrenes with triethylsilane. Journal of Organometallic Chemistry. 1993 1993/08/24/;456(1):45-7.

101. Xu R, Cai C. FeCl2/DTBP: An efficient and highly E-selective cross - coupling of silanes with styrene and its derivatives. Catalysis Communications. 2018 2018/03/10/;107:5-8.

A N E X O S

Espectros de RMN

Anexo 3. Espectro de RMN de ${}^{13}C{}^{1}H{}^{31}P{}$ del ligante **PSi**₃^{iPr} (100 MHz, 298 K, C₆D₆)

PSi₃^{Ph})PPh₃] sin reaccionar.

bencílica

Anexo 28. Espectro de RMN de ¹³C{¹H} con expansiones del complejo [Pt^{II}(κ³-PSi₃^{Me})P(OPh)₃] (125 MHz, 298 K, C₆D₆)

MHz, 298 K, C₆D₆)

siliconada

Anexo 35. Espectro de RMN 2D HMQC ${}^{1}H^{-29}Si\{{}^{31}P\}$ de la mezcla de los complejos $[Ir^{III}CI(PSi_{3}^{Me}H)]_{2} + C57$ (500-99 MHz, C₆D₆, 298 K). Expansión de la señal del fragmento Ir-(Si-H)

Anexo 40. Espectro de RMN de ¹H de la mezcla de los complejos [Ir^{III}(PSi₃^{IFr})CI] + [Areno-Ir^{III}] (200 MHz, C₆D₆, 298 K). La señal a δ -15.6 ppm pertenece al fragmento Ir-H mientras que la señal a δ 5.4 ppm pertenece al benceno coordinado

-

Anexo 42. Espectro de RMN de ¹H del crudo de reacción del complejo [Ir^I-Ir^{III}(PSi₃^{iPr}CI)] con etileno. Se observa la formación del complejo [Ir^{III}(PSi₃^{iPr})CI] y una especie donde el etileno se ha coordinado (400 MHz, C₆D₆, 298 K).

Anexo 43. Espectro de RMN de ³¹P{¹H} del crudo de reacción del complejo [Ir^I-Ir^{III}(PSi₃^{iPr}CI)]] con etileno. Se observa la formación del complejo [Ir^{III}(PSi₃^{iPr}CI)] y una especie propuesta donde el etileno se ha coordinado (162 MHz, C₆D₆, 298 K).

C₆D₆, 298 K)

Anexo 48. Espectro de IR (KBr) del ligante $\rm PSi_3^{\rm Ph}$

Anexo 49. Espectro de IR (KBr) del complejo [Pt^{II}(κ³-PSi₃^{Me})PMe₃]

Anexo 51. Diagrama ORTEP del complejo [Pt^{II}(κ³-PSi₃^{Me})P(OPh)₃] con elipsoides térmicos al 50 % de probabilidad. Los hidrógenos fueron omitidos por claridad, excepto el anagóstico H212. Pt1…H212 2.4599(3) Å, Pt1–H212–C21 147.80(13)°.

Datos cristalográficos y de refinamiento para el complejo $[Pt^{II}(\kappa^{3}-PSi_{3}^{Me})P(OPh)_{3}]$

Identification code	MM115
Empirical formula	$C_{45}H_{50}O_3P_2PtSi_3$

Formula weight	980.15
Temperature/K	100.0(3)
Crystal system	triclinic
Space group	P-1
a/Å	9.8563(3)
b/Å	12.8416(3)
c/Å	18.8338(4)
α/°	102.143(2)
β/°	96.610(2)
γ/°	110.369(2)
Volume/Å ³	2138.13(10)
Z	2
$\rho_{calc}g/cm^3$	1.522
µ/mm⁻¹	3.479
F(000)	988.0
Crystal size/mm ³	0.1900 × 0.1800 × 0.0800
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.924 to 58.576
Index ranges	-12 ≤ h ≤ 11, -16 ≤ k ≤ 17, -24 ≤ l ≤ 24

Reflections collected	18605
Independent reflections	9871 [R _{int} = 0.0228, R _{sigma} = 0.0381]
Data/restraints/parameters	9871/0/499
Goodness-of-fit on F ²	1.040
Final R indexes [I>=2σ (I)]	R ₁ = 0.0230, wR ₂ = 0.0469
Final R indexes [all data]	R ₁ = 0.0258, wR ₂ = 0.0481
Largest diff. peak/hole / e $Å^{-3}$	0.89/-1.03

Atom	Atom	Length/Å	Ơom		Atom	Length/Å
Pt1	Ρ1	2.2994(6)	C8	. (213	1.399(3)
Pt1	P2	2.1887(6)	C9	(210	1.388(3)
Pt1	Si1	2.4131(6)	C1	00	211	1.386(4)
Pt1	Si2	2.4471(6)	C1	1(212	1.380(3)
Ρ1	C1	1.838(2)	C1	2 (213	1.396(3)
Ρ1	C8	1.833(2)	C1	30	214	1.501(3)

P1 C15	1.834(2)	C15 C16	1.401(3)
P2 O1	1.6092(16)	C15 C20	1.408(3)
P2 O2	1.6033(16)	C16 C17	1.380(3)
P2 O3	1.6075(16)	C17 C18	1.386(3)
Si1 C7	1.917(2)	C18 C19	1.376(4)
Si1 C22	1.893(2)	C19 C20	1.402(3)
Si1 C23	1.886(2)	C20 C21	1.499(3)
Si2 C14	1.915(2)	C28 C29	1.375(3)
Si2 C24	1.894(2)	C28 C33	1.377(3)
Si2 C25	1.875(2)	C29 C30	1.384(4)
Si3 C7	1.891(2)	C30C31	1.379(4)
Si3 C21	1.897(2)	C31C32	1.376(4)
Si3 C26	1.862(2)	C32 C33	1.382(3)
Si3 C27	1.868(2)	C34 C35	1.382(3)
O1 C40	1.398(3)	C34 C39	1.383(3)
O2 C34	1.403(3)	C35 C36	1.391(3)
O3 C28	1.408(3)	C36 C37	1.381(3)
C1 C2	1.406(3)	C37 C38	1.385(4)
C1 C6	1.409(3)	C38 C39	1.389(3)
C2 C3	1.388(3)	C40 C41	1.376(3)
C3 C4	1.377(3)	C40 C45	1.381(3)
C4 C5	1.375(3)	C41C42	1.389(3)

C5 C6	1.400(3)	C42 C43	1.381(4)
C6 C7	1.509(3)	C43 C44	1.379(4)
C8 C9	1.394(3)	C44 C45	1.385(3)

Átomo	Átomo	Átomo	Ángulo/°	Átomo	Átomo	Átomo	Ángulo/°
Ρ1	Pt1	Si1	87.66(2)	Si3	C7	Si1	117.69(12)
Ρ1	Pt1	Si2	87.25(2)	C6	C7	Si1	110.69(14)
P2	Pt1	Ρ1	176.96(2)	C6	C7	Si3	112.85(16)
Р2	Pt1	Si1	90.82(2)	C9	C8	Ρ1	119.65(18)
P2	Pt1	Si2	94.12(2)	C9	C8	C13	119.9(2)
Si1	Pt1	Si2	174.04(2)	C13	C8	Ρ1	119.74(16)
C1	Ρ1	Pt1	123.03(8)	C10	C9	C8	120.9(2)
C8	Ρ1	Pt1	106.07(7)	C11	C10	C9	119.3(2)
C8	Ρ1	C1	105.78(10)	C12	C11	C10	119.9(2)
C8	Ρ1	C15	108.31(11)	C11	C12	C13	121.7(2)
C15	Ρ1	Pt1	115.52(7)	C8	C13	C14	121.9(2)
C15	Ρ1	C1	97.14(10)	C12	C13	C8	118.0(2)

01	Р2	Pt1	119.63(6)	C12 C13 C14	119.7(2)
02	Ρ2	Pt1	122.15(6)	C13 C14 Si2	109.42(16)
02	Ρ2	01	91.92(8)	C16 C15 P1	119.28(17)
02	Ρ2	03	102.58(8)	C16 C15 C20	119.6(2)
03	Ρ2	Pt1	114.65(7)	C20 C15 P1	120.91(18)
03	Ρ2	01	101.83(9)	C17 C16 C15	121.2(2)
C7	Si1	Pt1	107.68(7)	C16 C17 C18	119.5(2)
C22	Si1	Pt1	111.79(8)	C19 C18 C17	119.8(2)
C22	Si1	C7	105.76(10)	C18 C19 C20	122.4(2)
C23	Si1	Pt1	120.58(8)	C15 C20 C21	123.4(2)
C23	Si1	C7	104.81(10)	C19 C20 C15	117.5(2)
C23	Si1	C22	105.13(11)	C19 C20 C21	119.1(2)
C14	Si2	Pt1	112.54(8)	C20 C21 Si3	117.12(16)
C24	Si2	Pt1	114.07(8)	C29 C28 O3	119.0(2)
C24	Si2	C14	101.78(11)	C29 C28 C33	121.7(2)
C25	Si2	Pt1	115.63(8)	C33 C28 O3	119.2(2)
C25	Si2	C14	103.54(11)	C28 C29 C30	119.0(2)
C25	Si2	C24	107.89(11)	C31C30C29	120.0(2)
C7	Si3	C21	113.17(10)	C32C31C30	120.2(2)
C26	Si3	C7	108.60(11)	C31C32C33	120.3(2)
C26	Si3	C21	108.83(11)	C28 C33 C32	118.8(2)
C26	Si3	C27	109.51(11)	C35 C34 O2	123.6(2)

C27	Si3	C7	109.31(11)	C35 C34 C39	121.9(2)
C27	Si3	C21	107.36(11)	C39C34O2	114.5(2)
C40	01	P2	126.27(15)	C34 C35 C36	118.3(2)
C34	02	P2	128.01(15)	C37 C36 C35	120.8(2)
C28	03	P2	123.28(15)	C36 C37 C38	119.9(2)
C2	C1	Ρ1	118.09(18)	C37 C38 C39	120.3(2)
C2	C1	C6	119.5(2)	C34 C39 C38	118.8(2)
C6	C1	Ρ1	122.12(17)	C41C40O1	114.8(2)
C3	C2	C1	121.3(2)	C41 C40 C45	121.6(2)
C4	C3	C2	118.9(2)	C45 C40 O1	123.6(2)
C5	C4	C3	120.3(2)	C40C41C42	118.8(2)
C4	C5	C6	122.5(2)	C43 C42 C41	120.5(3)
C1	C6	C7	124.1(2)	C44 C43 C42	119.6(2)
C5	C6	C1	117.2(2)	C43 C44 C45	120.9(2)
C5	C6	C7	118.7(2)	C40 C45 C44	118.6(2)

 Anexo 52. Diagrama ORTEP del complejo [Ir^I-Ir^{III}(PSi₃^{iPr}CI)] con elipsoides térmicos al 50 % de probabilidad. Los hidrógenos fueron omitidos por claridad, excepto el ligante puente H100

Datos cristalográficos y de refinamiento para el complejo [Ir^I-Ir^{III}(PSi₃^{iPr}Cl)]

Identification code	Exp_158
Empirical formula	$C_{47}H_{73}CI_2Ir_2PSi_3$
Formula weight	1208.59

Temperature/K	100.0(2)
Crystal system	triclinic
Space group	P-1
a/Å	11.3087(5)
b/Å	13.2988(6)
c/Å	17.4499(5)
α/°	91.170(3)
β/°	92.962(3)
γ/°	114.034(4)
Volume/ų	2391.13(18)
Z	2
$\rho_{calc}g/cm^3$	1.679
µ/mm⁻¹	5.812
F(000)	1200.0
Crystal size/mm ³	0.18 × 0.03 × 0.02
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.634 to 53.998
Index ranges	$-12 \le h \le 14, -16 \le k \le 15, -21 \le l \le 22$
Reflections collected	19402
Independent reflections	10229 [R _{int} = 0.0272, R _{sigma} =

	0.0474]
Data/restraints/parame ters	10229/0/511
Goodness-of-fit on F ²	1.036
Final R indexes [I>=2σ (I)]	R ₁ = 0.0277, wR ₂ = 0.0495
Final R indexes [all data]	$R_1 = 0.0359$, $wR_2 = 0.0526$
Largest diff. peak/hole / e Å ⁻³	1.11/-0.75

Átomo	Átomo	Distancia /Å	Átomo Átomo	Distancia /Å
lr1	lr2	2.8166(2)	C20 C19	1.488(5)
lr1	Cl1	2.5560(8)	C32 C33	1.527(5)
lr1	Ρ1	2.2725(9)	C32 C31	1.392(5)
lr1	Si1	2.3343(11)	C24 C26	1.531(5)
lr1	Si2	2.3164(9)	C24 C25	1.533(5)
lr2	Cl1	2.3691(9)	C8 C9	1.529(5)
lr2	C44	2.115(4)	C8 C10	1.535(5)
lr2	C45	2.112(4)	C14 C19	1.408(5)

lr2 C41	2.131(3)	C14 C15	1.391(5)
Ir2 C40	2.140(4)	C41C40	1.421(6)
P1 C1	1.824(4)	C41C42	1.499(6)
P1 C27	1.842(4)	C21C22	1.539(5)
P1 C14	1.839(3)	C21C23	1.532(5)
Si1 C7	1.913(4)	C40 C47	1.520(5)
Si1 C8	1.912(4)	C13 C11	1.533(5)
Si1 C11	1.920(4)	C19 C18	1.410(5)
Si2 C20	1.917(4)	C15 C16	1.390(5)
Si2 C24	1.902(4)	C28 C29	1.393(5)
Si2 C21	1.914(4)	C5 C4	1.381(5)
Cl2 Si3	2.0820(15)	C11C12	1.538(5)
Si3 C33	1.871(4)	C46 C47	1.530(5)
Si3 C37	1.875(4)	C2 C3	1.378(5)
Si3 C34	1.879(4)	C31C30	1.399(5)
C7 C6	1.501(5)	C29C30	1.369(6)
C1 C6	1.423(5)	C18 C17	1.367(5)
C1 C2	1.393(5)	C42 C43	1.542(5)
C44 C45	1.412(6)	C16 C17	1.384(5)
C44 C43	1.515(5)	C36C34	1.533(6)
C45 C46	1.512(6)	C4 C3	1.389(5)
C6 C5	1.385(5)	C37 C38	1.545(5)

C27 C32			1.408(5)	C	370	39	1.	520(5)
C27 C28		3	1.394(5)	C	340	35	1.	534(6)
1	1	1 1					1	
0	0	0	<u>~</u>		0	0		°
Ĕ	- Ŭ	- ŭ	nlo		ш	л Ш	om	ulo
Átí	Át	Át(Áng		Át	Átí	At	Áng
			1					
Cl1	lr1	lr2	52.05(2)		C46	C45	lr2	110.7(3)
Ρ1	lr1	lr2	149.13(2)		C1	C6	C7	121.9(3)
Ρ1	lr1	Cl1	97.93(3)		C5	C6	C7	119.9(3)
Ρ1	lr1	Si1	92.61(4)		C5	C6	C1	118.1(3)
Ρ1	lr1	Si2	90.72(3)		C32	C27	P1	120.2(3)
Si1	lr1	lr2	95.43(2)		C28	C27	P1	119.4(3)
Si1	lr1	Cl1	92.40(3)		C28	C27	C32	120.1(3)
Si2	lr1	lr2	116.66(3)		C19	C20	Si2	114.0(2)
Si2	lr1	Cl1	163.50(3)		C27	C32	C33	121.5(3)
Si2	lr1	Si1	101.25(4)		C31	C32	C27	117.9(3)
Cl1	lr2	lr1	58.30(2)		C31	C32	C33	120.6(3)
C44	lr2	lr1	122.95(10)		C26	C24	Si2	113.8(3)
C44	Ir2	Cl1	163.54(12)		C26	C24	C25	109.2(3)
C44	Ir2	C41	81.41(15)		C25	C24	Si2	115.9(3)
C44	lr2	C40	90.06(16)		C9	C8	Si1	121.0(3)

lr1	115.51(10)	C9 C8 C10	108.1(3)
Cl1	157.44(13)	C10C8 Si1	107.8(2)
C44	39.02(16)	C19 C14 P1	120.2(3)
C41	98.33(15)	C15 C14 P1	119.7(3)
C40	81.76(15)	C15 C14 C19	120.1(3)
lr1	146.01(11)	C40 C41 lr2	70.9(2)
Cl1	91.49(12)	C40 C41 C42	126.1(4)
C40	38.85(15)	C42 C41 lr2	110.2(3)
lr1	144.99(11)	C22 C21 Si2	117.6(3)
Cl1	93.67(11)	C23 C21 Si2	112.8(3)
lr1	69.65(2)	C23 C21 C22	108.7(3)
lr1	119.28(13)	C41 C40 Ir2	70.2(2)
C27	103.94(17)	C41 C40 C47	123.7(4)
C14	103.04(16)	C47 C40 lr2	113.0(3)
lr1	107.29(11)	C32 C33 Si3	123.2(3)
lr1	118.37(12)	C14C19C20	122.3(3)
C27	102.90(17)	C14C19C18	117.1(4)
lr1	102.07(13)	C18 C19 C20	120.6(3)
C11	108.00(15)	C16C15C14	121.1(3)
lr1	126.02(12)	C29 C28 C27	120.8(4)
C7	107.68(17)	C4 C5 C6	122.2(3)
C11	105.19(17)	C13 C11 Si1	114.1(2)
	Ir1 Cl1 C44 C41 C40 Ir1 Cl1 C11 Ir1 C11 Ir1 C27 C14 Ir1 C27 Ir1 C27 Ir1 C11 Ir1 C27 C14 Ir1 C27 C14 Ir1 C27 C14 Ir1 C27 C14 C11 C11 C11 C11 C11 C11 C11 C11 C11	Ir1115.51(10)Cl1157.44(13)C4439.02(16)C4198.33(15)C4081.76(15)Ir1146.01(11)Cl191.49(12)C4038.85(15)Ir1144.99(11)Cl193.67(11)Ir169.65(2)Ir1119.28(13)C27103.94(17)C14103.04(16)Ir1118.37(12)C27102.90(17)Ir1102.07(13)C11108.00(15)Ir1126.02(12)C7107.68(17)C11105.19(17)	Ir1115.51(10)C9C8C10Cl1157.44(13)C10 C8Si1C4439.02(16)C19 C14 P1C4198.33(15)C15 C14 P1C4081.76(15)C15 C14 C19Ir1146.01(11)C40 C41 Ir2Cl191.49(12)C40 C41 C42C4038.85(15)C42 C41 Ir2Ir1144.99(11)C22 C21 Si2Cl193.67(11)C23 C21 C22Ir119.28(13)C41 C40 Ir2C27103.94(17)C41 C40 C47C14103.04(16)C47 C40 Ir2Ir1107.29(11)C32 C33 Si3Ir1118.37(12)C14 C19 C20C27102.90(17)C14 C19 C20C11108.00(15)C16 C15 C14Ir1126.02(12)C29 C28 C27C7107.68(17)C4C5C6C11105.19(17)C13 C11 Si1

C11	Si1	lr1	106.94(13)	C13 C11	C12	111.0(3)
C20	Si2	lr1	112.76(11)	C12 C11	Si1	115.8(3)
C24	Si2	lr1	117.55(11)	C45 C46	C47	112.6(3)
C24	Si2	C20	106.48(16)	C3 C2	C1	121.5(3)
C24	Si2	C21	112.27(17)	C32 C31	C30	121.3(4)
C21	Si2	lr1	105.68(11)	C30 C29	C28	119.4(4)
C21	Si2	C20	100.93(16)	C17 C18	C19	122.3(3)
C33	Si3	Cl2	109.46(13)	C41C42	C43	112.7(3)
C33	Si3	C37	108.09(17)	C17 C16	C15	119.2(4)
C33	Si3	C34	109.82(18)	C44 C43	C42	110.6(3)
C37	Si3	Cl2	106.30(14)	C40 C47	C46	111.9(3)
C37	Si3	C34	113.89(18)	C5 C4	C3	119.4(4)
C34	Si3	Cl2	109.16(15)	C38 C37	Si3	112.4(3)
C6	C7	Si1	112.4(2)	C39 C37	Si3	114.4(3)
C6	C1	Ρ1	120.6(3)	C39 C37	C38	109.2(3)
C2	C1	Ρ1	120.4(3)	C18 C17	C16	120.1(3)
C2	C1	C6	119.0(3)	C29 C30	C31	120.3(4)
C45	C44	lr2	70.4(2)	C2 C3	C4	119.7(3)
C45	C44	C43	123.5(4)	C36 C34	Si3	110.5(3)
C43	C44	lr2	114.4(3)	C36 C34	C35	110.3(3)
C44	C45	lr2	70.6(2)	C35 C34	Si3	115.9(3)
C44	C45	C46	125.7(3)			

Anexo 53. Diagrama ORTEP del complejo [Ir^{III}(PSi₃^{iPr})Cl] con elipsoides térmicos al 50 % de probabilidad. Los hidrógenos fueron omitidos por claridad.

Datos cristalográficos y de refinamiento para el complejo $[Pt^{II}(\kappa^{3}-PSi_{3}^{Me})P(OPh)_{3}]$

Identification code	MM155
Empirical formula	$C_{39}H_{60}Cl_2IrPSi_3$
Formula weight	907.21
Temperature/K	113(19)

Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	13.7500(3)
b/Å	18.1882(3)
c/Å	16.1690(3)
β/°	98.5499(17)
Volume/Å ³	3998.75(13)
Z	4
$\rho_{calc}g/cm^3$	1.507
µ/mm⁻¹	3.629
F(000)	1848.0
Crystal size/mm ³	$0.22 \times 0.12 \times 0.12$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.154 to 58.418
Index ranges	$\begin{array}{l} -16 \leq h \leq 18, \ -24 \leq k \leq 24, \ -20 \\ \leq l \leq 18 \end{array}$
Reflections collected	33026
Independent reflections	9628 [R _{int} = 0.0321, R _{sigma} = 0.0319]
Data/restraints/parame ters	9628/0/427
Goodness-of-fit on F ²	1.030

Final R indexes [I>= 2σ (I)] R₁ = 0.0228, wR₂ = 0.0509 Final R indexes [all data] R₁ = 0.0272, wR₂ = 0.0530 Largest diff. peak/hole / 1.35/-0.84 e Å⁻³

Atom Atom	Length/Å	Atom Atom	Length/Å
Ir1 Cl1	2.3024(6)	C8 C10	1.530(3)
lr1 P1	2.2172(6)	C11C12	1.548(3)
Ir1 Si1	2.3396(6)	C11C13	1.531(3)
Ir1 Si2	2.3289(6)	C14 C15	1.505(3)
Cl2 Si3	2.0873(8)	C15 C16	1.411(3)
P1 C7	1.827(2)	C15 C20	1.392(3)
P1 C16	5 1.826(2)	C16 C17	1.399(3)
P1 C29	1.849(2)	C17 C18	1.386(3)
Si1 C1	1.909(2)	C18 C19	1.386(3)
Si1 C8	1.906(3)	C19 C20	1.390(3)
Si1 C11	1.908(2)	C21C22	1.529(3)
Si2 C14	1.899(2)	C21C23	1.545(3)

Si2 C21	1.917(2)	C24 C25	1.533(3)
Si2 C24	1.908(2)	C24 C26	1.534(3)
Si3 C27	1.896(2)	C27 C28	1.510(3)
Si3 C34	1.882(2)	C28 C29	1.417(3)
Si3 C37	1.868(3)	C28 C33	1.396(3)
C1 C2	1.503(3)	C29 C30	1.396(3)
C2 C3	1.400(3)	C30C31	1.389(3)
C2 C7	1.407(3)	C31C32	1.389(3)
C3 C4	1.388(3)	C32 C33	1.381(4)
C4 C5	1.378(4)	C34 C35	1.527(3)
C5 C6	1.392(3)	C34 C36	1.535(3)
C6 C7	1.404(3)	C37 C38	1.533(3)
C8 C9	1.529(3)	C37 C39	1.545(3)

P1 lr1 Cl1 158.39(2)	C10C8 Si1 114.75(17)	C27 Si3 Cl2 108.12(8)	C29 C28 C27 123.0(2)
P1 lr1 Si1 87.38(2)	C12C11Si1 111.43(16)	C34 Si3 Cl2 106.02(8)	C33 C28 C27 119.4(2)
P1 lr1 Si2 91.22(2)	C13 C11 Si1 114.76(17)	C34 Si3 C27 116.67(11)	C33 C28 C29 117.5(2)
Si2 Ir1 Si1 107.22(2)	C13 C11 C12 108.8(2)	C37 Si3 Cl2 105.25(8)	C28C29P1 121.71(18)
C7 P1 lr1 113.42(8)	C15 C14 Si2 119.70(16)	C37 Si3 C27 106.58(11)	C30 C29 P1 118.40(16)
C7 P1 C29 103.91(10)	C16 C15 C14 121.61(19)	C37 Si3 C34 113.52(11)	C30 C29 C28 119.7(2)
C16 P1 lr1 119.17(7)	C20 C15 C14 120.0(2)	C2 C1 Si1 119.37(15)	C31C30C29 121.3(2)
C16P1 C7 104.73(10)	C20 C15 C16 118.4(2)	C3 C2 C1 120.3(2)	C30 C31 C32 118.9(2)
C16P1 C29 104.40(10)	C15 C16 P1 120.40(16)	C3 C2 C7 118.1(2)	C33 C32 C31 120.2(2)
C29P1 lr1 109.80(7)	C17C16P1 119.82(17)	C7 C2 C1 121.5(2)	C32C33C28 122.1(2)
C1 Si1 lr1 114.01(7)	C17 C16 C15 119.7(2)	C4 C3 C2 121.2(2)	C35 C34 Si3 111.60(17)
C8 Si1 lr1 105.32(7)	C18 C17 C16 120.8(2)	C5 C4 C3 120.6(2)	C35 C34 C36 108.70(19)
C8 Si1 C1 104.70(11)	C19 C18 C17 119.6(2)	C4 C5 C6 119.4(2)	C36C34Si3 113.68(15)
C8 Si1 C11 106.06(11)	C18 C19 C20 120.0(2)	C5 C6 C7 120.6(2)	C38C37Si3 111.51(17)
C11 Si1 Ir1 121.79(8)	C19 C20 C15 121.4(2)	C2 C7 P1 119.72(16)	C38C37C39 111.1(2)
C11 Si1 C1 103.57(10)	C22 C21 Si2 113.89(15)	C6 C7 P1 120.32(17)	C39C37Si3 111.89(17)
C14 Si2 lr1 112.70(7)	C22 C21 C23 109.7(2)	C6 C7 C2 119.9(2)	
C14 Si2 C21 104.27(10)	C23 C21 Si2 111.88(16)		
C14 Si2 C24 111.20(10)	C25 C24 Si2 112.15(16)		
C21 Si2 Ir1 105.27(7)	C25 C24 C26 110.90(19)		
C24 Si2 Ir1 114.21(8)	C26 C24 Si2 114.09(18)		
C24 Si2 C21 108.41(10)	C28 C27 Si3 121.57(16)		

Anexo 54. Densidad electrónica de laplacian en el plano que contiene a la interacción anagóstica C-H…Pt. Las líneas negras sólidas marcan los puntos críticos de enlace

CG-MS

Chromatogram JZM-2cHex-IrDim-SL_C\GCMSsolution\Data\MonticiPalmaJulioZM\16-18MAR2019JZM-2cHex-IrDim-SL_JZM-2cHex-IrDim-SL_3162019_2.qgd

TIC

Anexo 55. Cromatograma de gases correspondiente a la Entrada 1 de la Tabla 3

Chromatogram JZM-2cHex-MVIr-SL_C:\GCMSsolution\Data\MontielPalma\JulioZM:16-18MAR2019JZM-2cHex-MVIr-SL_JZM-2cHex-MVIr-SL_3182019_2.qgd

Anexo 56. Cromatograma de gases correspondiente a la Entrada 2 de la Tabla 3

Chromatogram JZM-2tHex-IrDim-SL C:\GCMSsolution\Data\MontielPalma\JulioZM\16-18MAR2019JZM-2tHex-IrDim-SL_JZM-2tHex-IrDim-SL_3162019_3.qgd

Anexo 57. Cromatograma de gases correspondiente a la Entrada 3 de la Tabla 3

Chromatogram JZM-2tHex-MVIr-SL C:\GCMSsolution\Data\MontielPalma\JulioZM\16-18MAR2019JZM-2tHex-MVIr-SL_JZM-2tHex-MVIr-SL_3182019_3.qgd

Anexo 58. Cromatograma de gases correspondiente a la Entrada 4 de la Tabla 3

Chromatogram JZM-3tHex-IrDim-SL C:\GCMSsolution\Data\MontielPalma\JulioZM16-18MAR2019JZM-3tHex-IrDim-SL_JZM-3tHex-IrDim-SL_3162019_4.qgd

Anexo 59. Cromatograma de gases correspondiente a la Entrada 5 de la Tabla 3

Chromatogram JZM-3tHex-MVIr-SL C:\GCMSsolution\Data\MontielPalmaJulioZM\16-18MAR2019JZM-3tHex-MVIr-SL_JZM-3tHex-MVIr-SL_3182019_4.qgd

Anexo 60. Cromatograma de gases correspondiente a la Entrada 6 de la Tabla 3

Chromatogram JZM-Hex-IrDim-SL C\GCMSsolution\Data\MonticIPalma\JulioZM\16-18MAR2019JZM-Hex-IrDim-SL JZM-Hex-IrDim-SL 3162019_2.qgd

Anexo 61. Cromatograma de gases correspondiente a la Entrada 1 de la Tabla 4

 $Chromatogram JZM-Hex-MVIr-S C: GCMS solution \Data \Montiel Palma \Julio ZM \16-18 \\MAR 2019 \\JZM-Hex-MVIr-S \JZM-Hex-MVIr-S \3162019 \\2.qgd$

Anexo 62. Cromatograma de gases correspondiente a la Entrada 2 de la Tabla 4

Chromatogram JZM-Hex-IrDim-SL_C:\GCMSsolution\Data\MontielPalma\JulioZM16-18MAR2019\JZM-Hex-IrDim-SL_JZM-Hex-IrDim-SL_3162019_1.qgd

Anexo 63. Cromatograma de gases correspondiente a la Entrada 3 de la Tabla 4

Anexo 64. Cromatograma de gases correspondiente a la Entrada 4 de la Tabla 4

Chromatogram JZM-MVIr-THF-heat001 C:\GCMSsolution\Data\MontielPalmaJulioZMJZM-MVIr-Hex-THF-heat001.qgd

Anexo 65. Cromatograma de gases correspondiente a la Entrada 5 de la Tabla 4

Chromatogram JZM-IrDIM-PSi2-VinylBenz-THF-9 C:\GCMSsolution\Data\MonticlPalma\JulioZM24-APR2019\Silylation in THF heat-9.qgd

Anexo 66. Cromatograma de gases correspondiente a la Entrada 4 de la Tabla 5

Chromatogram JZM-IrDIM-PSi3-Hex-THF-10 C:\GCMSsolution\Data\MontielPalma\JulioZM24 APR2019\Sylilation in THF heat-10.qgd

Anexo 67. Cromatograma de gases correspondiente a la Entrada 6 de la Tabla 5

Chromatogram JZM-IrDIM-PSi3-Viny1Benz-THF-12 C:\GCMSsolution\Data\MontielPalma\JulicZM:24-APR2019\Sily1ation in TFH heat-12.qgd

Anexo 68. Cromatograma de gases correspondiente a la Entrada 8 de la Tabla 5

Chromatogram JZM-A-D-THF-heat002 C:\GCMSsolution\Data\MontielPalma\JulioZM\09-May2019\JZM-A-D-THF-heat002 qgd

Anexo 69. Cromatograma de gases correspondiente a la Entrada 10 de la Tabla 5

#	Sustrato	Catalizador o precursor metálico	Ligante	Disolve nte	T (°)	t	Conversión (%) ^A	Producto A (%) ^A	Producto B (%) ^A	Producto C (%) ^H	Producto D (%) [/]
1	Cis-2-hexeno	[lr(µ-Cl)(cod)]₂		CH ₂ Cl ₂	t. a.	20h	10.63	61.51	38.49		
2	Cis-2-hexeno	MV-Ir		CH ₂ Cl ₂	t. a.	20h	25.93	58.69	41.31		
3	Trans-2-hexeno	[lr(µ-Cl)(cod)]₂		CH ₂ Cl ₂	t. a.	20h	1.77	39.76	60.24		
4	Trans-2-hexeno	MV-Ir		CH ₂ Cl ₂	t. a.	20h	5.94	54.36	45.64		
5	Trans-3-hexeno	[lr(µ-Cl)(cod)]₂		CH ₂ Cl ₂	t. a.	20h	4.23	48.98	50.02		
6	Trans-3-hexeno	MV-Ir		CH ₂ Cl ₂	t. a.	20h	28.71	58.13	41.87		
7	Vinil-siloxano	[lr(µ-Cl)(cod)]₂		CH ₂ Cl ₂	t. a.	20h	5.09	16.89	83.11		
8	Vinil-siloxano	MV-Ir		CH ₂ Cl ₂	t.a.	20h	4.07	9.68	90.32		
9	Ciclohexeno	MV-Ir		CH ₂ Cl ₂	t. a.	20h	0.92	100			
10	Ciclohexeno	MV-Ir		Neat	t. a.	20h	0.58	100			
11	Ciclohexeno	[Ir(µ-Cl)(cod)]₂		CH ₂ Cl ₂	t. a.	20h	N.C.				
12	1-Hexeno	MV-Ir		CH ₂ Cl ₂	t. a.	20h	58.66	7.83	31.58	60.59	
13	1-Hexeno	MV-Ir		Neat	t. a.	20h	53.06	7.23	30.50	62.27	
14	1-Hexeno	[lr(µ-Cl)(cod)]₂		CH ₂ Cl ₂	t. a.	20h	19.51	2.98	36.97	60.05	
15	Estireno	MV-Ir		CH ₂ Cl ₂	t.a.	20h	0.67	53.85	46.15		
16	Estireno	MV-Ir		Neat	t. a.	20h	0.49	52.76	42.76		
17	Estireno	[Ir(µ-Cl)(cod)]2		CH ₂ Cl ₂	t. a.	20h	N.C.				
18	Estireno	CoBr ₂	PSi ₃ ^{iPr}	CH ₂ Cl ₂	t. a.	20h	N.C.				
19	Estireno	Col ₂	PSi ₃ ^{iPr}	CH ₂ Cl ₂	t.a.	20h	N.C.				
20	1-Hexeno	CoBr ₂	PSi ₃ ^{iPr}	CH ₂ Cl ₂	t. a.	20h	N.C.				
21	1-Hexeno	MV-Ir		THF	40	20h	87.22	8.56	23.78	53.21	14.45
22	Estireno	MV-Ir		THF	40	20h	31.79	68.49	31.51		
23	Ciclohexeno	MV-Ir		THF	40	20h	27.81	73.42	26.58		
24	1-Hexeno	[lr(µ-Cl)(cod)]2 ^C	PSi ₃ ^{iPr}	THF	40	20h	51.69	4.74	22.91	72.35	

25	1-Hexeno	[Ir(µ-Cl)(cod)] ₂ ^B	PSi ₂ ^{iPr}	THF	40	20h	N.C.				
26	Estireno ^D	MV-Ir		THF	60	20h	49.29	73.25	73.25		
27	1-Hexeno	CoBr ₂	PSi ₃ ^{iPr}	THF	60	24h	N.C.				
28	Ciclohexeno	CoBr ₂	PSi ₃ ^{iPr}	THF	60	24h	N.C.				
29	Estireno	CoBr ₂	PSi₃ ^{iPr}	THF	60	24h	14.08		100		
30	Estireno	MV-Ir	-	THF	80	20h	64.70	84.97	15.03		
31	Estireno	MV-Ir		THF	80	13h	34.75	72.54	27.46		
32	1-Hexeno	MV-Ir	-	THF	80	13h	24.13	5.78	22.63	42.96	28.63
33	1-Hexeno	[Ir(µ-Cl)(cod)] ₂ ^B	PSi ₂ ^{iPr}	THF	80	20h	N.C.				
34	Ciclohexeno	[Ir(µ-Cl)(cod)] ₂ ^B	PSi ₂ ^{iPr}	THF	80	20h	N.C.				
35	Estireno	[Ir(µ-Cl)(cod)] ₂ ^B	PSi ₂ ^{iPr}	THF	80	20h	76.57	32.86	67.14		
36	1-Hexeno	[lr(µ-Cl)(cod)] ₂ ^c	PSi ₃ ^{iPr}	THF	80	20h	66.03	6.45	32.54	61.01	
37	Ciclohexeno	[lr(µ-Cl)(cod)]2 ^c	PSi ₃ ^{iPr}	THF	80	20h	N.C.				
38	Estireno	[lr(µ-Cl)(cod)] ₂ ^c	PSi ₃ ^{iPr}	THF	80	20h	48.86	80.25	19.75		
39	Estireno	MV-Ir [£]		THF	80	20h	77.22	72.32	27.68		
40	Estireno	MV-Ir ^F		THF	80	20h	52.19	72.79	26.21		
41	Ciclohexeno	MV-Ir		THF	80	20h	40.06	74.52	25.48		
42	1-Hexeno	CoBr ₂ ^{F, G}	PSi ₃ ^{iPr}	THF	80	24h	N.C.				
43	Estireno	CoBr ₂ ^{F, G}	PSi ₃ ^{iPr}	THF	80	24h	N.C.				
44	1-Hexeno	14e-Ir ^F		THF	80	24h	N.C.				
45	Estireno	14e-Ir [£]	-	THF	80	24h	44.49	39.45	60.55		
46	Estireno	Pt-Anagóstico		Toluen o	100	>48h	N.C.				
47	1-Hexeno	Pt-Anagóstico		Toluen o	100	>48h	N.C.				
Anexo	Anexo 70. Tabla 7. Las reacciones se llevaron a cabo en una escala de 0.1 mmol en 100 μL del disolvente seco correspondiente excepto las entradas 18-20, 27-29, 42										

Anexo 70. Tabla 7. Las reacciones se llevaron a cabo en una escala de 0.1 mmol en 100 μL del disolvente seco correspondiente excepto las entradas 18-20, 27-29, 42 γ 43 en las que se usaron 200 μL por la solubilidad del precursor. ^A Conversión calculada mediante CG-MS. [®] Relación molar precursor metálico-ligante 1:2, con intención de obtener *in situ* a la especie de 14 electrones correspondiente.^C Relación molar precursor metálico-ligante 1:1, con intención de obtener *in situ* a la especie de valencia mixta correspondiente. ^DEsta reacción también fue monitoreada mediante RMN de ¹H con THF-d8 seco como disolvente. ^EEn presencia de hexeno como aceptor de H₂ (relación molar 1:1 con respecto al silano). ^FEn presencia de ciclohexeno como aceptor de H₂ (relación molar 1:1 con respecto al silano). ^GEn presencia de ciclohexeno como aceptor de H₂ (relación molar 1:1 con respecto al silano). ^GEn presencia de ciclohexeno como aceptor de H₂ (relación molar 1:1 con respecto al silano). ^GEn presencia de Na₂CO₃ como base (relación molar 2:1 con respecto al COBr₂). ^HFormación de mezcla de alil-silanos correspondientes. ^IFormación de oligómeros. Neat = Sin disolvente. N.C. = No hay conversión detectable.