

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MORELOS UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MORELOS

FACULTAD DE FARMACIA

"ESTUDIOS DE PREFORMULACIÓN DE NUEVAS FASES SÓLIDAS FARMACÉUTICAS DE RICOBENDAZOL"

TESIS

QUE PARA OBTENER EL GRADO DE:

LICENCIADO EN FARMACIA

PRESENTA: JOCCELYN AVILEZ GARCIA

DIRECTOR DE TESIS:

DR. HUGO MORALES ROJAS

ASESOR TÉCNICO:

DRA. MARÍA GUADALUPE VÁZQUEZ RÍOS

M. EN F. REYNALDO SALAS ZÚÑIGA

Cuernavaca, Morelos. 2020

FACULTAD DE FARMACIA SECRETARIA DE DOCENCIA JEFATURA DE LA LICENCIATURA

Av. Universidad 1001 Chamilpa, Cuernavaca, Morelos, México. C.P. 62210 Tel. (01 777) 329 7089 y 329 7000 Ext. 3365

> Fecha: 10 de junio de 2020 Asunto: VOTOS APROBATORIOS Medio de Notificación: Electrónica Folio: FF/D/SD/JLF/0112/2020

DRA. DULCE MARIA ARIAS ATAIDE DIRECTORA DE SERVICIOS ESCOLARES U.A.E.M PRESENTE

Los suscritos catedráticos de la Facultad de Farmacia, dependiente de la Universidad Autónoma del Estado de Morelos, se dirigen a Usted con el fin de comunicarle que, después de haber revisado la tesis titulada " **Estudios de preformulación de nuevas fases sólidas farmacéuticas de Ricobendazol**" presentada por la pasante de la carrera de Licenciado en Farmacia. C. JOCCELYN AVILEZ GARCIA Matrícula 20151000190, consideramos que reúne todos los requisitos que exige un trabajo de esta especie, por lo que hacemos saber nuestro **VOTO APROBATORIO.**

	FIRMA
D. Efrén Hernández Baltazar	
Dr. Jaime Escalante García	
Dr. Sergio Alcalá Alcalá	
Dr. Ángel Daniel Herrera España	
M. en F. Edgar Barrera Bautista	

ATENTAMENTE "POR UNA HUMANIDAD CULTA" Una Universidad de Excelencia

M.P.D. Reyna América Serrano López Secretaria de Docencia

Cp Archivo

*Lba

Se expide el presente documento firmado electrónicamente de conformidad con el ACUERDO GENERAL PARA LA CONTINUIDAD DEL FUNCIONAMIENTO DE LA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MORELOS DURANTE LA EMERGENCIA SANITARIA PROVOCADA POR EL VIRUS SARS-COV2 (COVID-19) emitido el 27 de abril del 2020.

El presente documento cuenta con la firma electrónica UAEM del funcionario universitario competente, amparada por un certificado vigente a la fecha de su elaboración y es válido de conformidad con los LINEAMIENTOS EN MATERIA DE FIRMA ELECTRÓNICA PARA LA UNIVERSIDAD AUTÓNOMA DE ESTADO DE MORELOS emitidos el 13 de noviembre del 2019 mediante circular No. 32.

Sello electrónico

REYNA AMERICA SERRANO LOPEZ | Fecha: 2020-06-17 15:14:54 | Firmante

NBCzllAnxnhC0Zf4W/SjbHGU2tmHIP4eDwvgEnZdM+ytaG+rS+z5F8+EM7BgBr6/3dY2/C04hYw8hxhqTH8icdCXxZ46FhsycHYPUSccMdt7PLVtp+0ilUJTjEdYyykt+D6jJcLxF/r1L Y9Z+cUipc5QX/Yq7mZNeQill6IJhcv+21sW/xcB8cx0nJEKXM51GN/2rAUOzpMtf6N+Q8Joa64L2NoZYOz1g4fZjtlbY2tFBSQ+DbFB0Hx2x+Xb+ITDEEW+sX4PHSwkwCqdewvw+I sTSuBYjClb4dbXG/MrQHJDWGB7mM96tlKZvoevvUUNirqYPGhny+lKzgGv244RPA==

> Puede verificar la autenticidad del documento en la siguiente dirección electrónica o escaneando el código QR ingresando la siguiente clave:

97wCTB

https://efirma.uaem.mx/noRepudio/of8rPD1t7zitKIemWAbCqNA2kvYnOUMs

Una universidad de excelencia

Se expide el presente documento firmado electrónicamente de conformidad con el ACUERDO GENERAL PARA LA CONTINUIDAD DEL FUNCIONAMIENTO DE LA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MORELOS DURANTE LA EMERGENCIA SANITARIA PROVOCADA POR EL VIRUS SARS-COV2 (COVID-19) emitido el 27 de abril del 2020.

El presente documento cuenta con la firma electrónica UAEM del funcionario universitario competente, amparada por un certificado vigente a la fecha de su elaboración y es válido de conformidad con los LINEAMIENTOS EN MATERIA DE FIRMA ELECTRÓNICA PARA LA UNIVERSIDAD AUTÓNOMA DE ESTADO DE MORELOS emitidos el 13 de noviembre del 2019 mediante circular No. 32.

Sello electrónico

EFREN HERNANDEZ BALTAZAR | Fecha: 2020-06-20 11:38:44 | Firmante

NtAtRQRIxH43w5y+dudjVEIQt3WB59AT0fU04MQwoQAoIA/7gQT5R0uG/H8Z159BzNI9b4LQ/2mA3fJTthg3Gb1ZQoNQuHJjeVeHTkrol+mAafnjeES0PIYcIVLIMLHWTEVyJ/Yd+8 oNRqPwrc03cNs4Z87J2bgjyzi7Jtow1bSn6B8vHD7sPfS2OM1idgODy8wWLo0bAyvbaXFMFCLM3+zl29ECQWO7W4gAd07rY2y3OamvbFKt5JrCrUkn1H8XxIGPbhwxo8MJI2Ud gO1z8G+IMsHK6u6c4CAauyIIE99s/IM6+aEbIW40xra10ce1QCfjxUFdV5RzbhHtFKy8kg==

EDGAR BARRERA BAUTISTA | Fecha: 2020-06-20 11:47:57 | Firmante

UPABaUOd5D25RuD21Kfau5WZ6Ke9GQm94KbbVGBL5n8dShCok7fJOA/48IX9Y4sCcG9XwgdmRVO937VSANgn9RBoEjgedWWTtpH2bLOYy0QyE3pzhA3WYU0UfiH0cP+Qs Ollzh7kotrzrq/ErPo722qK/AplIOHYQSCG+w2K4KuD+EEP5ZtCVSCooyk7dK6IUQsTKTSxdWWYTH5FKKZFMgfza2skDm33mKtMnG9cSC5PIU6Xa2Cq0wFGQDFqtjgB4I5qgAw L9+usozzj/G3m/0dY2Ac1U4JSSps5qhCvMVRWfCvj/1URbgoR06hE2RRX3cs1zLJfZT9KWxZa812zaQ==

JAIME ESCALANTE GARCIA | Fecha: 2020-06-20 11:58:24 | Firmante

AxF2onjbFYybiQgkrkdLfrrXuLKUE3QqQicQSbSTvPObsGskxqzcc4cOBxv4Kz5mXBSBjAFaop6hgHzu0KBJYiv/pdgQsvSEMGtqKUef5C1v8FymHjpSxZyUyNhaVsFLW63xWtL5Lt PBVIwqhib1Amh44BjGVmsP7uu5+OQz7QSxJ+vod+e7I7tAnlfJL1KWWKkpouT1iMGeHundbah6iJb3r+SLjj3nKomV0OEmpoH7u5+prUXi6Q7c5koFAQagIBVNBy32QPzCbKJ4Sc tMJ9Y8pHe3jUNu1kbU+xfQuHQfaiimRgoDZ+kusGna7hWooRjIHOpZZm20F6hcvBQ18g==

ANGEL DANIEL HERRERA ESPAÑA | Fecha: 2020-06-20 12:14:37 | Firmante

fUqRUse4UvqjB8yApsEB6gBmO3sdiBPNEd2cE9ny6WyGx3+lgXfj9voeqdo++dkk9vkHyE5szLJhenUO1jHe2uBGALTQpEOvaB2hOoeCLEQPU6QljJ4V2Li0nlriPelBXqshvHBI6x+ QRRnQonhrVr5uYuzltXoGRH7xXQrDMvlgUrshQmpT2ZDpzv7Zl3ExD/03QfUldyiJYLsOWPEWHh127rNwoOm0Df53A82bmOUCZh04hsKGdb6ONFp5wN6EGsij9KpKmneQGxL d2ObFmh5KeX2djApwVQnfcQZfWbhph8PSb/Jr8KE/V1BKP+dbGXv6i++xoiYDqLKYBqpfFA==

SERGIO ALCALA ALCALA | Fecha: 2020-06-20 12:31:44 | Firmante

duZapnmdh3RnV1fnJZ7lAizik3ODky3EujXFBfQoJCw+rRPTCdXBtwU6OLwnAL0fKrAe2Jzhp9sl+1gfjBeh0U96Kjb4zqZuTrZDOfwmutpIBVJ7GH0yjvnoefQ5GIE4/SI5VkXmiVYod OMo+Epr7K+d8FvMYTmJDaw8pgaYTtiL+K36/F9UUrERZEvIXCjQtlb4xbUKkMVuQkMSmP/pSGBkGzebmRbq8ZjytT+f1AZeQ0UV3DibWFwxmNQ87WzZz6qhawqxyi7q4UdPN QiozwFPkJ8PPfgCROUUCucr3Ov1HcBfTh7m9Rg6JfSjKSALT6OmgrxVkiMoj3W5+4NdxA==

Puede verificar la autenticidad del documento en la siguiente dirección electrónica o

escaneando el código QR ingresando la siguiente clave:

bXu4ZT

https://efirma.uaem.mx/noRepudio/LGUeyOIvYxh1o2isLyCK8BIN18LO9kKY

Una universidad de excelencia

AGRADECIMIENTOS

El desarrollo del presente trabajo se realizó en el Laboratorio 2 de "Biofarmacia y Farmacia Molecular" de la Facultad de Farmacia y en el Laboratorio 221 de "Química Supramolecular" del Centro de Investigaciones Químicas de la Universidad Autónoma del Estado de Morelos, con la asesoría técnica del M.F. Reynaldo Salas Zúñiga, la Dra. María Guadalupe Vásquez Ríos y la Dra. Dea Herrera Ruiz, bajo la dirección del Dr. Hugo Morales Rojas.

Se agradece al Consejo Nacional de Ciencia y Tecnología (CONACyT) por el financiamiento otorgado para la realización de este trabajo a través de los proyectos de infraestructura INF- 2015-251898 y de Ciencia Básica A1-S-21143 "Síntesis de Cocristales Orgánicos Bajo un Enfoque Integral de Interacciones Intermoleculares". Se agradece el acceso a los equipos analíticos del Laboratorio Nacional de Estructura de Macromoléculas (LANEM).

- A mi director de tesis el Dr. Hugo Morales Rojas por el apoyo y la confianza brindada para realizar este trabajo de investigación.
- Agradezco el gran apoyo del M. en F. Reynaldo Salas Zúñiga y a la Dra.
 María Vázquez Ríos por sus asesorías en este trabajo de investigación.
- A mi compañera y amiga Jennifer Monserrat Gaona Bonfil que estuvo ayudándome en el desarrollo de este proyecto.
- A los miembros de mi comité revisor: Dr. Efrén Hernández Baltazar, Dr. Jaime Escalante García, Dr. Sergio Alcalá Alcalá, Dr. Ángel Herrera España y al M. en F. Edgar Barrera Bautista por sus comentarios y observaciones en este manuscrito.
- Agradezco a mis compañeros del grupo de investigación quienes en el trascurso de este trabajo resolvieron dudas y me brindaron importantes consejos académicos.

DEDICATORIA

A dios, por permitirme llegar tan lejos en esta etapa de mi vida.

A mis padres: Ma Esther Garcia Pérez y Arturo Avilez Fitz, a quienes admiro y agradezco infinitamente por tanto amor, apoyo y sacrificio; este logró también es de ustedes, nunca tendré como pagar todo lo que han hecho por mí. Los amo mucho.

A mis amigos: Gloria Espinosa Mateo, Magnolia Carrión Aparicio, Viviana Ocampo Torralba, Diana Rodríguez Ahedo, Jennifer Gaona Bonfil, Obed Munguía Bárcenas, Jonathan Sandoval Pérez, David Castillo García y Lucero Iturralde Bahena quienes estuvieron siempre, gracias por su amistad por cada convivencia, cada risa y cada lágrima. Siempre los recordare con mucho cariño.

CONTENIDO

AGRADECIMIENTOSI
DEDICATORIAIII
ÍNDICE DE TABLASVI
ÍNDICE DE FIGURAS
ABREVIATURASX
RESUMENXII
1 INTRODUCCIÓN1
2 ANTECEDENTES
2.1 PARASITISMO GASTROINTESTINAL2
2.2 RICOBENDAZOL
2.2.1 Anatomía del tracto gastrointestinal de los rumiantes
2.2.2 Farmacocinética y farmacodinamia4
2.2.3 Propiedades fisicoquímicas5
2.3 SISTEMA DE CLASIFICACIÓN BIOFARMACÉUTICO7
2.4 MÉTODOS DE OBTENCIÓN DE NUEVAS FASES SÓLIDAS9
2.4.1 Molienda mecanoquímica seca y asistida con disolvente
2.4.2 Formación de pasta (slurry)10
2.4.3 Reacción de cristalización10
2.5 TÉCNICAS DE CARACTERIZACIÓN DE NUEVAS FASES SÓLIDAS
2.5.1 Difracción de rayos-X de polvos (DRXP)11
2.5.2 Espectroscopía infrarroja12
2.5.3 Análisis térmico12
2.6 COCRISTALES FARMACÉUTICOS13
2.6.1 Formación de una sal o un cocristal14
2.6.2 Modificación de las propiedades fisicoquímicas por cocristalización15
2.6.3 Propiedades biofarmacéuticas de un sólido cocristalino
2.7 DESARROLLO DE FASES SÓLIDAS DE RICOBENDAZOL
3 JUSTIFICACIÓN
4 HIPÓTESIS
5 OBJETIVO GENERAL
6OBJETIVOS ESPECÍFICOS
7MATERIALES Y MÉTODOS

7.1 MATERIALES
7.1.2 REACTIVOS
7.1.3 EQUIPOS
7.2 MÉTODOS
7.2.1 SÍNTESIS DE LAS FASES SÓLIDAS RBZ-25DHBA Y RBZ-26DHBA
MEDIANTE MOLIENDA MECÁNICA
7.2.2 SÍNTESIS DE LAS FASES SÓLIDAS RBZ-25DHBA Y RBZ-26DHBA
MEDIANTE FORMACIÓN DE PASTA (slurry)
7.2.3 SÍNTESIS DE LA FASE SÓLIDA RBZ-25DHBA MEDIANTE REACCIÓN
DE CRISTALIZACIÓN
7.2.4 ESCALAMIENTO DE LA FASE SÓLIDA RBZ-25DHBA MEDIANTE
SLURRY
7.2.5 ESCALAMIENTO DE LA FASE SÓLIDA RBZ-26DHBA MEDIANTE
MOLIENDA ASISTIDA CON DISOLVENTE
7.3 CARACTERIZACIÓN FÍSICA
7.3.1 DIFRACCIÓN DE RAYOS-X DE POLVOS (DRXP)
7.3.2 CALORIMETRÍA DIFERENCIAL DE BARRIDO (DSC) Y ANÁLISIS
TERMOGRAVIMÉTRICO (TGA)
7.3.3 ANÁLISIS ESPECTROSCÓPICO DE INFRARROJO (IR)
7.4 EVALUACIÓN BIOFARMACÉUTICA
7.4.1 ESTABILIDAD DE FASE EN SOLUCIÓN
7.4.2 ESTABILIDAD INDICATIVA
7.5 SELECCIÓN DE POLÍMEROS DE USO FARMACÉUTICO
7.6 VALIDACIÓN DEL MÉTODO DE CUANTIFICACIÓN
7.7 CONSTANTE EUTÉCTICA Y VENTAJA DE SOLUBILIDAD
7.8 DISOLUCIÓN DE POLVOS BAJO CONDICIONES NO-SINK
7.9 ANÁLISIS ESTADÍSTICO DE LOS PERFILES DE DISOLUCIÓN
8 RESULTADOS Y DISCUSIÓN
8.1 CARACTERIZACIÓN FISICOOLIÍMICA Y BIOFARMACÉLITICA DE LA FASE
SÓLIDA RBZ-25DHBA
8 2 CARACTERIZACIÓN FISICOOLIÍMICA V BIOFARMACÉLITICA DE LA FASE
SÓLIDA RBZ-26DHBA
9 CONCLUSIONES
10 PERSPECTIVAS
11 BIBLIOGRAFIA
12 ANEXOS

ÍNDICE DE TABLAS

Tabla 1. Parámetros farmacocinéticos para ABZSO2 después de la administración
de RBZ a 7.5 mg/kg por vía intravenosa (iv), intraruminal (ir) y subcutánea (sc)
en ganado vacuno5
Tabla 2. Solubilidad de RBZ en distintos disolventes a 25°C6
Tabla 3. Criterios para considerar la formación de una sal o un cocristal a partir del
ΔрКа15
Tabla 4. Materias primas y mezclas físicas analizadas por Uv-vis a diferentes
concentraciones en solución de buffer de fosfato a pH 6.8
Tabla 5. Análisis de las vibraciones de IR de materias primas y fase sólida
RBZ-25DHBA
Tabla 6. Análisis DTG de las materias primas y de la fase sólida generada
Tabla 7. Análisis DSC de las materias primas y la fase sólida RBZ-25DHBA40
Tabla 8. Determinación de la precisión del método de cuantificación de RBZ y
25DHBA47
Tabla 9. Límite de detección y cuantificación del método analítico para cuantificación
de RBZ y 25DHBA48
Tabla 10. Concentración eutéctica, constante eutéctica (Keu) y ventaja de solubilidad
(SA) de la fase RBZ-25DHBA50
Tabla 11. Análisis de las vibraciones en el espectro IR de materias primas y la fase
sólida RBZ-26DHBA56
Tabla 12. Análisis DTG de las materias primas y NFS57
Tabla 13. Análisis de datos DSC de la fase RBZ-26DHBA y materias primas58
Tabla 14. Determinación de la precisión del método de cuantificación de RBZ y
26DHBA62
Tabla 15. Límite de detección y cuantificación del RBZ y 26DHBA63
Tabla 16. Concentración eutéctica, constante eutéctica (Keu) y ventaja de solubilidad
(SA) de la fase RBZ-26DHBA66

ÍNDICE DE FIGURAS

Figura 1. Estructura química de fármacos derivados del bencimidazol2
Figura 2. Estructura molecular del RBZ y sus especies iónicas6
Figura 3. Sistema de clasificación biofarmacéutico de los ingredientes farmacéuticos
activos7
Figura 4. Clasificación de formas sólidas de un ingrediente farmacéutico activo9
Figura 5. Representación esquemática de los métodos aplicados en la formación de
cocristales10
Figura 6. Representación de la ley de Bragg12
Figura 7. Homosintones supramoleculares: (a) homosintón de ácido carboxílico
como dímero y (b) homosintón con el dímero amida. Heteronsintones:
supramoleculares (c) ácido carboxílico-amida (d) ácido carboxílico-piridina
Figura 8. Perfil de disolución intrínseca de praziguantel y el cocristal R-praziguantel
con ácido L-málico en medio pH 1.2
Figura 9. El efecto resorte paracaídas para lograr una alta solubilidad aparente para
IFAs insolubles en aqua18
Figura 10. Efecto de la inhibición de la precipitación en el perfil farmacocinético de
danazol22
Figura 11. Patrón de DRXP de a) RBZ, b) 25DHBA y muestras de molienda de la
mezcla física RBZ-25DHBA c) sin disolvente d) ACT, e) ACN, f) H ₂ O y g) MeOH.
Figura 12. Patrón de DRXP de a) RBZ, b) 25DHBA y muestras obtenidas por
c) reacción de cristalización y slurry de la mezcla física RBZ-25DHBA en
presencia d) MEOH, e)H ₂ O, f) ACT y g) ACN35
Figura 13. Patrón de DRXP de a) RBZ, b) 25 DHBA, c) RBZ-25 DHBA d)
Escalamiento RBZ-25DHBA mediante slurry
Figura 14. Comparación de los espectros IR de RBZ, 25DHBA y RBZ-25DHBA
Figura 15, Curvas TG de a) RBZ b) 25DHBA v c) nueva fase sólida RBZ-25DHBA.
Figura 16. Curva DSC de RBZ, 25DHBA y RBZ-25DHBA40
Figura 17. Patrón de DRXP de a) RBZ y muestras de estabilidad de RBZ al b y c)
40 °C calor seco, d y e) 40 °C y 75 % HR calor húmedo y f y g) 50 °C calor
seco42

Figura 18. Patrón de DRXP de a) 25DHBA y muestras de estabilidad de 25DHBA al b y c) 40 °C calor seco d y e) 40 °C y 75 % HR calor húmedo y f y g) 50 °C calor Figura 19. Patrón de DRXP de a) RBZ, b) 25DHBA, c) RBZ-25DHBA y muestras de estabilidad de RBZ-25DHBA al d y e) 40 °C calor seco, f y g) 40 °C y 75 % HR calor húmedo y h y i) 50 °C calor seco.....42 Figura 20. Patrón de DRXP de a) RBZ, b) 25DHBA, c) RBZ-25DHBA, y muestras de estabilidad de la fase RBZ-25DHBA al d) 1 min, e) 5 min, f) 30 min, g) 1 h, h) 3 h, i) 6 h, j) 12 h y k) 24 h.44 Figura 21. Patrón de DRXP de a) RBZ, b) 25DHBA, c) RBZ-25DHBA, y muestras de estabilidad de la fase RBZ-25DHBA al d) 1 min, e) 5min, f) 30 min, g) 1 h, h) 3 h, i) 6 h, j) 12 h44 Figura 22. Patrón de DRXP de a) RBZ, b) 25DHBA, c) RBZ-25DHBA, y muestras de estabilidad de la fase RBZ-25DHBA al d) 1 min, e) 5 min, f) 30 min, g) 1 h, h) 3 h, i) 6 h, j) 12 h y k) 24 h44 Figura 23. Curva de regresión ajustada de a) RBZ y b) 25DHBA......46 Figura 24. Cromatogramas de RBZ (292 nm) puro (a) y a partir de la mezcla física Figura 25. Patrón de DRXP de a) RBZ, b) 25DHBA, c) RBZ-25DHBA, d, e y f) RBZ/RBZ-25DHBA pH 1.249 Figura 26. Patrón de DRXP de a) RBZ, b) 25DHBA, C) RBZ-25DHBA, d, e y f) Figura 27. Perfil de disolución de polvos de RBZ puro y RBZ-25DHBA en ausencia y presencia de METHOCEL[™] A15 predisuelto al 0.5% p/v en buffer de fosfatos Figura 28. Patrón de DRXP de a) RBZ, b) 26DHBA, y muestras de molienda de la mezcla física RBZ-26DHBA, c) sin disolvente, d) MeOH, e)H₂O, f) ACN y g) Figura 29. Patrón de DRXP de a) RBZ, b) 26DHBA y muestras obtenidas por slurry Figura 30. Patrón de DRXP de a) RBZ, b) 26DHBA, c) RBZ-26DHBA, d) RBZ-26DHBA escalamiento mediante molienda asistida por disolvente (agua)......54 Figura 31. Comparación de los espectros IR de RBZ, 26DHBA y la fase RBZ-Figura 32. Curvas TG de a) RBZ, b) 26 DHBA y c) fase sólida RBZ-26DHBA......57 Figura 33. Curva DSC de RBZ, 26DHBA y RBZ-26DHBA58 Figura 34. Patrón de DRXP de a) RBZ, b) 26DHBA, C) RBZ-26DHBA, muestras de estabilidad de la fase RBZ-26DHBA a d y e) 40 °C calor seco, f y g) 40 °C y 75 % calor húmedo, h y i) 50 °C calor seco59

Figura 35. Patrón de DRXP de a) 26DHBA, muestra de estabilidad de 26DHBA en b y c) 40 °C calor seco, d y e) 40 °C y 75 % HR calor húmedo f y g) 50 °C calor Figura 36. Patrón de DRXP de a) RBZ, b) 26DHBA, c) RBZ-26DHBA y muestras obtenidas posterior a la estabilidad de fase al d) 1 min, e) 5 min, f) 30 min, g) 60 min, h) 3 h, i) 6 h, j) 12 h y k) 24 h.....60 Figura 37. Patrón de DRXP de a) RBZ, b) 26DHBA, c) RBZ-26DHBA y muestras obtenidas posterior a la estabilidad de fase al d) 1 min, e) 5 min, f) 30 min, g) 60 min, h) 3 h, i) 6 h, j) 12 h y k) 24 h60 Figura 38. Patrón de DRXP de a) RBZ, b) 26DHBA, c) RBZ-26DHBA y muestras obtenidas posterior a la estabilidad de fase al d) 1 min, e) 5 min, f) 30 min, g) 60 min, h) 3 h, i) 6 h, j) 12 h y k) 24 h.....61 Figura 39. Curva de regresión ajustada de a) RBZ y b) 26DHBA......62 Figura 40. Cromatogramas de RBZ (292 nm) puro (a) y a partir de la mezcla física (b), 26DHBA (306 mn) puro (c) y a partir de mezcla física (d).64 Figura 41. Patrón de DRXP de a) RBZ, b) 26DHBA, C) RBZ-26DHBA, d) RBZ/RBZ-26DHBA pH 1.2, e) RBZ/RBZ-26DHBA pH 1.2 f) RBZ/RBZ-26DHBA pH 1.2. Figura 42. Patrón de DRXP de a) RBZ, b) 26DHBA, C) RBZ-26DHBA, d) RBZ/RBZ-26DHBA pH 6.8, e) RBZ/RBZ-26DHBA pH 6.8 f) RBZ/RBZ-26DHBA pH 6.8. Figura 43. Perfil de disolución de polvos de RBZ puro y el cocristal RBZ-26DHBA en ausencia y presencia de METHOCEL[™] A15 predisuelto al 0.5% p/v en buffer de fosfatos pH 6.8.....67 Figura 44. Área bajo la curva del perfil de disolución de RBZ, RBZ-25DHBA, RBZ-26DHBA en medio de fosfatos pH 6.8 con y sin METHOCEL[™] A15 predisuelto.

ABREVIATURAS

25DHBA	Ácido 2,5-dihidroxibenzoico
26DHBA	Ácido 2,6-dihidroxibenzoico
ABC	Área bajo la curva
ABZSO	Sulfóxido de albendazol
ABZSO ₂	Sulfona de albendazol
ACN	Acetonitrilo
ACT	Acetona
C _{máx}	Concentración máxima
d	Distancia entre los planos
DMSO	Dimetilsulfóxido
DRXP	Difracción de rayos-X de polvos
DSC	Calorimetría diferencial de barrido
DTG	Primera derivada del termograma
FR	Factor respuesta
HPLC	Cromatografía líquida de alta resolución
НРМС	Hidroxipropilmetilcelulosa
IFA	Ingrediente farmacéutico activo
IR	Espectroscopía infrarroja
K _{eu}	Constante eutéctica
K _{el}	Constante de eliminación

LC	Límite de cuantificación
LD	Límite de detección
MeOH	Metanol
n	número entero
NFS	Nueva fase sólida
nm	Nanómetros
PBS	Buffer de fosfatos
RBZ	Ricobendazol
SA	Ventaja de solubilidad
SCB	Sistema de clasificación biofarmacéutico
TGA	Termogravimetría
TGI	Tracto gastrointestinal
TPGS	D-a-tocopheryl polyethylene glycol succinate
T 1⁄2	Tiempo de vida media
T _{máx}	Tiempo máximo
Uv-vis	Espectroscopía Uv-visible
β0	Intercepto
β1	Pendiente

RESUMEN

Una de las estrategias para mejorar la solubilidad de los ingredientes farmacéuticos activos (IFAs) (clase II y IV de acuerdo con el SCB) es el desarrollo de sales y/o cocristales, formas sólidas que permiten modificar las propiedades fisicoquímicas de los fármacos. La solubilidad es uno de los parámetros más importantes para alcanzar la concentración deseada del fármaco en circulación sistémica y ejercer mayor actividad farmacológica. El objetivo del presente trabajo fue realizar un estudio de preformulación de nuevas fases sólidas de ricobendazol (RBZ) que se obtuvieron en combinación con el ácido 2,5-dihidroxibenzoico (25DHBA) y el ácido 2,6-dihidroxibenzoico (26DHBA) como agentes formadores de sales/cocristales, respectivamente, y un excipiente polimérico con capacidad de retardar la precipitación de RBZ. La reproducción y escalamiento de la fase sólida RBZ-25DHBA 1:1 se llevó a cabo mediante el método de formación de pasta, mientras que para la fase sólida RBZ-26DHBA 1:1 el escalamiento se realizó por el método de molienda asistida con disolvente. Estos sólidos se caracterizaron mediante técnicas físicas y espectroscópicas como calorimetría (TGA, DSC), IR y DRXP. Posteriormente, se determinó la constante eutéctica y la ventaja de solubilidad, parámetros que se encuentran relacionados con la estabilidad de la fase sólida y la tendencia a la precipitación de la forma menos soluble. Para estas fases sólidas de RBZ se realizaron experimentos de disolución bajo condiciones no-sink, donde se observó que la fase sólida RBZ-25DHBA alcanzó una concentración máxima (Cmáx) de 3.17 mg/mL, es decir, 26 veces más que el fármaco puro (0.12 mg/mL). Mientras que la fase sólida RBZ-26DHBA alcanzó una Cmáx= 2.65 mg/mL, es decir, 22 veces más respecto al fármaco. La disolución de las fases sólidas RBZ-25DHBA y RBZ-26DHBA se estudió con el excipiente polimérico METHOCEL[™] A15 predisuelto en un medio acuoso pH 6.8 y 37 °C, observándose la inhibición de la precipitación de RBZ y generando un incremento del ABC entre 8.6 y 5.6 veces más, respectivamente, en comparación con el fármaco puro. Los resultados obtenidos demuestran que la inclusión de excipientes poliméricos mejora significativamente la solubilización de los fármacos poco solubles, como es el caso del RBZ, lo que puede incrementar la absorción del fármaco y por ende mejorar su biodisponibilidad.

1.- INTRODUCCIÓN

La mayoría de los ingredientes farmacéuticos activos administrados por vía oral que se encuentran en el mercado presentan grandes limitaciones en su uso, ocasionado generalmente por la baja solubilidad acuosa que predispone una baja biodisponibilidad oral e impacta en su actividad terapéutica. Por consiguiente, la industria farmacéutica busca nuevas alternativas que mejoren las propiedades fisicoquímicas y biofarmacéuticas de un IFA. Una de las estrategias es la modificación del estado sólido de un fármaco, como lo es el uso de cocristales. Un cocristal farmacéutico se define como un sólido multicomponente formado por un IFA y coformador en una relación estequiométricamente definida formado a través de interacciones no covalentes.³⁵ Uno de los retos actuales en el desarrollo farmacéutico de fases cocristalinas en una forma de dosificación es que el aumento en la solubilidad genera un estado supersaturado que sólo se mantiene por tiempos muy cortos debido a la disolución rápida. Es por ello que el uso de polímeros que inhiben la precipitación es una estrategia de formulación para prolongar los niveles de supersaturación permitiendo que el fármaco pueda mantenerse por un periodo de tiempo mayor para ser absorbido y por lo tanto tenga una mayor biodisponibilidad. El ricobendazol es un antiparasitario de amplio espectro de uso veterinario, con desventajas de solubilidad en agua.⁴ Previamente se han reportado nuevas fases sólidas de ricobendazol en combinación con ácido 2,5dihidroxibenzoico y 2,6-dihidroxibenzoico.⁵⁰ Este estudio demostró que ambas fases sólidas generan un estado de supersaturación en solución acuosa pH 6.8 en un periodo de tiempo corto que es causado por la precipitación de la forma menos preformulación con el excipiente polimérico metilcelulosa soluble. La (METHOCEL[™] A15) mantiene el estado supersaturado alcanzado por las fases sólidas por un periodo de tiempo mayor. Se espera que la preformulación obtenida impacte en la mejora de la biodisponibilidad de fármacos pocos solubles en agua como el ricobendazol.

2.- ANTECEDENTES 2.1 PARASITISMO GASTROINTESTINAL

Las infecciones parasitarias del tracto gastrointestinal afectan la salud humana y animal. Dentro del sector ganadero las infecciones gastrointestinales son una de las principales causas de disminución en la productividad y grandes pérdidas económicas, debido a la mortalidad, morbilidad, baja tasa de crecimiento y pérdida de peso. Existe una variedad de especies de parásitos que infectan al ganado bovino en todo el mundo, dentro de las más importantes se incluyen Nemátodos Strongyle (Haemonchus, Ostartagia, Trichostrongylus, Cooperia), Tremátodos Fasciola (Fasciola hepática y Fasciola gigantica) y Paraphistomum (Paraphistomum cervei) y Céstodos (Monezia benideni y Monezia expanza).¹ Una de las estrategias para la prevención y el tratamiento de la parasitosis es el uso de fármacos derivados del benzimidazol, tales como: Tiabendazol, Fenbendazol, Oxfendazol, Albendazol, Parbendazol, Mebendazol, Cambendazol, Lufendazol, Luxabendazol, Triclabendazol y Ricobendazol (figura 1). Algunos de estos fármacos tienen uso en humanos.³

Figura 1. Estructura química de fármacos derivados del bencimidazol.

Como se mencionó anteriormente, los fármacos antihelmínticos son el principal método de control contra las parasitosis en el mundo, con una gran importancia en la industria farmacéutica veterinaria. Los cuales se encuentran indicados para ser administrados a especies como perros, gatos, vacas, ovejas, cabras, cerdos, caballos, llamas, aves, reptiles y humanos. El incremento en la comercialización de los fármacos benzimidazolicos de uso veterinario se debe a la amplia actividad terapéutica y a la baja toxicidad que presentan, siendo el ricobendazol el fármaco de elección para el tratamiento de la parasitosis gastrointestinal en rumiantes.^{2,3}

2.2 RICOBENDAZOL

El ricobendazol (RBZ) también conocido como sulfóxido de albendazol (ABZSO), pertenece al grupo de compuestos de benzimidazol carbamato, es un fármaco antihelmíntico de amplio espectro.⁴ Este es el fármaco antihelmíntico más usado en la práctica veterinaria, dicho IFA se encuentra como mezcla racémica. Las formas farmacéuticas comercializadas de este fármaco son en suspensiones, pastas, gránulos para la administración vía oral, subcutánea, intravenosa e intrarumial. Las dosis empleadas en ganado bovino son de 7.5 mg/kg de peso, mientras que en ganado ovino las dosis son de 5.0 mg/kg de peso.⁵

2.2.1 Anatomía del tracto gastrointestinal de los rumiantes

Los rumiantes son animales poligástricos, es decir, que la estructura anatómica de su estómago es compleja al estar formada de cuatro compartimentos. El estómago es un saco que comienza en el extremo del esófago y termina en el duodeno. En rumiantes este saco se encuentra dividido en: retículo, rumen, omaso y abomaso. El retículo se encuentra en la parte anterior de la cavidad abdominal está separado del rumen por el pliegue retículo ruminal, el rumen es el compartimento más voluminoso y se encuentra en el flanco izquierdo de la cavidad abdominal dividido en el saco dorsal y otro ventral por una serie de proyecciones musculares, el omaso está situado en la parte derecha de la cavidad abdominal y conecta con el retículo y con el abomaso. Este último compartimento se encuentra en la parte derecha de la cavidad abdominal formando un saco alargado.⁶

2.2.2 Farmacocinética y farmacodinamia

Tras la administración oral de RBZ, se demostró que las concentraciones plasmáticas relativas de los enantiómeros (+)-RBZ y (-)-RBZ dependen de la especie, la edad y el género del huésped, así como del tipo de parásito. El enantiómero (-)-RBZ es predominante en ratas y ratones, mientras que el enantiómero (+)-RBZ es prevalente en ovejas, cabras, perros, vacas y humanos. Estos datos apuntan a una estereoselectividad en la interacción fármaco-organismo y sugieren una aplicación terapéutica potencial de los enantiómeros individuales.⁷ Después de la administración ya sea por la vía oral o intrarumial el rumen actúa como un depósito fisiológico del fármaco, lo que permite la liberación prolongada de pequeñas cantidades de fármaco en el abomaso, donde las partículas del fármaco se disuelven en el pH ácidos y proporcionan moléculas libres disponibles para la absorción desde el intestino. Este efecto de reservorio ruminal contribuye a la persistencia del fármaco en el animal y la exposición prolongada del parásito al compuesto.^{8,9} Después de la administración, RBZ es transformado en su metabolito inactivo la sulfona de albendazol (ABZSO₂) por el citocromo P450. RBZ se distribuye ampliamente desde la sangre a otros tejidos, especialmente al tracto gastrointestinal.⁹ En la tabla 1, se muestran los parámetros farmacocinéticos del ricobendazol en ganado vacuno.

La biodisponibilidad de los productos de RBZ administrados por inyección subcutánea en el ganado no alcanza más del 40% y, además, se ha observado una precipitación posterior a la inyección del fármaco con irritación mecánica o trombosis en los tejidos en el sitio de inyección.⁷ Por lo que es necesario desarrollar formulaciones que eviten estos inconvenientes de la administración y que mejoren la biodisponibilidad de este antihelmíntico de amplio espectro.

Variable	i.v.	i.r	S.C
K _{el}	0.14 ± 0.01	0.15 ± 0.04	0.13 ± 0.03
T ½ (h)	4.8 ± 0.40	5.0 ± 1.28	5.4 ± 1.17
ABC (µg/h/mL)	19.9 ± 4.31	27.9 ± 8.07	22.5 ± 5.00
T _{máx} (h)	6.9 ± 0.60	11.0 ± 2.06	11.5 ± 1.83
C _{máx} (µg/mL)	1.2 ± 0.30	1.0 ± 0.17	0.7 ± 0.19

Tabla 1. Parámetros farmacocinéticos para ABZSO₂ después de la administración de RBZ a 7.5 mg/kg por vía intravenosa (iv), intraruminal (ir) y subcutánea (sc) en ganado vacuno. Tomado de Formentini et. al.⁹

El mecanismo de acción descrito consiste en la unión e inhibición de la polimerización de la beta-tubulina, que inhibe la formación de microtúbulos citoplasmáticos y la adsorción de glucosa del parásito, lo que conduce a la inmovilización y la muerte de los gusanos adultos y evita la eclosión de los huevos.⁸

2.2.3 Propiedades fisicoquímicas

El ricobendazol (**figura 2**) es una molécula quiral con un centro asimétrico en el átomo de azufre. Se ha demostrado que el enantiómero *R*-RBZ es la forma más activa y menos tóxica.¹⁰ RBZ es un fármaco con baja solubilidad en agua (0.062 mg/mL) y es ligeramente soluble en algunos disolventes orgánicos, como los que se muestran en la **tabla 2**.^{7,11} El RBZ es referido como clase II de acuerdo con el sistema de clasificación biofarmacéutico, es decir, es un fármaco con baja solubilidad y alta permeabilidad. Ricobendazol presenta un perfil de solubilidad-pH dependiente en forma de "U", dado su naturaleza anfótera, ya que posee en su estructura un grupo ácido y un grupo básico, es decir, es un compuesto ionizable con valores de p*K*a reportados de 3.45 y 9.82, un coeficiente de partición de 14.3 y 15.2 a pH 6 y 9, respectivamente. Tiene un punto de fusión de 218.93 °C y un peso molecular de 281.33 g/mol. ^{11,12}

Figura 2. Estructura molecular del RBZ y sus especies iónicas.

Disolvente	Solubilidad (mg/mL)
Agua	0.062
Acetato de etilo	0.21
Alcohol isopropílico	0.91
Etanol	1.16
Dimetilformamida	5.88
Dimetilsulfóxido	16.50
2-pirrolidona	17.65
Alcohol bencílico	17.90

2.3 SISTEMA DE CLASIFICACIÓN BIOFARMACÉUTICO

El sistema de clasificación biofarmacéutico (SCB) es un marco científico utilizado para clasificar un ingrediente farmacéutico activo considerando su solubilidad acuosa y permeabilidad intestinal e incluye 4 clases tal como se ilustra en la figura 3,13,14

Los fármacos de la clase I son bien absorbidos y el paso limitante para la absorción del fármaco es la disolución o el vaciamiento gástrico si la disolución es muy rápida. Los de la clase II, presentan alta absorción, pero la disolución es menor, la disolución del fármaco in vivo es un paso limitante para la absorción. Para la clase III la permeabilidad es un paso limitante para la absorción. Finalmente, los fármacos clase IV, exhiben una biodisponibilidad baja, los factores como la velocidad de disolución, la permeabilidad y el vaciamiento gástrico son los limitantes para la absorción del fármaco.14

Desafortunadamente, el 40% de los 200 medicamentos orales más importantes comercializados en los EE. UU., el 33% de los medicamentos incluidos en la Farmacopea de EE. UU., el 75% de los compuestos en desarrollo y el 90% de las nuevas entidades químicas presentan problemas de solubilidad, es decir, forman parte de la clase II y IV del SCB.¹⁵ Por lo tanto, es conveniente mejorar las propiedades de los IFAs con desventajas en la solubilización en medios acuosos ya que esto impacta en su biodisponibilidad. Una de las estrategias es la modificación del estado sólido a través de la ingeniería de cristales.¹⁶

2.4 INGENIERÍA DE CRISTALES Y FASES SÓLIDAS FARMACÉUTICAS

La ingeniería de cristales se encarga del diseño y el crecimiento de sólidos moleculares cristalinos con el propósito de mejorar las propiedades de sus componentes mediante interacciones intermoleculares en el empaquetamiento cristalino, y es un método alternativo para mejorar ciertas propiedades de los sólidos cristalinos en el área farmacéutica, tales como: solubilidad, velocidad de disolución y biodisponibilidad.^{17,18}

La mayoría de los productos farmacéuticos se administran en estado sólido en formas farmacéuticas de dosificación tales como tabletas, cápsulas y polvos, por su bajo costo de producción, estabilidad y fácil administración. Un fármaco en estado sólido puede encontrarse en forma cristalina o amorfa (**figura 4**), una gran parte de las formulaciones para administración oral prefieren el uso de un IFA cristalino debido a que es termodinámicamente más estable, de fácil aislamiento con alta pureza y mantienen sus propiedades fisicoquímicas.¹⁹ Sin embargo, como se mencionó anteriormente un gran porcentaje de fármacos presentan desventajas de solubilidad y permeabilidad, y adicionalmente, un sólido cristalino monocomponente ofrece oportunidades limitadas para modificar las propiedades fisicoquímicas.^{19,20}

Como parte de las estrategias en estado sólido para mejorar las propiedades fisicoquímicas y biofarmacéuticas de un IFA se han utilizado distintas formas sólidas tales como: sales, hidratos, solvatos, y recientemente cocristales (**figura 4**).^{16,21,22}

Figura 4. Clasificación de formas sólidas de un ingrediente farmacéutico activo. Modificado de Schultheiss & Newman.²²

Una sal farmacéutica es un sólido formado por un IFA ionizable y un contraión.²³ Un sólido cocristalino está compuesto por dos o más compuestos moleculares y/o iónicos diferentes relacionados estequiométricamente.²⁴ Por su parte, un hidrato y solvato se conoce como un aducto molecular que contienen el IFA y disolventes orgánicos (solvato) o agua (hidrato).²³ Polimorfos son formas cristalinas monocomponente donde el mismo compuesto químico puede existir en dos o más orientaciones estructurales que presentan propiedades físicas distintas entre sí.²³ Los sólidos amorfos carecen de un ordenamiento de sus componentes y son formas sólidas termodinámicamente menos estables.²⁵

2.4 MÉTODOS DE OBTENCIÓN DE NUEVAS FASES SÓLIDAS

La obtención de nuevas fases sólidas de relevancia farmacéutica es de gran interés debido a las múltiples ventajas que presentan. Los métodos empleados para su obtención presentan algunas características favorables como la ausencia de disolventes o uso de volúmenes pequeños, alta pureza, buen rendimiento y tiempos muy cortos de proceso en algunos casos. Existen múltiples métodos de producción de fases sólidas, pueden ser en fase gaseosa, liquida o sólida (**figura 5**). Algunas técnicas utilizadas son la molienda mecanoquímica en seco y con disolvente, método de formación de pasta (*slurry*), reacción de cristalización, entre otras, siendo

estas las técnicas más comunes de emplearse, los factores entre estos métodos pueden ser el uso de disolvente, la temperatura, concentración, etc.^{26,27}

Figura 5. Representación esquemática de los métodos aplicados en la formación de cocristales. Tomada de Karagianni et. al. ²¹

2.4.1 Molienda mecanoquímica seca y asistida con disolvente

Una reacción mecánica-química consiste en la formación de las fases que se induce únicamente por la energía mecánica, considerado como un método de síntesis amigable para el medio ambiente debido a la ausencia del disolvente. Adicionalmente, puede realizarse manualmente y consiste en el uso de un mortero y pistilo, pero presenta algunos problemas al aumentar el tamaño de la muestra y un bajo rendimiento. En la molienda asistida con disolvente este último actúa como un catalizador durante el proceso de cocristalización.²⁶

2.4.2 Formación de pasta (slurry)

Este método consiste en un proceso simple y rápido que incluye la adición de disolvente de cristalización en los componentes, es decir, el IFA junto a un agente formador de fase, formando una suspensión que se mantiene bajo agitación constante.²⁸

2.4.3 Reacción de cristalización

La síntesis por reacción de cristalización se basa en la saturación, nucleación y el crecimiento de los cristales. Este método consiste en la formación de la fase sólida

cristalina mediante una relación estequiométrica en un disolvente con agitación constante, donde el componente que presente más baja solubilidad precipitará formando a la fase cristalina.²⁹

2.5 TÉCNICAS DE CARACTERIZACIÓN DE NUEVAS FASES SÓLIDAS

La caracterización de las fases sólidas cristalinas es importante durante el proceso de obtención. Generalmente se pueden caracterizar por difracción de rayos-X de polvos (DRXP), difracción de rayos-X de monocristal (DRXM), espectroscopía infrarroja (IR), calorimetría diferencial de barrido (DSC), análisis termogravimétrico (TGA) y resonancia magnética nuclear (RMN), entre otras técnicas para caracterizar sistemas farmacéuticos mono y multicomponentes.

2.5.1 Difracción de rayos-X de polvos

Considerada una de las técnicas no destructiva más utilizadas para la caracterización de sólidos. El análisis de una muestra por DRXP proporciona información importante que es complementaria a varios métodos microscópicos y espectroscópicos.

La difracción de rayos-X implica la medición de la intensidad de los rayos-X dispersados por los electrones en los átomos. Las ondas dispersadas por los átomos en diferentes posiciones llegan al detector con un cambio de fase relativo. Por lo tanto, las intensidades medidas proporcionan información sobre las posiciones atómicas relativas en una molécula. La difracción ocurre en ángulos que cumplen con la ecuación de Bragg: n $\lambda = 2d \sin \theta$ (figura 6), donde n es un número entero, λ es la longitud de onda de la radiación usada, *d* es el espacio perpendicular entre una serie de planos de la red cristalina y θ es el ángulo entre los rayos-X incidentes y el plano de reflexión.^{30,31}

2.5.2 Espectroscopía infrarroja

La espectroscopía IR es una de las técnicas analíticas comúnmente utilizadas para el estudio de cualquier compuesto en cualquier estado. Para la caracterización de cristales la espectroscopía infrarroja proporciona un análisis rápido y simple además de utilizar una cantidad muy pequeña de materia prima. Esta técnica permite identificar los grupos funcionales que se encuentran presentes en un compuesto de acuerdo con las bandas vibracionales características de cada grupo funcional, también se utiliza para el estudio de la formación de puente de hidrógeno y se ha empleado para evaluar si ha ocurrido o no la trasferencia de protón entre un ácido carboxílico y una base, esto es debido a que puede diferenciar entre la forma neutra del ácido carboxílico (R-COOH) y la forma iónica carboxilato (R-COO⁻). En fases sólidas encontraríamos entonces el contraión en el caso de una sal o el coformador en el caso de cocristales. ^{32,33} La región del espectro infrarrojo está dividida en tres regiones: cercano (1400-400 cm⁻¹), medio (4000-400 cm⁻¹) y lejano (400-200 cm⁻¹). La región media del IR se utiliza para el análisis de moléculas orgánicas tales como los ingredientes farmacéuticos activos.³²

2.5.3 Análisis térmico

El análisis térmico se refiere a las técnicas que pueden registrar los cambios tanto físicos como químicos en las propiedades de las muestras a través del cambio de temperatura contra el tiempo. Algunas propiedades medidas pueden ser la pérdida

de masa o el flujo de calor.²¹ La calorimetría diferencial de barrido (DSC) es la técnica de análisis térmico comúnmente empleada, donde la muestra se escánea dinámicamente o se mantiene isotérmicamente en el instrumento, y el flujo de calor de la muestra y la referencia se monitorean en función del tiempo y la temperatura. El calorímetro mide el calor y/o la energía absorbida o liberada por la muestra cuando se somete a la ruta de temperatura específica. A medida que ocurren reacciones químicas y transiciones físicas, hay una generación asociada (reacción exotérmica) o consumo (reacción endotérmica) de calor. Este proceso crea un flujo de calor que sirve como señal medida por el instrumento de calorimetría, el rango de temperatura más común 25-450 °C dependiendo del instrumento y de las especificaciones del análisis así como la finalidad del mismo.³⁴ Otra técnica complementaria es la termogravimetría que se encarga de medir la masa de una muestra mientras esta última se calienta o enfría en una atmosfera controlada, utilizada principalmente para caracterizar los materiales conforme a sus componentes.²¹

2.6 COCRISTALES FARMACÉUTICOS

Un cocristal farmacéutico está formado por un IFA y un agente cocristalizante también conocido como coformador, el cual debe ser una sustancia generalmente reconocida como segura (*GRAS*, por sus siglas en inglés) y los componentes se encuentran relacionados estequiométricamente. El diseño de una fase cocristalina comprende la formación de sintones supramoleculares. Un sintón supramolecular es una unidad estructural que puede formarse y/o ensamblarse mediante interacciones intermoleculares y proporcionan las características esenciales de una estructura cristalina.^{22,35}

Existen dos tipos de sintones supramoleculares (**figura 7a, 7b, 7c y 7d**). Los homosintones, que se forman entre dos grupos funcionales idénticos como: ácido carboxílico-ácido carboxílico, amida-amida. Los heterosintones, que son los que favorecen mayormente la formación de cocristales. y se encuentran compuestos por grupos funcionales diferentes, tales como: ácido carboxílico-nitrógeno aromático, ácido carboxílico-amida y alcohol-piridina.^{22,35}

Figura 7. Homosintones supramoleculares: (a) homosintón de ácido carboxílico como dímero y (b) homosintón con el dímero amida. Heteronsintones: supramoleculares (c) ácido carboxílico-amida (d) ácido carboxílico-piridina. Tomada de Naga K. & Zaworotko.¹⁹

2.6.1 Formación de una sal o un cocristal

Los IFAs a menudo se encuentran en forma de sales y recientemente en forma de cocristales. Las sales y los cocristales son cristales multicomponentes los cuales pueden distinguirse por la ubicación del protón entre un ácido y una base, para una sal se observa la transferencia del protón mientras que para los cocristales la trasferencia de protones se encuentra ausente.³⁶ La formación de sales requiere estrictamente ingredientes farmacéuticos activos con grupos ionizables mientras que para la obtención de un cocristal puede o no el compuesto ser ionizable. El rango, la naturaleza y el volumen de los formadores de cocristales farmacéuticamente aceptables son mucho más amplio que los contraiones y la formulación de cocristales también podrían presentar algunas ventajas sobre las sales, como una estructura y estequiometría más predecibles. Para la selección de una sal, los iones contrarios a menudo se eligen usando la regla de $\Delta p K_a$. El valor de $\Delta p K_a$ puede considerarse como un indicador útil para la formación de cocristales frente a las sales (**tabla 3**).^{37,33,38}

 $\Delta p K_a = p K_a$ [base protonada] – p K_a [ácido]

	Criterios
>4	Probabilidad de formar una sal
<-1	Probabilidad de formar un cocristal
-1, 4	Probabilidad de formar una sal o cocristal (50% en cada caso)

Tabla 3. Criterios para considerar la formación de una sal o un cocristal a partir del Δ pKa.

El desarrollo de productos farmacéuticos que contengan cocristales farmacéuticos es una estrategia novedosa y de gran interés para las ciencias farmacéuticas, debido a que, ofrecen ventajas para superar algunas limitaciones de un IFA. A través de la mejora de algunas propiedades fisicoquímicas y biofarmacéuticas tales como: solubilidad, velocidad de disolución, estabilidad física, punto de fusión y biodisponibilidad.^{17,18}

2.6.2 Modificación de las propiedades fisicoquímicas por cocristalización

Solubilidad. La mejora de la solubilidad en medios acuosos es una de las principales razones de la obtención de cocristales.³⁶ Por ejemplo, la cocristalización del fármaco ketoconazol mostró una mejora en la solubilidad.³⁹

Estabilidad física. Es la capacidad de los componentes del cristal para permanecer en la solución y no cristalizar fácilmente. Las pruebas de estabilidad para un cocristal incluyen cuatro aspectos: resistencia a la humedad relativa, estrés térmico, estabilidad química y estabilidad en solución. La prueba de resistencia a la humedad relativa se utiliza para identificar las mejores condiciones de almacenamiento para el producto porque la cantidad de agua presente en el cocristal puede llevar a un deterioro de la calidad, el estrés térmico y la estabilidad química.³⁶

Punto de fusión. Temperatura a la cual la fase sólida está en equilibrio con la fase líquida, es una propiedad física fundamental importante durante el desarrollo de fármacos en estado sólido cocristalino.³⁶

2.6.3 Propiedades biofarmacéuticas de un sólido cocristalino

Disolución. La disolución de un fármaco es la mezcla de dos fases, que resulta en la formación de una nueva fase homogénea. En el caso de una partícula sólida de fármaco, se disuelve en un fluido corporal (por ejemplo, en forma de sólido cocristalino o amorfo), y la otra fase es un líquido acuoso.⁴⁰

Una de las pruebas de disolución más usada en el área farmacéutica es la disolución intrínseca, la cual mide la velocidad de disolución de una sustancia pura de área de superficie constante, que es independiente de los efectos de la formulación y mide las propiedades intrínsecas del fármaco en función de los medios de disolución como lo es el pH, fuerza iónica. Debido a que la mayoría de los fármacos son clase II, la tasa de disolución intrínseca es un buen indicador para el rendimiento *in-vivo* del IFA.³⁶ Un cocristal modifica la velocidad de disolución intrínseca, tal como se ha reportado en un cocristal farmacéutico del fármaco antiparasitario clase II, el praziquantel (**figura 8**).⁴¹

Figura 8. Perfil de disolución intrínseca de praziquantel y el cocristal *R*-praziquantel con ácido *L*-málico en medio pH 1.2. Tomada de Sánchez-Guadarrama et al.⁴¹

Otra de las pruebas importantes de disolución para un sistema cocristalino, es bajo condiciones *no-sink*, que es un enfoque común en la generación de soluciones supersaturadas en el tracto gastrointestinal, que pueden impulsar una mejor

absorción. Estos estudios consisten en la evaluación *in vitro* de la sobresaturación del IFA. Induciendo la supersaturación en el medio de interés y evaluar las concentraciones del fármaco en solución en función del tiempo.⁴²

El último paso se asemeja a la evaluación de concentración clásica durante las pruebas de disolución tradicionales. No obstante, la cuantificación de supersaturación requiere que las concentraciones de fármaco medidas se combinen con la solubilidad en equilibrio del fármaco en el medio de prueba bajo consideración, con inclusión de componentes que alteran la solubilidad.

De esta manera la concentración de fármaco medida se puede expresar en relación con la solubilidad al equilibrio como el grado de supersaturación.^{42,43} Sin embargo, estos sistemas son metaestables debido a la tendencia energética del IFA a precipitar, por lo tanto, los inhibidores de la precipitación como es el caso de los excipientes poliméricos a menudo se usan para mantener el estado sobresaturado al inhibir la precipitación del fármaco. Estos sistemas pueden mantener la sobresaturación de fármacos durante escalas de tiempo fisiológicamente relevantes, presentado un efecto conocido como efecto *"spring-parachute"* (resorte-paracaídas). Además pueden prevenir cinéticamente la recristalización a través de una serie de mecanismos, que incluyen viscosidad, cosolvencia e interacciones fármaco-polímero.⁴⁴ La formación de sales y la amorfización de un IFA son los métodos más empleados para generar sistemas supersaturados de fármacos, sin embargo, la cocristalización es una estrategia para crear condiciones de supersaturación.

Para aprovechar la ventaja de supersaturación como estrategia para mejorar la solubilidad y velocidad de disolución de fármacos poco solubles, deben mantenerse dos pasos críticos.^{45,20}

- Generación de un estado supersaturado metaestable (uso de sales, dispersiones amorfas y cocristalinas).
- Mantenimiento del estado anterior (inclusión de excipientes farmacéuticos que retardan la precipitación).

La disolución de un cocristal en condiciones no-sink, muestra el siguiente comportamiento. Primero, el coformador que es el componente más soluble en agua, se extrae de la red cristalina al medio acuoso. Por lo tanto, las moléculas del fármaco con características hidrófobas se sobresaturan en el medio acuoso y el comportamiento de esta forma del fármaco de mayor energía (en comparación con el polvo cristalino) se conoce como efecto "resorte" ya que inmediatamente induce la precipitación de la forma sólida menos soluble. El estado supersaturado se debe mantener durante un periodo de tiempo suficiente para promover la absorción y requiere inhibir la precipitación mediante el uso de excipientes farmacéuticos u otros componentes que intervengan con la nucleación y/o el crecimien to cristalino. Este último comportamiento es el deseado y se conoce como el efecto "paracaídas" (figura 9). Por lo tanto, un cocristal es una alternativa para el sector farmacéutico para obtener un sistema supersaturado de fármacos y mejorar el rendimiento de disolución de IFAs poco solubles en medios acuosos y aprovechar su potencial de solubilización con el estudio de preformulaciones que combinen el uso de excipientes que prolonguen el estado supersaturado alcanzado.^{20,42}

Figura 9. El efecto resorte paracaídas para lograr una alta solubilidad aparente para IFAs insolubles en agua. Modificada de Bavishi & Borkhataria.²⁰

Durante el proceso de disolución se conoce que uno de los parámetros de importancia es la precipitación de la forma menos soluble y la estabilidad de las fases sólidas; es por ello la importancia de la determinación de la constante eutéctica del cocristal (K_{eu}) y la ventaja de solubilidad (SA). La constante eutéctica de un cocristal es un indicador termodinámico de estabilidad y solubilidad que es definida como:

Ecuación 1
$$K_{eu} = \frac{[Coformador]_{eu}}{[fármaco]_{eu}}$$

La relación de los componentes del cocristal (fármaco y coformador) en equilibrio con dos fases sólidas (fármaco y cocristal) en el punto eutéctico. Dado que la

Ecuación 2 solución está doblemente saturada con respecto al fármaco y al cocristal, las concentraciones eutécticas son independientes de la proporción de cocristal y fármaco en la fase sólida. La K_{eu} está entonces relacionada con la ventaja de solubilidad del cocristal sobre el fármaco (SA) expresada como:^{46,47}

$$K_{eu} = \frac{z}{y} SA^{(y+z)/z}$$

Donde SA es la relación molar del cocristal a solubilidades del fármaco.

Ecuación 3

$$SA = \frac{yS_{cocristal}}{S_{fármaco}}$$

Para que la solubilidad del cocristal y del fármaco esté en términos de moles de fármaco, la solubilidad del cocristal se multiplica por el coeficiente estequiométrico del fármaco y el cocristal que es más soluble que el IFA puro tiene un SA > 1. La SA puede obtenerse fácilmente de la simple evaluación de K_{eu} en función del pH, aditivos, disolvente y temperatura⁴⁷

La relación entre K_{eu} y SA se deriva considerando los equilibrios químicos y de fase en el punto eutéctico, donde los cocristales y los sólidos del fármaco están en equilibrio con la solución. La disociación del cocristal y los equilibrios de solubilidad del fármaco son ⁴⁷

Ecuación 4 $(Fármaco_y coformador_z)_{cocristal} \stackrel{K_{sp}}{\Leftrightarrow} y fármaco_{soln} + zCoformador_{soln}$

Ecuación 5

 $(Fármaco)_{cristal} \stackrel{S_{fármaco}}{\longleftrightarrow} Fármaco_{soln}$

La constante de equilibrio para la disociación del cocristal es el producto de solubilidad, K_{sp} de acuerdo con

$$K_{sp} = \frac{a^{y}_{fármaco} a^{y}_{coformador}}{afármaco_{v} coformador_{z}}$$

Ecuación 6

Donde *a* representa la actividad de la fase sólida es igual a 1, y K_{sp} es un producto de los componentes del cocristal en solución. El K_{sp} puede ser aproximado por un producto de concentración cuando las actividades están bajo el supuesto de idealidad, donde

Ecuación 7
$$K_{sp} = [Fármaco]^{y} [Coformador]^{z}$$

Los términos entre paréntesis representan concentraciones de componentes. Es importante tener en cuenta que K_{sp} es el producto de los constituyentes del cocristal en el mismo estado molecular que el cocristal (es decir, neutral) y no incluye ninguna otra especie en solución. Para los cocristales metaestables, K_{sp} puede determinarse en el punto eutéctico donde las fases sólidas del fármaco y el cocristal están en equilibrio con la solución. Usando las ecuaciones 4 y 7 junto con otros

equilibrios de solución relevantes (como ionización y/o **Ecuación 8**
solubilización), la solubilidad del cocristal ($S_{cocristal}$) puede estar relacionada con las concentraciones eutécticas de los componentes como

$$S_{\text{cocristal}} = \left(\frac{\left[fármaco\right]_{eu} \quad y \left[coformador\right]_{eu} \quad z}{y^{y} z^{z}}\right)^{1/(y+z)}$$

Donde las concentraciones eutécticas representan las concentraciones analíticas totales (ionizadas + no ionizadas) en el punto eutéctico.

La ecuación general que relaciona K_{eu} y SA (ecuación 2) se obtiene al expresar $S_{cocristal}$ en la ecuación 8 en términos de $S_{fármaco}$ y K_{eu} al considerar que

Ecuación 9
$$S_{fármaco} = [fármaco]_{eu}$$

Por lo tanto

Ecuación 10
$$S_{\text{cocristal}} = \left(\frac{\text{Sfármaco}^{y+z}\text{Keu}^z}{y^y z^z}\right)^{1/(y+z)}$$

Resolver para K_{eu} y sustituir $\frac{S_{cocristal}}{S_{fármaco}} = \frac{SA}{y}$ ecuación 3 da

Ecuación 11

$$K_{eu} = zy^{y/z} \left(\frac{SA}{y}\right)^{(y+2)/z}$$

Esta ecuación se simplifica para obtener la ecuación general dada por la ecuación 2 anterior como

Ecuación 12

$$K_{eu} = \frac{z}{y} SA^{(y+z)/z}$$

Biodisponibilidad. Es el alcance que tiene el fármaco puro cuando llega a circulación sistémica, la baja solubilidad oral es uno de los principales problemas que se presenta a la hora de desarrollar nuevas formulaciones y por ende uno de los desafíos más importantes en el ámbito farmacéutico.⁴⁸ El uso de cocristales farmacéuticos formulados con excipientes que funcionan como inhibidores de la precipitación es una de las estrategias durante el proceso de formulación de fases

cocristalinas. Por ejemplo, el cocristal de danazol con vainillina mejoró la biodisponibilidad de este fármaco con el uso de una formulación que combinó el empleo de un solubilizante e hidroxipropilcelulosa (HPC) como inhibidor de la precipitación (**figura 10**).⁴⁹

Figura 10. Efecto de la inhibición de la precipitación en el perfil farmacocinético de danazol. Tomada de Childs. et al. ⁴⁹

2.7 DESARROLLO DE FASES SÓLIDAS DE RICOBENDAZOL

Debido a las limitaciones de solubilidad acuosa que presenta ricobendazol, surge la necesidad de emplear nuevos enfoques de formulaciones efectivas para mejorar la baja biodisponibilidad la cual está asociada a la baja solubilidad en agua. Para superar estos desafíos, se han desarrollado diversas estrategias de formulación las cuales permiten mejorar dichas propiedades. La mejora de la solubilidad acuosa de los agentes antihelmínticos se ha abordado mediante el uso de diversas estrategias de formulación, tales como: uso de sales con iones inorgánicos, uso de codisolventes orgánicos, liposomas, surfactantes, nanopartículas, nanoesferas y ciclodextrinas, sin embargo, no se ha logrado mejorar la solubilidad.⁷

En nuestro grupo de investigación se han reportado nuevas fases sólidas de ricobendazol. En el año 2013 Millán-Mendoza y colaboradores identificaron y caracterizaron cinco nuevas fases sólidas de RBZ en combinación con ácido oxálico anhidro, ácido oxálico dihidratado, ácido 2,5-dihidroxibenzoico, ácido 2,6-dihidroxibenzoico y ácido gálico. Sin embargo, uno de los desafíos actuales es estudiar su desempeño en disolución bajo condiciones no-*sink* y evaluar el efecto de preformulaciones usando excipientes poliméricos y con ello la posible mejora en las propiedades de disolución de este fármaco antihelmíntico.

3.- JUSTIFICACIÓN

Una de las principales limitaciones que presentan los IFAs para el desarrollo farmacéutico es una baja solubilidad acuosa, lo que provoca una baja biodisponibilidad. Así mismo, los IFAs pueden presentar una baja velocidad de disolución, inestabilidad física y algunos otros problemas farmacocinéticos, los cuales no favorecen la actividad terapéutica del medicamento. Un porcentaje importante de IFAs actualmente en el mercado pertenecen al grupo II del SCB como el RBZ, un IFA de uso veterinario para el tratamiento de parasitosis. La formación de cocristales farmacéuticos es una estrategia reciente que se ha propuesto para mejorar las propiedades fisicoquímicas de los IFAs, y en nuestro grupo de investigación se han identificado y caracterizado nuevas formas cocristales de RBZ, en combinación con polímeros inhibidores de la precipitación. Para ello, será necesario incrementar la escala en la síntesis de los cocristales de RBZ, seleccionar un polímero farmacéutico que permita una mejora de la solubilización de RBZ y realizar los estudios de disolución con las preformulaciones cocristal-polímero.

4.- HIPÓTESIS

Se ha observado que los cocristales farmacéuticos producen un incremento en la solubilización del IFA hasta concentraciones supersaturadas. Preformulaciones que combinen estos cocristales con polímeros farmacéuticos inhibidores de la precipitación ayudarían a mantener niveles adecuados de solubilización de RBZ mejorando su desempeño como forma de dosificación oral.

5.- OBJETIVO GENERAL

Estudiar el desempeño de cocristales de ricobendazol en presencia de polímeros inhibidores de la precipitación a través de pruebas de disolución bajo condiciones farmacéuticas relevantes.

6.-OBJETIVOS ESPECÍFICOS

- Reproducir la síntesis de las fases cocristalinas de ricobendazol en combinación con ácido 2,5-dihidroxibenzoico (RBZ-25DHBA) y ácido 2,6-dihidroxibenzoico (RBZ-26DHBA) por el método de formación de pasta (*slurry*), molienda asistida por disolvente y reacción de cristalización.
- Caracterizar las fases sólidas usando las técnicas de difracción de rayos-X de polvos, termogravimetría, calorimetría diferencial de barrido y espectroscopía de infrarrojo.
- Escalar hasta 1 gramo las fases cocristalinas de RBZ por medio del método de molienda asistida con disolvente.
- Evaluar la estabilidad física de las fases sólidas en diferentes condiciones de temperatura o humedad relativa y en presencia de solución acuosa.
- Seleccionar por el método de solvent-shift compuestos poliméricos que inhiban o retarden la precipitación de RBZ en medios acuosos.
- Validar un método de cuantificación por cromatografía de líquidos de alta resolución para el RBZ, 25DHBA y 26DHBA.
- Determinar la constante eutéctica de las fases sólidas RBZ-25DHBA y RBZ-26DHBA.
- Realizar experimentos de disolución de polvos bajo condiciones no-sink (supersaturadas) para RBZ y las fases sólidas cocristalinas en un medio acuoso en presencia y ausencia de un polímero inhibidor de la precipitación.

7.-MATERIALES Y MÉTODOS

7.1 MATERIALES

Vasos de precipitado (10, 50, 100 mL, 500 mL), matraces volumétricos (5, 10,1000 mL), pipetas volumétricas (1, 5, 10 mL), probetas (100, 500 mL), agitadores magnéticos, viales de 4 mL, micropipetas (200, 1000 µL), termómetro, espátulas, swinnex, filtros Whatman #3, y jeringas.

7.1.2 REACTIVOS

Ricobendazol producto de investigación y desarrollo de proceso lote: OSE-04-18, ácido 2,5-dihidroxibenzoico 98% (Sigma-Aldrich), ácido 2,6-dihidroxibenzoico 98% (Sigma-Aldrich), agua destilada/agua desionizada, acetona grado HPLC, metanol grado HPLC, dimetilsulfóxido, acetonitrilo de grado HPLC, solución acuosa con ácido clorhídrico pH 1.2, buffer de fosfatos pH 6.0, buffer de fosfatos pH 6.8, buffer de acetatos pH 4.5 y METHOCEL[™] A15 (COLORCON) viscosidad (10-12 cP).

7.1.3 EQUIPOS

Balanza analítica OHAUS Modelo AdventurTM, parrilla de calentamiento, espectrofotómetro UV-vis VARIAN Cary® 50 Scan, destilador de agua ELGA PURELAB. Modelo OptionR7BP, recirculador de agua SD07R-20-AA1B POLYSCIENSE, molino Retsch® MM400, disolutor de polvos-personal reaction station, HPLC Agilent 1260 Infinity II y sonicador de medios Branson 2800.

7.2 MÉTODOS

7.2.1 SÍNTESIS DE LAS FASES SÓLIDAS RBZ-25DHBA Y RBZ-26DHBA MEDIANTE MOLIENDA MECÁNICA

Se colocaron cantidades estequiométricas (50 mg) de fármaco:coformador 1:1 para ambas fases sólidas en contenedores de acero inoxidable del molino Retsch® MM400, y se llevó a cabo la molienda durante 30 minutos a 25 Hz en ausencia (molienda seca) y presencia de 20 µL de disolventes tales como: agua (H₂O), acetona (ACT), acetonitrilo (ACN) y metanol (MeOH) (molienda asistida con disolvente). El sólido resultante de la molienda se caracterizó por difracción de rayos-X de polvos.

7.2.2 SÍNTESIS DE LAS FASES SÓLIDAS RBZ-25DHBA Y RBZ-26DHBA MEDIANTE FORMACIÓN DE PASTA (*slurry*)

Se colocaron en viales de 3 mL, cantidades estequiométricas de fármaco y coformador (50 mg) posteriormente se agregaron 30 µL de disolvente (H₂O, ACT, ACN y MeOH) los cuales se mantuvieron en agitación constante a temperatura ambiente durante 12 horas, el sólido resultante se caracterizó por difracción de rayos-X de polvos.

7.2.3 SÍNTESIS DE LA FASE SÓLIDA RBZ-25DHBA MEDIANTE REACCIÓN DE CRISTALIZACIÓN.

Se preparó una solución saturada del ácido 25DHBA en acetonitrilo y en agitación constante se agregaron 30 mg de RBZ hasta observar la formación de un precipitado. El sólido precipitado se recuperó y se lavó con el mismo disolvente utilizando anteriormente para después ser analizado por difracción de rayos-X de polvos.

7.2.4 ESCALAMIENTO DE LA FASE SÓLIDA RBZ-25DHBA MEDIANTE SLURRY.

El escalamiento de 1 g de la fase sólida RBZ- 25DHBA se llevó acabo adicionando cantidades estequiométricas de fármaco y coformador en un matraz bola y posteriormente se agregaron 1200 µL de acetonitrilo y se mantuvo en agitación constante a temperatura ambiente durante 24 horas, finalmente el sólido resultante se analizó por difracción de rayos-X de polvos.

7.2.5 ESCALAMIENTO DE LA FASE SÓLIDA RBZ-26DHBA MEDIANTE MOLIENDA ASISTIDA CON DISOLVENTE.

El escalamiento de 1 g de la fase sólida RBZ- 26DHBA se llevó acabo adicionando cantidades estequiométricas de fármaco y coformador en los contenedores de acero inoxidable del molino Retsch® MM400, posteriormente se adicionaron 100 µL de agua. La molienda duró 30 minutos a 25 Hz. La formación de la fase sólida escalada se corroboró por difracción de rayos-X de polvos.

7.3 CARACTERIZACIÓN FÍSICA

7.3.1 DIFRACCIÓN DE RAYOS-X DE POLVOS

Se llevó a cabo la caracterización de las materias primas y de las fases sólidas obtenidas mediante la técnica de difracción de rayos-X de polvos en un equipo BRUKER D8-ADVANCE, aproximadamente 1 mg de sólido fue analizado previamente seco en un rango 2 Theta de 5° a 45°.

7.3.2 CALORIMETRÍA DIFERENCIAL DE BARRIDO Y ANÁLISIS TERMOGRAVIMÉTRICO

Para el análisis termogravimétrico de las materias primas y de las fases sólidas generadas se llevó a cabo en un equipo, TGA Q50 TA y DSC Q2000 TA para el análisis calorimétrico. Aproximadamente 2 mg de cada muestra sólida fue colocado en charolas de aluminio abiertas y fueron analizadas en un rango de temperatura de 50-400°C, con una velocidad de calentamiento de 10°C/min y un flujo de 100 mL/min de nitrógeno como gas de purga.

7.3.3 ANÁLISIS ESPECTROSCÓPICO DE INFRARROJO

Los espectros de las materias primas y fases sólidas generadas fueron obtenidos en un equipo Nicolet 6700 en un intervalo de 4000 a 500 cm⁻¹ empleando un accesorio de muestreo ATR con sonda de diamante.

7.4 EVALUACIÓN BIOFARMACÉUTICA

7.4.1 ESTABILIDAD DE FASE EN SOLUCIÓN

En viales de 4 mL se colocaron 200 mg de las fases sólidas generadas RBZ-25DHBA y RBZ-26DHBA y se adicionaron 3 mL de solución acuosa (ácido clorhídrico pH 1.2, buffer de acetatos pH 4.5 o buffer de fosfatos pH 6.8 según sea el caso) y se mantuvo en agitación constante a 37 ±0.5°C. Se tomaron muestras a diferentes tiempos (1, 5, 30 minutos y 3, 6, 12 y 24 horas) se filtraron y el sólido residual se recuperó y se secó a temperatura ambiente para su análisis posterior por DRXP.

7.4.2 ESTABILIDAD INDICATIVA

Se pesaron 20 mg de las materias primas y de los cocristales (por duplicado), los cuales fueron expuestos por un mes a diversas condiciones de almacenamiento en una incubadora con temperatura y humedad controlada (desarrollado en Laboratorios Senoisiain S.A. de C.V.). Las condiciones evaluadas fueron: a) 40 °C calor seco, b) 50 °C calor seco, y c) 40 °C y 75% de humedad relativa (HR). Las muestras obtenidas al final del tiempo de incubación se analizaron por DRXP.

7.5 SELECCIÓN DE POLÍMEROS DE USO FARMACÉUTICO

Para la selección de los polímeros se utilizó la técnica *solvent shift* donde se probaron diferentes polímeros (Metilcelulosa, Hidroxipropilcelulosa, Hidroxipropilmetilcelulosa y Polivinilpirrolidona) candidatos capaces de retardar la precipitación del fármaco. En el experimento se añadieron 15 alícuotas de 10 µL de una solución stock de RBZ de 25mg/mL en DMSO a 3 mL de buffer de fosfatos pH 6.8 en ausencia y presencia del polímero predisuelto al 0.5% p/v bajo agitación constante a temperatura ambiente. Se determinó el nivel de turbidez del medio acuoso causado por las partículas del fármaco por espectrofotometría UV-vis a 550 nm en intervalos de 5 minutos durante 1 hora.

7.6 VALIDACIÓN DEL MÉTODO DE CUANTIFICACIÓN

Inicialmente se determinó el espectro Uv-vis de ricobendazol, los coformadores, 25DHBA y 26DHBA y de las mezclas físicas RBZ-25DHBA y RBZ-26DHBA a diferentes concentraciones en buffer de fosfatos (pH 6.8) para determinar los máximos de absorción de los analitos mencionados anteriormente (**Anexo 5**).

Muestra	Concentración (µg/mL)
RBZ	2 5 10 15 20
25DHBA	5
26DHBA	25
Mezcla física RBZ-25DHBA	40
Mezcla física RBZ-26DHBA	55

Tabla 4. Materias primas y mezclas físicas analizadas por Uv-vis a diferentesconcentraciones en solución de buffer de fosfato a pH 6.8.

Para la cuantificación de RBZ, 25DHBA y 26DHBA se desarrolló un método por cromatografía líquida de alta resolución (*HPLC* por sus siglas en inglés) en un cromatógrafo Agilent Technologies 1260 infinity II.

Preparación de la curva de calibración: Se preparó una solución stock de la mezcla física RBZ-25DHBA y RBZ-26DHBA a 0.5 mg/mL en acetonitrilo-PBS pH 6.8. Posteriormente se prepararon las soluciones de la curva de cuantificación

mediante la dilución de la solución stock para obtener concentraciones de 5, 10, 20, 30, 40 y 50 µg/mL.

Equipo y condiciones cromatográficas: El sistema cromatográfico consistió en una bomba cuaternaria y viales de vidrio de 3 mL con tapa y posta de plástico. La separación cromatográfica se efectuó en una columna C18 VSK120156. La fase móvil consistió en una mezcla de acetonitrilo-PBS pH 6.0 en una proporción 25:75 v/v para la mezcla física RBZ-25DHBA y 23:77 v/v para RBZ-26DHBA. La velocidad de flujo fue de 1 mL/min, con un volumen de inyección de 10 µL y una temperatura de columna de 30°C. La cuantificación de RBZ, 25 DHBA y 26DHBA fue a 292, 320 y 306 nm respectivamente.

7.7 CONSTANTE EUTÉCTICA Y VENTAJA DE SOLUBILIDAD

Con base en la metodología propuesta por Rodríguez Hornedo, N;⁴⁷ las concentraciones eutécticas de los componentes de los cocristales RBZ-25DHBA y RBZ-26DHBA se determinaron colocando 50 mg de RBZ y 100 mg de la fase cocristalina en 3 mL de HCI pH 1.2 y buffer de fosfatos pH 6.8 a 37 °C (± 0.5 °C) en agitación constante durante 24 horas. Una vez transcurrido el tiempo las muestras fueron filtradas y diluidas para la cuantificación del fármaco y coformador por HPLC. Se midió el pH al final de la prueba y el equilibro del fármaco/cocristal en solución se demostró con el análisis por DRXP. Los experimentos se realizaron por triplicado.

7.8 DISOLUCIÓN DE POLVOS BAJO CONDICIONES NO-SINK

Se realizó el estudio de disolución de polvos de RBZ y los cocristales RBZ-25DHBA 1:1 y RBZ-26DHBA 1:1 bajo condiciones *no-sink* utilizando el aparato de disolución de polvos (Reaction Station) a 37 °C (\pm 0.5 °C) a una velocidad de agitación de 90 rpm. Se colocaron 200 mg de fármaco o cocristal en un tubo de vidrio y seguido se adicionaron 10 mL de medio de disolución, se tomaron muestras de 1 mL aproximadamente a diferentes tiempos (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 60 y 90 minutos) se filtraron usando un filtro Whatman No. 3, el volumen equivalente de muestra tomada fue repuesto. En cada muestra filtrada se añadió 1 mL de acetonitrilo (para prevenir la precipitación del fármaco). Las muestras fueron diluidas para determinar las concentraciones del IFA y los coformadores por HPLC a 292, 320 y 306 nm, respectivamente; basándose en la curva de cuantificación previamente establecida. En este estudio se usó como medio de disolución una solución de buffer de fosfatos (pH 6.8) con y sin METHOCEL[™] A15 predisuelto en una concentración de 0.5% p/v. Todos los experimentos se realizaron por triplicado y los datos fueron procesados en Microsoft Excel 2016.

7.9 ANÁLISIS ESTADÍSTICO DE LOS PERFILES DE DISOLUCIÓN

El análisis estadístico de los perfiles de disolución de RBZ y las fases sólidas RBZ-25DHBA y RBZ-26DHBA en ausencia y presencia de METHOCEL[™] A15 se llevó a cabo por medio de un análisis de varianza (ANOVA) de 2 factores, usando como variable dependiente el área bajo la curva (ABC) y un valor alfa de 0.05. Posteriormente, se realizó una comparación múltiple de medias (Tukey) para determinar las diferencias entre los grupos de datos utilizando el software statgraphics[®] Centurion 16.2.

8.- RESULTADOS Y DISCUSIÓN

8.1 CARACTERIZACIÓN FISICOQUÍMICA Y BIOFARMACÉUTICA DE LA FASE SÓLIDA RBZ-25DHBA

Difracción de rayos-X de polvos

Con el objetivo de reproducir la fase sólida ricoben dazol-ácido 2,5-dihidroxibenzoico (RBZ-25DHBA) reportada previamente por Millán-Mendoza en el 2013.⁵⁰ Se obtuvo esta fase sólida en relación estequiométrica 1:1 (fármaco:coformador) por el método de molienda mecanoquímica, formación de pasta (*slurry*) y reacción de cristalización.

En la **figura 11** se observa el patrón de DRXP de las muestras obtenidas por el método de molienda con y sin disolvente. El patrón de DRXP del producto de molienda seca (**figura 11c**) mostró una mezcla del cocristal y de materias primas, por lo que no fue posible obtener una fase pura. Un comportamiento similar se observó en el sólido obtenido por molienda con agua y acetona como disolventes. La muestra obtenida en presencia de acetonitrilo (ACN) y metanol (MEOH) resultó en una fase sin remanente de materias primas (**figura 11e y 11g**).

Figura 11. Patrón de DRXP de a) RBZ, b) 25DHBA y muestras de molienda de la mezcla física RBZ-25DHBA c) sin disolvente d) ACT, e) ACN, f) H₂O y g) MeOH.

Adicionalmente, se utilizó la técnica de formación de pasta para explorar la obtención de la fase sólida RBZ-25DHBA utilizando los disolventes mencionados anteriormente en el método de molienda, y como se observa en la **figura 12** se obtuvo un sólido sin remanente de materias primas usando ACN. Finalmente, se seleccionó este disolvente para obtener la fase sólida por el método de reacción de cristalización con la finalidad de mejorar la pureza de la fase sólida. Sin embargo, presentó un bajo rendimiento, por ambas técnicas se obtuvo el sólido esperado (**figura 12c y 12g**).

Figura 12. Patrón de DRXP de a) RBZ, b) 25DHBA y muestras obtenidas por c) reacción de cristalización y *slurry* de la mezcla física RBZ-25DHBA en presencia d) MEOH, e)H₂O, f) ACT y g) ACN.

Con la finalidad de aumentar la cantidad de fase sólida RBZ-25DHBA se llevó acabo el escalado de 50 mg hasta 1 g. En la **figura 12** se muestra el patrón de DRXP de la búsqueda de la fase sólida por *slurry* en presencia de ACN (**figura 12g**), posteriormente se observa en la **figura 13** el escalamiento de la fase sólida RBZ-25DHBA, el cual presentó el mismo patrón de difracción al ya antes reportado (ver **anexo 1**).

Figura 13. Patrón de DRXP de a) RBZ, b) 25 DHBA, c) RBZ-25 DHBA d) Escalamiento RBZ-25DHBA mediante *slurry*.

Análisis mediante espectroscopía infrarroja

Las materias primas y la fase sólida RBZ-25DHBA fueron analizadas por espectroscopía IR. Debido a que esta técnica permite detectar los grupos funcionales en un compuesto mediante la observación de las bandas características debido a sus movimientos vibracionales y, además, es posible observar cambios en la vibración de estos cuando participan en las interacciones intermoleculares.^{32,33}

En la **figura 14** se muestra el espectro de IR de RBZ, 25DHBA y de la fase sólida RBZ-25DHBA, y en la **tabla 5** se presenta la asignación de las vibraciones correspondientes a los grupos funciones. El espectro de RBZ muestra una banda de estiramiento asimétrico del grupo carbonilo (C=O) de la amida en 1728 cm⁻¹, el estiramiento de la amina (N-H) se encuentra en 3167 cm⁻¹ y la banda de estiramiento del grupo sulfóxido (S=O) se encuentra en 1026 cm⁻¹. En el caso del 25DHBA se muestran bandas del ácido carboxílico en 1663 cm⁻¹ correspondiente al grupo carbonilo y del grupo hidroxilo (OH) en 1184 cm⁻¹. El hidroxilo fenólico se encuentra en 3130 cm⁻¹ como una banda ancha. El espectro de la fase RBZ-25DHBA muestra que hay un desplazamiento de la banda correspondiente al grupo carbonilo (C=O) del RBZ y del 25DHBA a 1732 y 1645 cm⁻¹, respectivamente.

Figura 14. Comparación de los espectros IR de RBZ (negro), 25DHBA (rosa) y RBZ-25DHBA (azul).

La espectroscopía IR es una herramienta útil para discernir entre la formación de una sal o un cocristal, dado que, la vibración del C=O del grupo ácido carboxílico se encuentra alrededor de 1700 cm⁻¹ mientras el ion carboxilato (RCOO⁻) presenta dos tipos de vibraciones en las regiones entre 1550-1650 cm⁻¹ (asimétrica) y 1350-1450 cm⁻¹ (simétrica) del espectro IR. En este caso, el coformador usado en la obtención de la nueva fase presenta un grupo ácido carboxílico en su estructura y, por lo tanto, es posible examinar por esta técnica si el desplazamiento del C=O se debe a la formación del grupo carboxilato (COO-). El espectro IR de la fase RBZ-25DHBA mostró que el carbonilo del 25DHBA se desplazó desde 1663 cm⁻¹ hasta 1645 cm⁻ ¹, lo que correspondería a la formación del ion carboxilato de acuerdo con el criterio anterior, sin embargo, no hay una banda intensa en la región de la vibración simétrica (1350-1450 cm⁻¹) y, por lo tanto, no es convincente si el producto obtenido correspondería a una sal o a un cocristal. Usando la regla del ΔpKa (ΔpKa = pKa[base protonada] – pKa[ácido]), que permite establecer si es probable la formación de una sal o un cocristal, se obtuvo un valor de $\Delta p Ka = 0.4$ (el pKa de RBZ reportado es 3.5 y el del 25DHBA es de 3.01), indicando que es posible tanto la formación de una sal o de un cocristal.^{51,52,53} Estas posibilidades se deben corroborar con el análisis de difracción de rayos-X de monocristal.⁵⁴

Grupo	RBZ	25DHBA	RBZ-25DHBA	Asignación
C=0	1728	1663	1732-1645	Estiramiento asimétrico
S=0	1026	-	1006	Estiramiento simétrico
C-H	2970-2950	-	-	Estiramiento asimétrico
CH ₂	1466	-	-	Tensión
CH ₃	1368-1447	-	-	Tensión
C=C (aromático)	1632	1598	-	Estiramiento asimétrico
C-0	-	1438	-	Estiramiento
(C=O)-OH	-	1184	1226	Deformación en el plano
OH	-	3130	3057	Estiramiento simétrico
N-H	3167	-	3405	Estiramiento asimétrico

Tabla 5. Análisis de las vibraciones de IR de materias primas y fase sólida RBZ-
25DHBA.

Análisis térmico

Termogravimetría

El análisis térmico es usado en el área farmacéutica para monitorear la formación de nuevas formas sólidas debido a que el comportamiento térmico de los productos obtenidos es diferente en comparación con los componentes de partida.

La **figura 15**, ilustra el comportamiento termogravimétrico del RBZ, 25DHBA y la NFS RBZ-25DHBA. El termograma TG del RBZ muestra una descomposición en dos etapas, la primera pérdida se observó en 215 °C (29 %) y una segunda en 307 °C que corresponde al 17% (**Tabla 6**). En caso del ácido 2,5-dihidroxibenzoico se lleva a cabo en una sola etapa a 206 °C con una pérdida del 99% de masa, indicando la sublimación de este compuesto. La fase RBZ-25DHBA presenta una

pérdida de masa en dos etapas, la primera inicia en 184 °C con un porcentaje de pérdida del 37% y se asocia a la liberación del 25DHBA ya que el porcentaje esperado para el coformador corresponde al 35%. Posteriormente, la segunda etapa de pérdida de masa se atribuye a la descomposición del RBZ (**Tabla 6**). El comportamiento termogravimétrico de las materias primas, así como de la fase sólida de RBZ-25DHBA se analizó con el uso de la primera derivada de los termogramas (ver **anexo 3**).

Figura 15. Curvas TG de a) RBZ, b) 25DHBA y c) nueva fase sólida RBZ-25DHBA.

	Temperatura (°C)	%Pérdida de peso	Evento
RBZ	215 307	29 17	Descomposición del RBZ en dos etapas
25DHBA	206	99	Sublimación del coformador
RBZ- 25DHBA	184	37	Liberación del 25DHBA y descomposición del RBZ

Tabla 6. Análisis de DTG de las materias primas y de la fase sólida generada.

Calorimetría diferencial de barrido

En la **figura 16** se muestra la curva DSC de la fase RBZ-25DHBA, donde se observa un evento endotérmico a 175°C que corresponde al punto de fusión del sólido seguido de un evento de descomposición de la fase (184 °C). Este comportamiento es diferente con las materias primas, por ejemplo, el RBZ presentó un pico endotérmico a 219°C que se asocia a un proceso de fusión/descomposición. Por otro lado, el termograma del ácido 2,5-dihidroxibenzoico presentó una endoterma a 206°C que se atribuye a la sublimación del coformador (**tabla 7**).

Figura 16. Curva DSC de RBZ (negro), 25DHBA (rosa) y RBZ-25DHBA (azul).

RBZ	219	Fusión-descomposición
25DHBA	206	Sublimación
RBZ-25DHBA	175	Fusión-descomposiciór

Tabla 7. Análisis DSC de las materias primas y la fase sólida RBZ-25DHBA

EVALUACIÓN BIOFARMACÉUTICA

Estabilidad indicativa

Uno de los parámetros importantes durante el proceso de formulación de fármacos es evaluar factores que afectan su estabilidad bajo condiciones de almacenamiento tales como la temperatura, humedad y luz. En nuestro país, la norma NOM-073-SSA1-2015 de estabilidad de fármacos y medicamentos menciona que los estudios de estabilidad son una evidencia científica que permiten asignar o confirmar los periodos de caducidad (vida útil) o de reanálisis, tiempos de permanencia a granel o productos intermedios almacenados durante el proceso.⁵⁵ Los estudios de estabilidad pueden realizarse de dos maneras (acelerada y a largo plazo). La primera son estudios los cuales están diseñados bajo condiciones extremas de almacenamiento y estabilidad.

En este trabajo de investigación, se llevó a cabo un estudio de estabilidad indicativa para evaluar la integridad física y química de las materias primas y la nueva fase sólida RBZ-25DHBA bajo condiciones de temperatura y humedad controlada. Tales como: 40 °C calor seco, 50°C calor seco y 40 °C, 75 % HR.

En la **figura 17, 18 y 19** se observa el patrón de DRXP de RBZ, 25DHBA y la nueva fase sólida RBZ-25DHBA, respectivamente, en comparación con el patrón de DRXP de las muestras provenientes del estudio de estabilidad. En todos los casos, el patrón de DRXP de las muestras de estabilidad bajo condiciones de estrés térmico y humedad mostraron picos de difracción característicos de los sólidos de referencia, demostrando que no existe cambio físico y que los sólidos cristalinos son físicamente estables bajo las condiciones estudiadas aquí.

Figura 17. Patrón de DRXP de a) RBZ y muestras de estabilidad de RBZ al b y c) 40 °C calor seco, d y e) 40 °C y 75 % HR calor húmedo y f y g) 50 °C calor seco.

Figura 18. Patrón de DRXP de a) 25DHBA y muestras de estabilidad de 25DHBA al b y c) 40 °C calor seco d y e) 40 °C y 75 % HR calor húmedo y f y g) 50 °C calor seco.

Figura 19. Patrón de DRXP de a) RBZ, b) 25DHBA, c) RBZ-25DHBA y muestras de estabilidad de RBZ-25DHBA al d y e) 40 °C calor seco, f y g) 40 °C y 75 % HR calor húmedo y h y i) 50 °C calor seco.

Estabilidad de fase en solución

La estabilidad de fase es la capacidad que tiene el cocristal de estar en contacto con alguna solución acuosa sin sufrir una transformación física. El estudio de estabilidad de la fase sólida RBZ-25DHBA se realizó en tres soluciones con diferente valor de pH con la finalidad de simular condiciones relevantes del tracto gastrointestinal (pH 1.2, pH 4.5 y pH 6.8) y adicionalmente, para evaluar el efecto de los componentes ionizables.

La estabilidad física se monitoreó por DRXP y los resultados se presentan en las figuras 19, 20 y 21. En la **figura 20** se observó que la NFS RBZ-25DHBA no sufre transformación física en la solución acuosa pH 1.2 hasta las 24 horas, dado que el sólido recuperado muestra picos de difracción del sólido inicial. Sin embargo, al estar en contacto con el medio acuoso pH 4.5 (**figura 21**) la fase es físicamente inestable, ya que en los difractogramas se mostró que existe una transformación de fase mediada por la solución hacia el fármaco de partida a partir del minuto 1. Un comportamiento similar se observó en la solución amortiguadora pH 6.8 (**figura 22**), donde a partir del minuto 1 se observan picos de difracción de RBZ y la NFS RBZ-25DHBA, lo cual demuestra que sufre transformación de fase en solución. La existencia de ambas fases sólidas en equilibrio se mantuvo hasta 1 h y a partir de este tiempo la conversión total al fármaco puro fue observada. Estos resultados demostraron que la fase RBZ-25DHBA sufre transformación de fase en solución pH-dependiente, debido a la capacidad de solubilización de los componentes de la fase sólida.

Ácido clorhídrico (HCI) pH 1.2

Figura 20. Patrón de DRXP de a) RBZ, b) 25DHBA, c) RBZ-25DHBA, y muestras de estabilidad de la fase RBZ-25DHBA al d) 1 min, e) 5 min, f) 30 min, g) 1 h, h) 3 h, i) 6 h, j) 12 h y k) 24 h. Figura 21. Patrón de DRXP de a) RBZ, b) 25DHBA, c) RBZ-25DHBA, y muestras de estabilidad de la fase RBZ-25DHBA al d) 1 min, e) 5min, f) 30 min, g) 1 h, h) 3 h, i) 6 h, j) 12 h.

Buffer de fosfatos pH 6.8

Figura 22. Patrón de DRXP de a) RBZ, b) 25DHBA, c) RBZ-25DHBA, y muestras de estabilidad de la fase RBZ-25DHBA al d) 1 min, e) 5 min, f) 30 min, g) 1 h, h) 3 h, i) 6 h, j) 12 h y k) 24 h.

Validación del método analítico para la cuantificación de RBZ y 25DHBA

Para cuantificar RBZ y 25DHBA provenientes de las pruebas de disolución se desarrolló un método analítico por cromatografía líquida de alta resolución (*HPLC*, por su terminología en inglés), dado que no fue posible cuantificar los analitos por espectrofotometría UV-vis por la interferencia en la longitud de onda de absorción del RBZ (ver **anexo 5**).

Los parámetros de desempeño que se validaron fueron: adecuabilidad del sistema cromatográfico, linealidad, precisión, exactitud, especificidad, límite de detección, y límite de cuantificación con base en la guía de validación de métodos analíticos del colegio nacional de químicos farmacéuticos biólogos, A.C.⁵⁶

La adecuabilidad del sistema se realizó analizando una solución de fármaco y coformador con una concentración de referencia de 30 µg/mL por quintuplicado. El criterio de aceptación indica que el coeficiente de variación debe ser menor al 3% y el método es adecuado de acuerdo con este criterio (**anexo 6**).

La linealidad, precisión se evaluó preparando curvas de cuantificación por triplicado por 3 días, con seis concentraciones sin incluir el cero. Se calculó el coeficiente de determinación (r^2), el intercepto (β 0) y la pendiente (β 1) a partir del análisis de regresión para evaluar la linealidad. La precisión y repetibilidad se determinó con el coeficiente de variación (C.V) de la respuesta analítica (FR) por triplicado en cada día. En la **figura 23** se muestran los datos obtenidos de la validación de linealidad para el RBZ (**figura 23a**) y el 25DHBA (**figura 23b**) con valores de coeficiente de determinación ($r^2 \ge 0.999$), es decir, ambos analitos cumplen con el criterio de aceptación.

Figura 23. Curva de regresión ajustada de a) RBZ y b) 25DHBA.

Para la validación de la precisión se determinó el coeficiente de variación de cada concentración de la curva de calibración, la guía de validación indica que un método es preciso cuando tienen un CV% menor al 2%. En la **tabla 8** se muestran los datos obtenidos de la precisión del método para ambos analitos, donde se observa que cumplen con los criterios de aceptación con un CV<2% en todas las concentraciones.

Tabla 8. Determinación de la precisión del método de cuantificación de RBZ y 25DHBA.

Ricobendazol				Á	cido 2,5-dihidro	xibenzoico	
[µg/mL]	Área	FR	CV%	[µg/mL]	Área	FR	CV%
5	98422939	19684587.8		5	43521937	8704387.4	
5	101293003	20258600.6		5	44618190	8923638	
5	100118724	20023744.8	1.44	5	44378315	8875663	1.30
10	201136672	20113667.2		10	89375784	8937578.4	
10	202604153	20260415.3		10	89850347	8985034.7	
10	202664778	20266477.8	0.43	10	90802628	9080262.8	0.81
20	405743626	20287181.3		20	176471716	8823585.8	
20	398538785	19926939.3		20	179065998	8953299.9	1.23
20	403579702	20178985.1	0.92	20	180830414	9041520.7	
30	590893871	19696462.4		30	263592302	8786410.07	
30	599398063	19979935.4		30	267351774	8911725.8	
30	598876652	19962555.1	0.80	30	266739309	8891310.3	0.76
40	788736217	19718405.4		40	350520925	8763023.13	
40	800589595	20014739.9		40	356094463	8902361.58	
40	795081641	19877041.0	0.75	40	354349615	8858740.38	0.81
50	997328472	19946569.4		50	443997705	8879954.1	
50	991346632	19826932.6		50	442694074	8853881.48	
50	1006111327	20122226.5	0.74	50	447745849	8954916.98	0.59
Promedio		20008081.50		Promedio		8895960.81	
Desviación e	estándar	199065.27		Desviaciór	n estándar	93336.33	
C.V		0.99		C.V		1.05	

El límite de detección (LD) y cuantificación (LC) fueron determinados a partir de la pendiente (β 1) y el intercepto (β 0) a partir del análisis de regresión lineal de la curva de cuantificación, de acuerdo con las siguientes ecuaciones.

$$LD= 3.3 \frac{intercepto}{pendiente} \qquad LC= 10 \frac{intercepto}{pendiente}$$

En la **tabla 9** se observan los resultados obtenidos, donde, el límite de cuantificación establece la concentración mínima del analito de interés que puede ser cuantificable por el método y que se encuentra dentro del rango donde existe proporcionalidad entre la concentración y la respuesta del equipo.⁵⁶

		[µg/mL]		Área	
		RBZ	25DHBA	RBZ	25DHBA
Límite detección	de	0.25	0.25	7835414.75	2825893.80
Límite cuantificación	de	0.77	0.75	18034499.77	7268997.41

Tabla 9. Límite de detección y cuantificación del método analítico para cuantificación deRBZ y 25DHBA.

La especificidad se evaluó inyectando muestras de RBZ y 25DHBA individuales y a partir de la mezcla física, con la finalidad de identificar cambios cuando se analicen las muestras provenientes de la disolución de la nueva fase sólida. En la **figura 24** se ilustran los tiempos de retención de RBZ (2.9 minutos) y 25DHBA (1.4 minutos), en ambos analitos el tiempo de retención es similar para una muestra individual y a partir de la mezcla física.

Figura 24. Cromatogramas de RBZ (292 nm) puro (a) y a partir de la mezcla física (b), 25DHBA (320 mn) puro (c) y a partir de mezcla física (d).

Constante eutéctica y ventaja de solubilidad

A partir de la cuantificación de las concentraciones del fármaco y coformador en el punto eutéctico, es decir, donde el fármaco y la fase sólida RBZ-25DHBA están en equilibrio en solución se determinó la constante eutéctica del cocristal y la identidad de las fases sólidas en equilibrio se demostró por el análisis de DRXP de muestras obtenidas a las 24 h en soluciones acuosas con valor de pH 1.2 y 6.8 (**figura 25** y **26**), donde, se observan picos de difracción correspondientes al RBZ y la fase RBZ-25DHBA en equilibrio en las dos soluciones estudiadas.

Una vez alcanzado el equilibrio se determinaron las concentraciones de fármaco y coformador y además se midió el pH al finalizar el experimento (ver **anexo 8**). La constante eutéctica (K_{eu}) se calculó usando la siguiente ecuación para un cocristal de estequiometría 1:1 y los resultados obtenidos se muestran en la **tabla 10**.

$$K_{eu} = \frac{[coformador]_{eu}}{[fármaco]_{eu}} = \frac{S_{cocristal}}{S_{fármaco}} = (SA)^2$$

La K_{eu} determinada a pH 1.2 fue de 0.55 mientras que a pH 6.8 fue de 26.95. De acuerdo con lo reportado en la literatura para fases cocristalinas, cuando la K_{eu} < 1 el cocristal es menos soluble que el fármaco , a valores de K_{eu} =1 el cocristal es igual de soluble y si la K_{eu} > 1 el cocristal es más soluble.^{47,39}

Por lo tanto, a pH 6.8 la fase RBZ-25DHBA tiene una mayor solubilidad y de acuerdo con el comportamiento de cocristales con K_{eu} mayor 1, puede ocurrir el fenómeno de transformación de fase mediada por la solución y probablemente se induzca la precipitación de la forma menos soluble del fármaco durante el proceso de disolución bajo condiciones supersaturadas (no-*sink*). Adicionalmente, a partir de los datos obtenidos se determinó la ventaja de solubilidad, donde la ventaja de solubilidad determinada a pH 6.8 fue mayor (5.19) comparada con la solución pH 1.2 con un valor de 0.74 (**tabla 10**).

Tabla 10.	Concentración eutéctica,	constante eutéctica (Keu) y ventaja de	solubilidad ((SA)
	de	la fase RBZ-25DHBA.			

рН	[RBZ] _{eu} mM	[25DHBA] _{eu} mM	Keu	SA
1.2	7.458 ± 0.091	4.105 ± 0.026	0.550 ± 0.005	0.741 ± 0.003
6.8	0.379 ± 0.014	10.211 ± 0.161	26.952 ± 0.740	5.191 ± 0.071

Disolución de polvos bajo condiciones no-sink

La disolución de polvos bajo condiciones no-*sink* se utiliza para estudiar las condiciones de supersaturación de un fármaco. Un cocristal o una sal son fases sólidas que pueden inducir la supersaturación, es decir, incrementan la concentración por encima del valor de la solubilidad en equilibrio del fármaco puro al ser fases sólidas con una disolución rápida se tiene el riesgo de generar la

reprecipitación del fármaco porque ese estado de alta concentración es termodinámicamente in estable y tiende a reprecipitar la forma menos soluble. El uso de ten soactivos y polímeros se han empleado para controlar la disolución de los cocristales, la supersaturación del fármaco y la precipitación (DSP por sus siglas en inglés) donde se ha demostrado que la ventaja de solubilidad depende de la solubilización del fármaco por aditivos, por lo que se cree que esta propiedad del cocristal permite la selección de excipientes que controlen la DSP, ya que la ventaja de solubilidad representa la fuerza impulsora de la precipitación del fármaco durante la disolución del cocristal.

En la figura 27 se observa el perfil de disolución de RBZ puro y de la nueva fase sólida RBZ-25DHBA en buffer de fosfatos pH 6.8 bajo condiciones no-sink. El ricobendazol alcanzó una concentración máxima (Cmáx) de 0.12 mg/mL y se mantuvo durante los 90 min del experimento. El perfil de disolución fue mejorado por la nueva fase RBZ-25DHBA va que alcanzó una $C_{max} = 3.17$ mg/mL, es decir, 26 veces más que el fármaco. La fase RBZ-25DHBA generó un estado supersaturado, descrito en la literatura como el efecto resorte-paracaídas.⁵⁷ Sin embargo, la alta concentración generada por esta fase disminuye gradualmente hasta los 30 min. La disminución de la concentración de RBZ se atribuye a la precipitación de RBZ puro, tal como lo indica el análisis por DRXP de los sólidos residuales recuperados después de los experimentos de disolución (anexo 13). En este último análisis se observó a partir del minuto 2 una transformación de fase mediada por la solución al fármaco original y se observó una mezcla de fármaco y de la fase estudiada hasta los 30 min de la prueba que coincide con el perfil de disolución obtenido, después de los 30 min se observó una conversión completa a la forma menos soluble de RBZ.

Se ha reportado que la supersaturación alcanzada a partir de dispersiones sólidas amorfas, sales y cocristales se puede prolongar con la adición de excipientes poliméricos. Recientemente, en el grupo de investigación se observó que el polímero metilcelulosa generó y mantuvo concentraciones supersaturadas a partir de formas cocristalinas de nitazoxanida.⁵⁸ Con el propósito de evaluar el efecto de

un excipiente polimérico en el perfil de disolución de la fase sólida RBZ-25DHBA, se seleccionó el polímero metilcelulosa (METHOCEL[™] A15) donde en un estudio reciente se observó por el método de *solvent-shift* que es capaz de retardar la precipitación de albendazol (ABZ) en solución acuosa.⁵⁹ Y debido a la similitud estructural de RBZ con ABZ se realizaron pruebas de disolución de polvos en presencia de METHOCEL[™] A15 predisuelto al 0.5% p/v.

En comparación con los perfiles de disolución en ausencia de polímero, en presencia de METHOCEL[™] A15 predisuleto en el medio de disolución RBZ mostró un aumento en la solubilización alcanzando una concentración máxima (C_{máx}) de 0.21 mg/mL, aproximadamente 1.75 veces más. El mejor efecto del polímero se observó en el perfil de disolución de la fase sólida RBZ-25DHBA, ya que prolongó el estado de supersaturación durante 90 min. Los sólidos residuales después de la disolución en presencia de METHOCEL[™] A15 fueron analizados por espectroscopía IR (**anexo 14**), donde se observa que hasta los 60 min hay una mezcla de bandas características del fármaco y la nueva fase sólida. El polímero retarda parcialmente la conversión de la nueva fase sólida a la fase menos soluble del RBZ, y mantiene la supersaturación.

Figura 27. Perfil de disolución de polvos de RBZ puro y RBZ-25DHBA en ausencia y presencia de METHOCEL[™] A15 predisuelto al 0.5% p/v en buffer de fosfatos pH 6.8.

8.2 CARACTERIZACIÓN FISICOQUÍMICA Y BIOFARMACÉUTICA DE LA FASE SÓLIDA RBZ-26DHBA

Difracción de rayos-X de polvos

En el trabajo previo en el grupo de investigación llevado a cabo por Millán-Mendoza, además de la fase sólida de ricobendazol con ácido 2,5-dihidroxibenzoico se obtuvo una nueva fase sólida de RBZ con el ácido 2,6-dihidroxibenzoico en una relación molar 1:1 (RBZ-26DHBA). Esta nueva fase sólida se sintetizó por el método de molienda mecanoquímica y formación de pasta (*slurry*) y se caracterizó por DRXP. Los resultados se describen a continuación.

En la **figura 28** se observa el patrón de DRXP de las muestras obtenidas por el método de molienda con y sin disolvente. La molienda seca demostró reproducir la fase sólida antes reportada (**figura 28c**), un comportamiento similar se observó en el sólido obtenido por molienda asistida con disolvente (**figura 28d, 28e, 28f, 28g**). La fase sólida RBZ-26DHBA fue obtenida por la técnica de formación de pasta donde se muestran los picos de difracción correspondientes a la fase previamente obtenida por el método de molienda (**figura 29**).

Figura 28. Patrón de DRXP de a) RBZ, b) 26DHBA, y muestras de molienda de la mezcla física RBZ-26DHBA, c) sin disolvente, d) MeOH, e)H₂O, f) ACN y g) ACT.

Figura 29. Patrón de DRXP de a) RBZ, b) 26DHBA y muestras obtenidas por *slurry* usando c) MEOH, d) H2O, e) ACT y f) ACN.

Se decidió escalar la fase sólida RBZ-26DHBA mediante la técnica de molienda asistida por disolvente usando agua, debido a que es el disolvente universal más utilizado y es más amigable con el medio ambiente. En la **figura 30** se muestra el patrón de DRXP de la muestra obtenida del escalamiento de la fase sólida hasta 1 g donde se observa que el patrón resultante es similar al reportado (**anexo 2**) y es diferente a las materias de partida (**figura 30**).

Figura 30. Patrón de DRXP de a) RBZ, b) 26DHBA, c) RBZ-26DHBA, d) RBZ-26DHBA escalamiento mediante molienda asistida por disolvente (agua).

Análisis mediante espectroscopía infrarroja

En la **figura 31** se muestra el espectro IR de RBZ, 26DHBA y de la fase sólida RBZ-26DHBA y en la **tabla 11** se presenta la asignación de las vibraciones correspondientes a los grupos funciones. El espectro IR de RBZ muestra una banda de estiramiento asimétrico del grupo carbonilo (C=O) de la amida en 1728 cm⁻¹ mientras que el espectro IR de 26DHBA muestra bandas correspondientes al grupo carbonilo en 1678 cm⁻¹, en el espectro de la fase sólida RBZ-26DHBA se observa un desplazamiento de la banda correspondiente al grupo que el grupo carbonilo (C=O) a 1752 cm⁻¹ y 1644 cm⁻¹ pertenecientes al RBZ y 26DHBA, respectivamente.

Figura 31. Comparación de los espectros IR de RBZ (negro), 26DHBA (rosa) y la fase RBZ-26DHBA (azul).

Como se mencionó anteriormente en el análisis espectroscópico de la fase sólida RBZ-25DHBA; la vibración del C=O del grupo ácido carboxílico se encuentra alrededor de 1700 cm⁻¹, mientras que el ion carboxilato (RCOO⁻) presenta vibraciones asimétricas en 1650-1550 cm⁻¹ y simétricas en la región 1350-150 cm⁻¹. En este caso, el coformador usado en la obtención de la nueva fase presenta un grupo ácido carboxílico en su estructura y, por lo tanto, es posible examinar por esta

técnica si el desplazamiento del C=O se debe a la formación del ion carboxilato (COO⁻). El espectro IR de la fase RBZ-26DHBA mostró que el carbonilo del 26HBA se desplazó desde 1678 cm⁻¹ hasta 1644 cm⁻¹; además se observa una vibración intensa en 1391 cm-1 que de acuerdo con el criterio anterior correspondería a la vibración simétrica del ion carboxilato, indicando por lo tanto que el producto obtenido correspondería a una sal. Este análisis esta soportado por un reporte previo acerca del comportamiento espectroscópico de una sal de albendazol con ácido 2,6-dihidroxibenzoico.⁵⁴ Adicionalmente, con la finalidad de estimar la posible formación de una sal o un cocristal se determinó el Δ pKa. El pKa de RBZ es de 3.5 y el del 26DHBA es de 1.30 dando un valor de Δ pKa = 2.2. Es por lo que la probabilidad formación de una sal o cocristal.^{51,52,53} Para afirmar que se trata de una sal o un sólido cocristalino es necesario el análisis de difracción de rayos-X de monocristal.

Grupo	RBZ	26DHBA	RBZ-26DHBA	Asignación
C=0	1728	1678	1752 1644	Estiramiento asimétrico
S=0	1026	-	1022	Estiramiento simétrico
OH	-	3473	3470	Deformación en el plano
N-H	3397	-	3104	Estiramiento asimétrico

Tabla 11. Análisis de las vibraciones en el espectro IR de materias primas y la fase sólidaRBZ-26DHBA.

Análisis térmico

Termogravimetría

En la **figura 32**, se ilustra el comportamiento termogravimétrico del RBZ, 26DHBA y la NFS RBZ-26DHBA. Al comparar los termogramas obtenidos se observa que el comportamiento térmico de la fase RBZ-26DHBA es diferente a los materiales de partida. El termograma TG del ácido 2,6-dihidroxibenzoico muestra una pérdida del
93% de masa, indicando la sublimación de este compuesto a 136 °C. La fase RBZ-26DHBA presenta una pérdida de masa en dos etapas, la primera inicia en 187 °C con un porcentaje de pérdida del 42% y se asocia a la liberación del 26DHBA. Posteriormente, la segunda etapa de pérdida de masa se observa a 245 °C la cual se atribuye a la descomposición del RBZ (**Tabla 12**).

Figura 32. Curvas TG de a) RBZ, b) 26DHBA y c) fase sólida RBZ-26DHBA.

	Temperatura (°C)	%Pérdida de peso	Evento
RBZ	215 307	16 23	Descomposición del RBZ en dos etapas
26DHBA	136	93	Sublimación del coformador
RBZ-26DHBA	187 245	42	Liberación del 26DHBA y descomposición del RBZ

Tabla 12. Análisis DTG de las materias primas y NFS.

Calorimetría diferencial de barrido

En la **figura 33** y **tabla 13** se presenta la curva DSC y el análisis térmico de la fase RBZ-26DHBA, comparado con el fármaco y el coformador. El sólido RBZ-26DHBA mostró un pico endotérmico a 195°C que corresponde a un proceso de fusión/descomposición de esta fase sólida. Este comportamiento es diferente con las materias primas, por ejemplo, el RBZ presentó un proceso de fusión/descomposición en 219 °C. Por otro lado, el ácido 2,6-dihidroxibenzoico presentó una endoterma a 172 °C que se atribuye a la sublimación del coformador de acuerdo con lo observado en el análisis termogravimétrico.

Figura 33. Curva DSC de RBZ (negro), 26DHBA (rosa) y RBZ-26DHBA (azul).

Tabla 13. Análisis de datos DSC de la fase RBZ-26DHBA y materias primas.

	Temperatura (°C)	Evento
RBZ	219	Fusión-Descomposición
26DHBA	172	Sublimación
RBZ-26DHBA	195	Fusión-Descomposición

EVALUACIÓN BIOFARMACÉUTICA

Estabilidad indicativa

En la **figura 34** se observa el patrón de difracción de la fase sólida RBZ-26DHBA y de las muestras de estabilidad indicativa en diferentes condiciones de estrés térmico y humedad relativa. La fase RBZ-26DHBA no presentó ningún cambio físico bajo las tres condiciones estudiadas y se observa un patrón de difracción similar a la fase sólida antes de la prueba de estabilidad. Un comportamiento diferente se observa en los resultados de la estabilidad del coformador (ácido 2,6-dihidroxibenzoico), en las condiciones con ausencia de humedad relativa a 40 y 50 °C y calor seco se muestra un patrón con nuevos picos de difracción; esto se puede atribuir a que la materia prima estaba en su forma hidratada y sufre un proceso de deshidratación bajo estas condiciones. Caso contrario, cuando la muestra se resguardó bajo una humedad relativa del 75% se mantuvo la fase hidratada ya que tiene un patrón de DRXP similar al sólido de partida (**figura 35**). Este resultado está en concordancia con el resultado previo observado en la curva DSC del coformador, donde existe un pico endotérmico antes de los 100°C, que se asocia con un evento de deshidratación.

Figura 34. Patrón de DRXP de a) RBZ, b) 26DHBA, C) RBZ-26DHBA, muestras de estabilidad de la fase RBZ-26DHBA a d y e) 40 °C calor seco, f y g) 40 °C y 75 % calor húmedo, h y i) 50 °C calor seco.

Figura 35. Patrón de DRXP de a) 26DHBA, muestra de estabilidad de 26DHBA en b y c) 40 °C calor seco, d y e) 40 °C y 75 % HR calor húmedo f y g) 50 °C calor seco

Estabilidad de fase en solución

En la **figura 36** se observa que la NFS RBZ-26DHBA no sufre transformación física en medio acuoso pH 1.2 hasta las 24 h, dado que el sólido recuperado muestra picos de difracción similares a la fase sólida de partida. Un comportamiento similar se observó al estar en contacto con el medio acuoso pH 4.5 (**figura 37**) la fase es físicamente estable, ya que en los difractogramas se muestra que no existe una conversión a las materias primas. Sin embargo, se observó un comportamiento distinto en la solución amortiguadora pH 6.8 (**figura 38**), donde a partir del minuto 30 se observan picos de difracción del RBZ y la fase sólida RBZ-26DHBA, es decir, la nueva fase sólida sufre transformación de fase mediada por la solución. La existencia de ambas fases sólidas en equilibrio en solución se mantuvo hasta 1 h y a partir de este tiempo la conversión completa al fármaco puro fue observada. Estos resultados demuestran que la fase RBZ-26DHBA sufre transformación física de fase en solución pH-dependiente.

Ácido clorh ídrico (HCI) pH 1.2

Figura 36. Patrón de DRXP de a) RBZ, b) 26DHBA, c) RBZ-26DHBA y muestras obtenidas posterior a la estabilidad de fase al d) 1 min, e) 5 min, f) 30 min, g) 60 min, h) 3 h, i) 6 h, j) 12 h y k) 24 h.

Buffer de acetatos pH 4.5

Figura 37. Patrón de DRXP de a) RBZ, b) 26DHBA, c) RBZ-26DHBA y muestras obtenidas posterior a la estabilidad de fase al d) 1 min, e) 5 min, f) 30 min, g) 60 min, h) 3 h, i) 6 h, j) 12 h y k) 24 h. Buffer de fosfatos pH 6.8

Figura 38. Patrón de DRXP de a) RBZ, b) 26DHBA, c) RBZ-26DHBA y muestras obtenidas posterior a la estabilidad de fase al d) 1 min, e) 5 min, f) 30 min, g) 60 min, h) 3 h, i) 6 h, j) 12 h y k) 24 h.

Validación de método analítico HPLC para la cuantificación de RBZ y 26DHBA

El primer parámetro de desempeño validado para cuantificar RBZ y 26DHBA fue adecuabilidad del sistema cromatográfico, cumpliendo con los criterios de aceptación con un valor <2% (ver **anexo 5**). En la **figura 39** se muestran los datos obtenidos de linealidad para el RBZ (**figura 39 a**) y el 26DHBA (**figura 39 b**) con un valor de coeficiente de determinación ($r^2 \ge 0.999$), es decir, ambos analitos cumplen con el criterio de aceptación. En la **tabla 14** se muestran los datos obtenidos de la precisión a partir de la respuesta analítica (FR) del método para ambos analitos, donde se observa que cumplen con los criterios de aceptación con un CV<2% en todas las concentraciones.

Tabla 14. Determinación de la precisión del método de cuantificación de RBZ y 26DHBA.

	Ricobendazol				Ácido 2,6-dihidroxibenzoico			
[µg/mL]	Área	FR	CV%	[µg/mL]	Área	FR	CV%	
5	113327809	22665561.8		5	35802775	7160555		
5	113107079	22621415.8		5	35711752	7142350.4		
5	114318302	22863660.4	0.57	5	36223252	7244650.4	0.76	
10	232913511	23291351.1		10	73481884	7348188.4		
10	230828695	23082869.5		10	73017676	7301767.6		
10	231374787	23137478.7	0.47	10	73228593	7322859.3	0.32	
20	471969304	23598465.2		20	148486513	7424325.6		
20	472840825	23642041.3		20	149481546	7474077.3		
20	472374949	23618747.5	0.09	20	149077201	7453860.0	0.34	
30	696223748	23207458.3		30	219767269	7325575.6		
30	699968581	23332286.0		30	221363406	7378780.2		
30	674921732	22497391.1	1.96	30	214067324	7135577.4	1.76	
40	938622213	23465555.3		40	295976024	7399400.6		
40	941542590	23538564.8		40	296990401	7424760.0		
40	928053158	23201329.0	0.76	40	292977495	7324437.3	0.71	
50	1171042862	23420857.2		50	369259707	7385194.1		
50	1167284463	23345689.3		50	368559599	7371191.9		
50	1171421901	23428438.0	0.20	50	369176357	7383527.1	0.10	
Promedio		23320568.1	•	Promedio	<u>.</u>	7363568.19	-	
Desviación est	ándar	287352.071		Desviación es	tándar	80581.73		
C.V		1.23		C.V		1.09		

Se muestra en la **tabla 15** el límite de detección y cuantificación para RBZ y 26DHBA. El límite de detección determinado para RBZ fue de 0.35 μ g/mL y 0.31 μ g/mL para 26DHBA, este valor indica la concentración mínima del analito que puede ser detectada, pero no necesariamente cuantificada. Mientras que el límite de cuantificación obtenido fue de 1.06 para RBZ y 0.94 para 26DHBA, este parámetro evalúa la concentración mínima del analito que se puede determinar con precisión y exactitud aceptables.⁶⁰

		[µg/m	L]	Área		
		RBZ	26DHBA	RBZ	26DHBA	
Límite detección	de	0.35	0.31	6462858.84	1859338.44	
Límite cuantificación	de	1.06	0.94	23010890.14	6489933.38	

Tabla 15. Límite de detección y cuantificación del RBZ y 26DHBA.

En **figura 40** se muestran los cromatogramas para RBZ y 26DHBA, a partir de muestras individuales y a partir de la mezcla física, con un tiempo de retención de 3.5 min para el fármaco y 2.8 min para el coformador. En ambos analitos el tiempo de retención no se modifica por la presencia adicional del fármaco o coformador, y el método analítico y el método analítico desarrollado en específico para la cuantificación de estos, es decir, no existe interferencia en la separación de los compuestos.

Figura 40. Cromatogramas de RBZ (292 nm) puro (a) y a partir de la mezcla física (b), 26DHBA (306 mn) puro (c) y a partir de mezcla física (d).

Constante eutéctica y ventaja de solubilidad

La constante eutéctica (K_{eu}) para una fase cocristalina considera el equilibrio en estado sólido del cocristal y el fármaco de referencia en solución. La identidad de la fase RBZ-26DHBA y RBZ en equilibrio en soluciones acuosas con pH inicial de 1.2 y 6.8 fueron analizadas por DRXP. En las figuras **41** y **42** se muestra el resultado del análisis de las fases en equilibrio en pH 1.2 y 6.8, respectivamente. El equilibrio se alcanzó hasta 24 h en ambos casos, los difractogramas muestran picos de difracción de ambas fases sólidas.

Figura 41. Patrón de DRXP de a) RBZ, b) 26DHBA, C) RBZ-26DHBA, d) RBZ/RBZ-26DHBA pH 1.2, e) RBZ/RBZ-26DHBA pH 1.2 f) RBZ/RBZ-26DHBA pH 1.2.

Figura 42. Patrón de DRXP de a) RBZ, b) 26DHBA, C) RBZ-26DHBA, d) RBZ/RBZ-26DHBA pH 6.8, e) RBZ/RBZ-26DHBA pH 6.8 f) RBZ/RBZ-26DHBA pH 6.8.

Una vez alcanzado el equilibrio se determinaron las concentraciones del fármaco y coformador y se midió el pH al finalizar el experimento (ver anexo 8). La Keu determinada a pH 1.2 fue de 0.01, mientras que en pH 6.0 fue de 46.43 De acuerdo con lo reportado en la literatura para fases cocristalinas, cuando la Keu es menor a 1 el cocristal es menos soluble que el fármaco puro, a valores de Keu = 1 el cocristal es igual de soluble y si la Keu es mayor a 1 la fase cocristalina es más soluble.^{47,39} Por lo tanto, a pH 6.0 la fase RBZ-26DHBA tiene una mayor solubilidad y de acuerdo con el comportamiento de cocristales con Keu mayor 1, puede ocurrir el fenómeno de transformación de fase mediada por la solución y existe el riesgo de que se induzca la precipitación de la forma menos soluble del fármaco durante el proceso de disolución bajo condiciones supersaturadas. Adicionalmente, se determinó la ventaja de solubilidad (SA) de la fase sólida RBZ-26DHBA respecto al ricobendazol puro, con un valor mayor de 6.81 a pH 6.0 comparada con la solución pH 1.0 con un valor de 0.10. (tabla 16). Por lo que la fase sólida RBZ-26DHBA resultó ser más soluble en solución acuosa a pH 6.0 en comparación al fármaco puro. Debido a que cuando el valor de la constante eutéctica es mayor por ende la ventaja de solubilidad será mayor debido a que es un índice de supersaturación y es un

indicador de los cocristales para convertirse en el fármaco es decir, tienda a precipitar rápidamente cuando el cocristal está en contacto en soluciones, como lo es el caso de la disolución de polvos.⁶¹

Tabla 16. Concentración eutéctica, constante eutéctica (Keu) y ventaja de solubilidad (SA)de la fase RBZ-26DHBA.

рН	[RBZ] _{eu} mM	[26DHBA] _{eu} mM	K _{eu}	SA
1.2	6.115 ± 0.183	0.061 ± 0.0004	0.010 ± 0.0002	0.100 ± 0.001
6.8	0.163 ± 0.010	7.579 ± 0.554	46.438 ± 3.496	6.811 ± 0.258

Disolución de polvos bajo condiciones no-sink

El perfil de disolución de RBZ y de la fase sólida RBZ-26DHBA se determinaron en buffer de fosfatos a pH 6.8, dado que se obtuvo una ventaja de solubilización más alta en esta solución acuosa (**tabla 16**). Los gráficos correspondientes se muestran en la **figura 43**, la fase RBZ-26DHBA una concentración máxima de 2.65 mg/mL, que es 22 veces superior a la concentración alcanzada por el ricobendazol (C_{máx}=0.12 mg/mL). El comportamiento de la nueva fase sólida RBZ-26DHBA en solución se ajusta al enfoque "resorte-paracaídas" propuesto por Guzmán et. al. en el 2007,⁴² que es característico de fases sólidas de disolución rápida como las sales y cocristales. En este caso el efecto resorte se mantiene por un periodo corto (30 min aproximadamente), esto es causado por la alta solubilización y rápida conversión de la fase sólida al fármaco puro mediado por la solución. Esto se comprobó con el análisis por DRXP de los residuos sólidos de la disolución a diferentes tiempos (**anexo 15**) donde a partir de los 30 min del experimento de disolución se observaron picos de difracción correspondientes al RBZ, es decir, precipitó la forma sólida menos soluble. En los experimentos de disolución de la

fase sólida RBZ-25DHBA se observó que la adición de metilcelulosa mantuvo el estado supersaturado por 90 min. El efecto del METHOCEL[™] A15 en el perfil de disolución de la fase RBZ-26DHBA se presenta en la **figura 43**, donde se observa que la metilcelulosa promueve la solubilización del RBZ a partir de la nueva fase sólida. El análisis por DRXP de los residuos sólidos después de la disolución mostró que la metilcelulosa retardó la transformación física de la fase RBZ-26DHBA en solución solo por 10 min (**anexo 16**).

Figura 43. Perfil de disolución de polvos de RBZ puro y el cocristal RBZ-26DHBA en ausencia y presencia de METHOCEL[™] A15 predisuelto al 0.5% p/v en buffer de fosfatos pH 6.8.

Para cuantificar solubilización de las fases sólidas de RBZ se determinó el área bajo la curva (ABC) a partir de los perfiles de disolución de las **figuras 27** y **43**, como un parámetro dependiente para realizar un análisis estadístico y conocer las diferencias entre las fases sólidas y la composición del medio de disolución (**anexo 17**). El análisis de varianza mostró una diferencia estadísticamente significativa (p<0.05) y la prueba de comparaciones múltiples demostró que las fases sólidas RBZ-25DHBA y RBZ-26DHBA tienen una ventaja de solubilización comparada con el fármaco puro, siendo la fase RBZ-25DHBA la que mostro el mayor incremento en la solubilización de RBZ (p<0.05). Por otro lado, el polímero METHOCEL[™] A15 mostró un incremento significativo (p<0.05) en la cantidad disuelta de RBZ en comparación con el medio sin polímero (**figura 44**).

Como se mencionó anteriormente las fases RBZ-25DHBA y RBZ-26DHBA aumentaron significativamente la solubilización del RBZ (p<0.05) por 8.6 y 5.6 veces más, respectivamente en comparación el fármaco puro en un medio acuoso pH 6.8 (**figura 44**). De acuerdo con Rodríguez-Hornedo et. al.³⁹ el área bajo la curva está determinada por la interacción entre la disolución del cocristal y la tasa de precipitación del fármaco y es directamente proporcional a la disolución e inversamente proporcional a la precipitación.³⁹

La fase RBZ-25DHBA presenta una mayor solubilización, dado que, tiende a una menor tasa de precipitación de la forma menos soluble de RBZ, en comparación con la nueva fase sólida RBZ-26DHBA que tiene una menor área bajo la curva, es decir, tiene una menor solubilización que es causada por la disolución rápida seguido de la precipitación de la forma menos soluble del fármaco (**figura 44**). Este comportamiento está en concordancia con el valor de constante eutéctica determinado, dado que, a mayor valor de K_{eu} una fase cocristalina presenta una rápida disolución (alta solubilidad) y existe un mayor riesgo de que ocurra la precipitación del fármaco y no se logré alcanzar la ventaja de solubilización, tal como se observa en la fase sólida RBZ-26DHBA con una mayor K_{eu} = 46.4 que la fase RBZ-25DHBA (K_{eu}= 26.9). Finalmente, el polímero metilcelulosa promovió la solubilización de ambas fases sólidas con un área bajo la curva mayor comparada con el fármaco puro, con un mejor efecto sobre el retardo de la precipitación de la fase RBZ-25DHBA que tiene una menor tasa de precipitación en ausencia de este polímero.

Figura 44. Área bajo la curva del perfil de disolución de RBZ, RBZ-25DHBA, RBZ-26DHBA en medio de fosfatos pH 6.8 con y sin METHOCEL[™] A15 predisuelto.

9.- CONCLUSIONES

En este trabajo de investigación se obtuvieron dos fases sólidas del fármaco antiparasitario ricobendazol usando ácido 2,5-dihidroxibenzoico (RBZ-25DHBA) y 2,6-dihidroxibenzoico (RBZ-26DHBA) a través de molienda mecánica, reacción de cristalización en solución y formación de pasta (*slurry*).

Con base en la caracterización física se demostró la obtención ambas fases sólidas, destacando que presentan un comportamiento térmico diferente al fármaco puro. A través de espectroscopía IR no fue posible demostrar inequívocamente la formación de una sal o un cocristal, por ello la elucidación estructural es necesaria para confirmar la naturaleza de las fases estudiadas.

Las fases RBZ-25DHBA y RBZ-26DHBA fueron físicamente estables a 50° C y 75% de humedad, indicando que es factible el proceso y almacenamiento bajo estas condiciones. En soluciones acuosas con pH 1.2 la fase sólida RBZ-25DHBA conserva su estado físico, mientras que a pH 4.5 y 6.8 existe una transformación de fase mediada por la solución al fármaco de partida, por otro lado, la fase sólida RBZ-26DHBA es estable a pH 1.2 y 4.5, mientras que a pH 6.8 sufre trasformación al ricobendazol. La estabilidad física de ambas fases sólidas es pH-dependiente.

Las fases sólidas aumentaron la solubilización de ricoben dazol en medio acuoso pH 6.8 a 37°C, generando concentraciones supersaturadas del fármaco, lo cual se atribuye a la alta solubilidad, dada por el valor de la constante eutéctica de las fases en equilibrio con el fármaco puro (K_{eu} =26.9 para RBZ-25DHBA y K_{eu} = 46.4 para RBZ-26DHBA).

Ambas fases sólidas tienen una ventaja de solubilidad considerable, sin embargo, se transformaron físicamente en solución seguido de la precipitación de la forma menos soluble. La preformulación con el polímero metilcelulosa prolongó el estado supersaturadas alcanzado hasta 90 min y aumentó la solubilización de ricobendazol a partir de las nuevas fases sólidas. El área bajo la curva de RBZ-25DHBA y RBZ-

26DHBA aumentó significativamente por 8.6 y 5.6 veces más, respectivamente, en comparación al fármaco puro.

Este estudio muestra que la obtención de nuevas fases sólidas de fármacos pocos solubles en agua en combinación con excipientes con capacidad de inhibir la precipitación es una estrategia factible para la formulación de IFAs con desventaja de solubilidad, como el fármaco de uso veterinario ricobendazol.

10.- PERSPECTIVAS

- Realizar pruebas de disolución de polvos bajo condiciones no-sink a pH 1.2 y 4.5.
- Obtener los datos estructurales de las fases sólidas RBZ-25DHBA y RBZ-26DHBA mediante difracción de rayos X de monocristal.
- Obtener las constantes eutécticas de los cocristales de RBZ en presencia de METHOCEL[™] A15 predisuelto.
- Evaluar el efecto de tensoactivos sobre el perfil de disolución de las nuevas fases sólidas de ricobendazol.
- Obtener una forma farmacéutica que contengan las fases sólidas de ricobendazol y el polímero METHOCEL[™] A15.
- Realizar pruebas *in vivo* para evaluar el rendimiento de las nuevas fases sólidas con el polímero inhibidor de la precipitación.

11. - BIBLIOGRAFÍA

- Cheru, T.; Birhanu, A.; Diriba, L.; Eyob, E. Prevalence of Gastrointestinal Parasitism of Cattle in East Showa Zone, Oromia Regional State, Central Ethiopia. J. Vet. Med. Anim. Heal. 2014, 6 (2), 54–62. https://doi.org/10.5897/jvmah2013.0260.
- Wu, Z.; Tucker, I. G.; Razzak, M.; Medlicott, N. J. Stability of Ricobendazole in Aqueous Solutions. *J. Pharm. Biomed. Anal.* 2009, *49* (5), 1282–1286. https://doi.org/10.1016/j.jpba.2009.02.032.
- Mottier, L.; Alvarez, L.; Ceballos, L.; Lanusse, C. Drug Transport Mechanisms in Helminth Parasites: Passive Diffusion of Benzimidazole Anthelmintics. *Exp. Parasitol.* 2006, 113 (1), 49–57. https://doi.org/10.1016/j.exppara.2005.12.004.
- Goudah, A. Aspects of the Pharmacokinetics of Albendazole Sulphoxide in Sheep. Vet. Res. Commun. 2003, 27 (7), 555–566. https://doi.org/10.1023/A:1026008010899.
- (5) Formentini, E. A.; Mestorino, N.; Errecalde, J. O. Pharmacokinetics of Ricobendazole after Its Intravenous, Intraruminal and Subcutaneous Administration in Sheep. *Vet. Res. Commun.* 2005, 29 (7), 595–608. https://doi.org/10.1007/s11259-005-3304-y.
- (6) Tobar, G.; Gingins, M. Anatomía Y Fisiología Del Aparato Digestivo De Los Rumiantes. Conf. en Dpto. Zootec. Fac. Agr. y Vet. UBA 1969, 1–4.
- (7) Cirilli, R.; Guglielmi, P.; Formica, F. R.; Casulli, A.; Carradori, S. The Sodium Salt of the Enantiomers of Ricobendazole: Preparation, Solubility and Chiroptical Properties. *J. Pharm. Biomed. Anal.* 2017, 139, 1–7. https://doi.org/10.1016/j.jpba.2017.01.057.
- (8) ElSawy, A.; ElMaddawy, Z.; Gomaa, M. Pharmacodynamics Studies on Ricobendazole In Male Rats. *Alexandria J. Vet. Sci.* 2014, 42 (1), 36.

https://doi.org/10.5455/ajvs.162332.

- (9) Formentini, E. A.; Mestorino, O. N.; Mariño, E. L.; Errecalde, J. O. Pharmacokinetics of Ricobendazole in Calves. *J. Vet. Pharmacol. Ther.* 2001, 24 (3), 199–202. https://doi.org/10.1046/j.1365-2885.2001.00328.x.
- Paredes, A.; De Campos Lourenco, T.; Marzal, M.; Rivera, A.; Dorny, P.; Mahanty, S.; Guerra-Giraldez, C.; García, H. H.; Cass, T. E.; Cass, Q. B. In Vitro Analysis of Albendazole Sulfoxide Enantiomers Shows That (+)-(R)-Albendazole Sulfoxide Is the Active Enantiomer against Taenia Solium. *Antimicrob. Agents Chemother.* **2013**, *57* (2), 944–949. https://doi.org/10.1128/AAC.01465-12.
- Wu, Z.; Razzak, M.; Tucker, I. G.; Medlicott, N. J. Physicochemical Characterization of Ricobendazole: I. Solubility, Lipophilicity, and Ionization Characteristics. *J. Pharm. Sci.* 2005, 94 (5), 983–993. https://doi.org/10.1002/jps.20282.
- (12) Wu, Z.; Tucker, I. G.; Razzak, M.; Yang, L.; McSporran, K.; Medlicott, N. J. Absorption and Tissue Tolerance of Ricobendazole in the Presence of Hydroxypropyl-β-Cyclodextrin Following Subcutaneous Injection in Sheep. *Int. J. Pharm.* 2010, 397 (1–2), 96–102. https://doi.org/10.1016/j.ijpharm.2010.07.002.
- (13) Yasir, M.; Asif, M.; Kumar, AN.; Aggarwal, A.; Pharmacy, D. J. C. BCS Journal
 1.Pdf. Int. J. PharmTech Res. 2010, 2 (3), 1681–1690.
- (14) Amidon, G. L.; Lennernäs, H.; Shah, V. P.; Crison, J. R. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability. *Pharm. Res.* 1995, pp 413– 420. https://doi.org/10.1023/A:1016212804288.
- (15) Rodriguez-Aller, M.; Guillarme, D.; Veuthey, J. L.; Gurny, R. Strategies for Formulating and Delivering Poorly Water-Soluble Drugs. *J. Drug Deliv. Sci. Technol.* 2015, 30, 342–351. https://doi.org/10.1016/j.jddst.2015.05.009.

- (16) Morissette, S. L.; Almarsson, Ö.; Peterson, M. L.; Remenar, J. F.; Read, M. J.; Lemmo, A. V.; Ellis, S.; Cima, M. J.; Gardner, C. R. High-Throughput Crystallization: Polymorphs, Salts, Co-Crystals and Solvates of Pharmaceutical Solids. *Adv. Drug Deliv. Rev.* **2004**, *56* (3), 275–300. https://doi.org/10.1016/j.addr.2003.10.020.
- (17) Desiraju, G. R. Crystal Engineering: From Molecule to Crystal. J. Am. Chem.
 Soc. 2013, 135 (27), 9952–9967. https://doi.org/10.1021/ja403264c.
- Blagden, N.; de Matas, M.; Gavan, P. T.; York, P. Crystal Engineering of Active Pharmaceutical Ingredients to Improve Solubility and Dissolution Rates. *Adv. Drug Deliv. Rev.* 2007, 59 (7), 617–630. https://doi.org/10.1016/j.addr.2007.05.011.
- (19) Duggirala, N. K.; Perry, M. L.; Almarsson, Ö.; Zaworotko, M. J. Pharmaceutical Cocrystals: Along the Path to Improved Medicines. *Chem. Commun.* 2016, 52 (4), 640–655. https://doi.org/10.1039/c5cc08216a.
- (20) Bavishi, D. D.; Borkhataria, C. H. Spring and Parachute: How Cocrystals Enhance Solubility. *Prog. Cryst. Growth Charact. Mater.* 2016, 62 (3), 1–8. https://doi.org/10.1016/J.PCRYSGROW.2016.07.001.
- (21) Karagianni, A.; Malamatari, M.; Kachrimanis, K. Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. *Pharmaceutics* 2018, 10 (1), 1–30. https://doi.org/10.3390/pharmaceutics10010018.
- (22) Schultheiss, N.; Newman, A. Pharmaceutical Cocrystals and Their Physicochemical Properties. *Cryst. Growth Des.* **2009**, *9* (6), 2950–2967.
- (23) Shaikh, R.; Singh, R.; Walker, G. M.; Croker, D. M. Pharmaceutical Cocrystal Drug Products: An Outlook on Product Development. *Trends Pharmacol. Sci.* 2018, 39 (12), 1033–1048. https://doi.org/10.1016/J.TIPS.2018.10.006.
- (24) Kavanagh, O. N.; Croker, D. M.; Walker, G. M.; Zaworotko, M. J.

Pharmaceutical Cocrystals:From Serendipity to Design to Application.Discov.Today2019,24(3),796–804.https://doi.org/10.1016/j.drudis.2018.11.023.

- (25) Reyes-Melo, M. E.; Hinojosa-Rivera, M. Estructura de Sólidos Amorfos. Ingenierías 2000, III (9), 314–344.
- (26) Douroumis, D.; Ross, S. A.; Nokhodchi, A. Advanced Methodologies for Cocrystal Synthesis. Adv. Drug Deliv. Rev. 2017, 117 (October), 178–195. https://doi.org/10.1016/j.addr.2017.07.008.
- (27) Hasa, D.; Jones, W. Screening for New Pharmaceutical Solid Forms Using Mechanochemistry: A Practical Guide. Adv. Drug Deliv. Rev. 2017, pp 147– 161. https://doi.org/10.1016/j.addr.2017.05.001.
- (28) Ramya, Munagala Gayatri, and K. Chinni Krishna. "Pharmaceutical CoCrystals: An Overview on Synthesis and Regulatory Aspects." J Drug Delivery Sci Technols. 2019, 9(4), 623-628.
- (29) Barikah Kuni Zu'aimah. Traditional and Novel Methods for Cocrystal Formation: A Mini Review. Syst. Rev. Pharm. 2018, 9 (1, JAN-DEC 2018), 79– 82. https://doi.org/10.5530/srp.2018.1.15.
- (30) Holder, C. F.; Schaak, R. E. Tutorial on Powder X-Ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 2019, 13 (7), 7359–7365. https://doi.org/10.1021/acsnano.9b05157.
- (31) Dinnebier, Robert E., and Simon JL Billinge. "Principles of powder diffraction." Powder Diffraction: Theory and Practice. 2008, 1-19.
- (32) Silverstein R., Webster F., K. D. Spectrometric Identification of Organic Compunds - 7th Ed Silverstein 2005.Pdf.
- (33) Da Silva, C. C.; Guimarães, F. F.; Ribeiro, L.; Martins, F. T. Salt or Cocrystal

of Salt? Probing the Nature of Multicomponent Crystal Forms with Infrared Spectroscopy. *Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.* **2016**, *167*, 89–95. https://doi.org/10.1016/j.saa.2016.05.042.

- (34) Zheng, Q.; Zhang, Y.; Montazerian, M.; Gulbiten, O.; Mauro, J. C.; Zanotto, E.
 D.; Yue, Y. Understanding Glass through Differential Scanning Calorimetry. *Chem. Rev.* **2019**, *119*, 7848–7939.
 https://doi.org/10.1021/acs.chemrev.8b00510.
- (35) Bolla, G.; Nangia, A. Pharmaceutical Cocrystals: Walking the Talk. *Chem. Commun.* **2016**, *52* (54), 8342–8360. https://doi.org/10.1039/c6cc02943d.
- (36) Berry, D. J.; Steed, J. W. Pharmaceutical Cocrystals, Salts and Multicomponent Systems; Intermolecular Interactions and Property Based Design. Adv. Drug Deliv. Rev. 2017, 117, 3–24. https://doi.org/10.1016/j.addr.2017.03.003.
- (37) Cruz-Cabeza, A. J. Acid-Base Crystalline Complexes and the Pka Rule. *CrystEngComm* 2012, 14 (20), 6362–6365. https://doi.org/10.1039/c2ce26055g.
- (38) Childs, S. L.; Stahly, G. P.; Park, A. The Salt-Cocrystal Continuum: The Influence of Crystal Structure on Ionization State. *Mol. Pharm.* 2007, *4* (3), 323–338. https://doi.org/10.1021/mp0601345.
- (39) Chen, Y. M.; Rodríguez-Hornedo, N. Cocrystals Mitigate Negative Effects of High PH on Solubility and Dissolution of a Basic Drug. *Cryst. Growth Des.* 2018, 18 (3), 1358–1366. https://doi.org/10.1021/acs.cgd.7b01206.
- (40) Siepmann, J.; Siepmann, F. Mathematical Modeling of Drug Dissolution. Int.
 J. Pharm. 2013, 453 (1), 12–24. https://doi.org/10.1016/j.ijpharm.2013.04.044.
- (41) Sánchez-Guadarrama, O.; Mendoza-Navarro, F.; Cedillo-Cruz, A.; Jung-Cook, H.; Arenas-García, J. I.; Delgado-Díaz, A.; Herrera-Ruiz, D.; Morales-Rojas, H.; Höpfl, H. Chiral Resolution of RS-Praziquantel via Diastereomeric

Co-Crystal Pair Formation with I -Malic Acid. *Cryst. Growth Des.* **2016**, *16*(1), 307–314. https://doi.org/10.1021/acs.cgd.5b01254.

- (42) Guzmán, H. R., Tawa, M., Zhang, Z., Ratanabanangkoon, P., Shaw, P., Gardner, C. R., & Remenar, J. F. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. *J. Pharm. Sci.*, **2007**, 96(10), 26862702.
- (43) Bevernage, J.; Brouwers, J.; Brewster, M. E.; Augustijns, P. Evaluation of Gastrointestinal Drug Supersaturation and Precipitation: Strategies and Issues. *Int. J. Pharm.* 2013, 25–35. https://doi.org/10.1016/j.ijpharm.2012.11.026.
- (44) Price, D. J.; Nair, A.; Becker-Baldus, J.; Glaubitz, C.; Kuentz, M.; Dressman, J.; Saal, C. Incorporation of HPMCAS during Loading of Glibenclamide onto Mesoporous Silica Improves Dissolution and Inhibits Precipitation. *Eur. J. Pharm. Sci.* 2020, 141 (October 2019), 105113. https://doi.org/10.1016/j.ejps.2019.105113.
- (45) Price, D. J.; Nair, A.; Kuentz, M.; Dressman, J.; Saal, C. Calculation of Drug-Polymer Mixing Enthalpy as a New Screening Method of Precipitation Inhibitors for Supersaturating Pharmaceutical Formulations. *Eur. J. Pharm. Sci.* 2019, 132 (February), 142–156. https://doi.org/10.1016/j.ejps.2019.03.006.
- (46) Huang, Y.; Kuminek, G.; Roy, L.; Cavanagh, K. L.; Yin, Q.; Rodríguez-Hornedo, N. Cocrystal Solubility Advantage Diagrams as a Means to Control Dissolution, Supersaturation, and Precipitation. *Mol. Pharm.* 2019, *16* (9), 3887–3895. https://doi.org/10.1021/acs.molpharmaceut.9b00501.
- (47) Kuminek, G.; Cavanagh, K. L.; Da Piedade, M. F. M.; Rodríguez-Hornedo, N. Posaconazole Cocrystal with Superior Solubility and Dissolution Behavior. *Cryst. Growth Des.* 2019, 19 (11), 6592–6602. https://doi.org/10.1021/acs.cgd.9b01026.

- (48) Kumar, S.; Nanda, A. Pharmaceutical Cocrystals: An Overview. Indian J. Pharm. Sci. 2017, 79 (6), 858–871. https://doi.org/10.4172/pharmaceuticalsciences.1000302.
- (49) Childs, S. L.; Kandi, P.; Lingireddy, S. R. Formulation of a Danazol Cocrystal with Controlled Supersaturation Plays an Essential Role in Improving Bioavailability. *Mol. Pharm.* 2013, 10 (8), 3112–3127. https://doi.org/10.1021/mp400176y.
- (50) Millán Mendoza, I. A. Síntesis y caracterización de nuevas fases sólidas farmacéuticas de ricobendazol. Tesis de Maestría. *Facultad de Farmacia*, 2013, 49-139.
- (51) Brittain, H. G. Cocrystal Systems of Pharmaceutical Interest: 2012–2014. Profiles Drug Subst. Excipients Relat. Methodol. 2019, 44, 415–443. https://doi.org/10.1016/bs.podrm.2018.11.004.
- (52) Brittain, H. G. Vibrational Spectroscopic Studies of Cocrystals and Salts. 2. The Benzylamine-Benzoic Acid System. *Cryst. Growth Des.* 2009, 9 (8), 3497–3503. https://doi.org/10.1021/cg9001972.
- (53) Brittain, H. G. Vibrational Spectroscopic Studies of Cocrystals and Salts. 3.
 Cocrystal Products Formed by Benzenecarboxylic Acids and Their Sodium Salts. Cryst. Growth Des. 2010, 10 (4), 1990–2003. https://doi.org/10.1021/cg100099w.
- (54) Bolla, G.; Nangia, A. Novel Pharmaceutical Salts of Albendazole. *CrystEngComm* 2018, 20 (41), 6394–6405. https://doi.org/10.1039/c8ce01311j.
- (55) Federación, de la NOM-073-SSA1-2015, Estabilidad de fármacos y medicamentos, así como de remedios herbolarios http://www.dof.gob.mx/nota_detalle.php?codigo=5440183&fecha=07/06/201 6&print=true.

- (56) Colegio Nacional de Químicos Farmacéuticos Biólogos, A. C. Guía de validación de métodos analíticos. 2002, 20-39.
- (57) Sodhi, I.; Mallepogu, P.; Thorat, V. P.; Kashyap, M. C.; Sangamwar, A. T. Insights on Role of Polymers in Precipitation of Celecoxib from Supersaturated Solutions as Assessed by Focused Beam Reflectance Measurement (FBRM). *Eur. J. Pharm. Sci.* 2019, 137 (June), 104983. https://doi.org/10.1016/j.ejps.2019.104983.
- (58) Salas-Zúñiga, R.; Rodríguez-Ruiz, C.; Höpfl, H.; Morales-Rojas, H.; Sánchez-Guadarrama, O.; Rodríguez-Cuamatzi, P.; Herrera-Ruiz, D. Dissolution Advantage of Nitazoxanide Cocrystals in the Presence of Cellulosic Polymers. *Pharmaceutics* 2020, *12* (1). https://doi.org/10.3390/pharmaceutics12010023.
- (59) Gaona, J. M. Desarrollo de preformulaciones conteniendo nuevas fases sólidas de Albendazol, Tesis de Licenciatura. *Facultad de Farmacia*, **2020**, en proceso.
- (60) Goyena, R. Guia de Validación. J. Chem. Inf. Model. 2019, 53 (9), 1689–1699.
 https://doi.org/10.1017/CBO9781107415324.004.
- (61) Kuminek, G.; Cao, F.; Bahia de Oliveira da Rocha, A.; Gonçalves Cardoso, S.; Rodríguez-Hornedo, N. Cocrystals to Facilitate Delivery of Poorly Soluble Compounds Beyond-Rule-of-5. *Adv. Drug Deliv. Rev.* 2016, 101, 143–166. https://doi.org/10.1016/j.addr.2016.04.022.

12.- ANEXOS

Anexo 1. Difractogramas de la fase sólida RBZ-25DHBA reportada previamente en la tesis de Millán-Mendoza en 2013 a) RBZ, b) 25DHBA, c) productos del método de *slurry* y d) producto del método de reacción de cristalización.

Anexo 2. Difractogramas de la fase sólida RBZ-26DHBA reportada previamente en la tesis de Millán-Mendoza en 2013 a) RBZ, b) 26DHBA, c) productos del método de *slurry* y d) producto del método de reacción de cristalización.

Anexo 3. Muestras de materias primas y fases sólidas RBZ-25DHBA y RBZ-26DHBA analizadas por termogravimetría en el software TA Universal Analysis.

RBZ

25DHBA

RBZ-25DHBA

26DHBA

Anexo 4. Selección del polímero inhibidor de la precipitación

Debido a la similitud estructural de RBZ con ABZ se optó por utilizar el mismo polímero para pruebas de disolución de polvos. Los experimentos realizados para ABZ se llevaron a cabo mediante el método solvent *shift* el cual permite elegir el excipiente polimérico que inhiba o retarde la precipitación. Por tanto, se probaron polímeros de diferentes familias tales como: metilcelulosas (Methocel A15),

Hidroxiproplimetilcelusa, derivados de polietilenglicol (Kolliphor 407 y Kolliphor 188) y Polivinilpirrolidona (Kollidon 25) predisueltos en buffer de fosfatos pH 6.8. ⁵⁹

Anexo 5. Espectros de absorción de RBZ, 25DHBA, 26DHBA, así como de las mezclas fiscas de RBZ-25DHBA y RBZ-26DHBA a diferentes concentraciones

Validación del método analítico mediante cromatografía liquida de alta resolución (HPLC)

Anexo 6. Adecuabilidad del sistema cromatográfico de la fase sólida RBZ-25DHBA

	RBZ 292	Retention Time			2		
	-	Area			2		
		_					
Sample ID	Compound	Parameter Detection Time	Average	Low	High	%RSD	Status
RBZ-25DHBA	KBZ_292	2.967	2.960	2.947	2.973	0.336	Passed
RBZ-25DHBA		2.947					Passed
RBZ-25DHBA		2.960					Passed
RBZ-25DHBA 004		2.973					Passed
RBZ-25DHBA 005		2.953					Passed
RBZ-25DHBA		Area 671155305	669534723	668256942	671155305	0.166	Passed
001 RBZ-25DHBA		669590625					Passed
RBZ-25DHBA		669885615					Passed
RBZ-25DHBA 004		668256942					Passed
RBZ-25DHBA 005		668785129					Passed
						-	
	25DHBA_320	Retention Time Area			2 2		
Sample ID	25DHBA_320 Compound	Retention Time Area Parameter	Average	Low	2 2 High	%RSD	Status
Sample ID	25DHBA_320 Compound 25DHBA_320	Retention Time Area Parameter Retention Time	Average	Low 1.440	2 2 High 1.440	%RSD 0.000	Status
Sample ID RBZ-25DHBA 001	25DHBA_320 Compound 25DHBA_320	Retention Time Area Parameter Retention Time 1.440	Average 1.440	Low 1.440	2 2 High 1.440	%RSD 0.000	Status Passed
Sample ID RBZ-25DHBA 001 RBZ-25DHBA 002	25DHBA_320 Compound 25DHBA_320	Retention Time Area Parameter Retention Time 1.440 1.440	Average 1.440	Low 1.440	2 2 High 1.440	%RSD 0.000	Status Passed Passed
Sample ID RBZ-25DHBA 001 RBZ-25DHBA 002 RBZ-25DHBA 003	25DHBA_320 Compound 25DHBA_320	Retention Time Area Parameter Retention Time 1.440 1.440 1.440	Average 1.440	Low 1.440	2 2 High 1.440	%RSD 0.000	Status Passed Passed Passed
Sample ID RBZ-25DHBA 001 RBZ-25DHBA 002 RBZ-25DHBA 003 RBZ-25DHBA 004	25DHBA_320 Compound 25DHBA_320	Retention Time Area Parameter Retention Time 1.440 1.440 1.440 1.440	Average 1.440	Low 1.440	2 2 High 1.440	%RSD 0.000	Status Passed Passed Passed Passed
Sample ID RBZ-25DHBA 001 RBZ-25DHBA 002 RBZ-25DHBA 003 RBZ-25DHBA 004 RBZ-25DHBA 005	25DHBA_320 Compound 25DHBA_320	Retention Time Area Parameter Retention Time 1.440 1.440 1.440 1.440 1.440	Average 1.440	Low 1.440	2 2 High 1.440	%RSD 0.000	Status Passed Passed Passed Passed Passed
Sample ID RBZ-25DHBA 001 RBZ-25DHBA 002 RBZ-25DHBA 003 RBZ-25DHBA 005 RBZ-25DHBA	25DHBA_320 Compound 25DHBA_320	Retention Time Area Parameter Retention Time 1.440 1.440 1.440 1.440 1.440 1.440 2.37820192	Average 1.440 238159425	Low 1.440 237748178	2 2 High 1.440 239040264	%RSD 0.000	Status Passed Passed Passed Passed Passed
Sample ID RBZ-25DHBA 001 RBZ-25DHBA 002 RBZ-25DHBA 004 RBZ-25DHBA 005 RBZ-25DHBA 001 RBZ-25DHBA	25DHBA_320 Compound 25DHBA_320	Retention Time Area Parameter Retention Time 1.440 1.440 1.440 1.440 1.440 2.37820192 238084469	Average 1.440 238159425	Low 1.440 237748178	2 2 High 1.440 239040264	%RSD 0.000	Status Passed Passed Passed Passed Passed Passed
Sample ID RBZ-25DHBA 001 RBZ-25DHBA 002 RBZ-25DHBA 004 RBZ-25DHBA 005 RBZ-25DHBA 001 RBZ-25DHBA 001 RBZ-25DHBA 002 RBZ-25DHBA	25DHBA_320 Compound 25DHBA_320	Retention Time Area Parameter Retention Time 1.440 1.440 1.440 1.440 1.440 2.37820192 238084469 239040264	Average 1.440 238159425	Low 1.440 237748178	2 2 High 1.440 239040264	%RSD 0.000	Status Passed Passed Passed Passed Passed Passed Passed
Sample ID RBZ-25DHBA 001 RBZ-25DHBA 002 RBZ-25DHBA 004 RBZ-25DHBA 005 RBZ-25DHBA 001 RBZ-25DHBA 001 RBZ-25DHBA 002 RBZ-25DHBA 003 RBZ-25DHBA 003	25DHBA_320 Compound 25DHBA_320	Retention Time Area Parameter Retention Time 1.440 1.440 1.440 1.440 1.440 2.37820192 238084469 239040264 237748178	Average 1.440 238159425	Low 1.440 237748178	2 2 High 1.440 239040264	%RSD 0.000	Status Passed Passed Passed Passed Passed Passed Passed Passed

Validación del método analítico mediante cromatografía liquida de alta resolución (HPLC)

Anexo 7. Adecuabilidad del sistema cromatográfico de la fase sólida RBZ-26DHBA

		System is Suitab	le				
DAD: Signal A, 292.0 nm/Bw:4.0 nm Ref 360.0 nm/Bw:100.0 nm	Compound	Parameter	Min	Max	%RSD		
	RBZ_292	Retention Time Area			2 2		
Sample ID	Compound	Parameter	Average	Low	High	%RSD	Status
RBZ-26DHBA	RBZ_292	Retention Time 3.120	3.124	3.120	3.127	0.117	Passed
001 RBZ-26DHBA		3.127					Passed
002 RBZ-26DHBA		3.120					Passed
003 RBZ-26DHBA		3.127					Passed
004 RBZ-26DHBA 005		3.127					Passed
RBZ-26DHBA		Area 551656066	564787016	551656066	577970432	1.748	Passed
RBZ-26DHBA		561493628					Passed
RBZ-26DHBA		562692424					Passed
RBZ-26DHBA		577970432					Passed
RBZ-26DHBA 005		570122529					Passed
	ACDITE A AOC				2		
	20DHBA_300	Retention Time Area			2		
Sample ID	Compound	Retention Time Area Parameter	Average	Low	2 2 High	%RSD	Status
Sample ID RBZ-26DHBA	Compound 26DHBA_306	Retention Time Area Parameter Retention Time 2.473	Average 2.473	Low 2.473	2 2 High 2.473	%RSD 0.000	Status Passed
Sample ID RBZ-26DHBA 001 RBZ-26DHBA 002	Compound 26DHBA_306	Retention Time Area Parameter Retention Time 2.473 2.473	Average 2.473	Low 2.473	2 2 High 2.473	%RSD 0.000	Status Passed Passed
Sample ID RBZ-26DHBA 001 RBZ-26DHBA 002 RBZ-26DHBA 003	Compound 26DHBA_306	Retention Time Area Parameter Retention Time 2.473 2.473 2.473	Average 2.473	Low 2.473	2 2 High 2.473	%RSD 0.000	Status Passed Passed Passed
Sample ID RBZ-26DHBA 001 RBZ-26DHBA 002 RBZ-26DHBA 004	Compound 26DHBA_306	Retention Time Area Parameter Retention Time 2.473 2.473 2.473 2.473	Average 2.473	Low 2.473	2 2 High 2.473	%RSD 0.000	Status Passed Passed Passed Passed
Sample ID RBZ-26DHBA 001 RBZ-26DHBA 002 RBZ-26DHBA 003 RBZ-26DHBA 004 RBZ-26DHBA 005	Compound 26DHBA_306	Retention Time Area Parameter Retention Time 2.473 2.473 2.473 2.473 2.473 2.473	Average 2.473	Low 2.473	2 2 <u>High</u> 2.473	%RSD 0.000	Status Passed Passed Passed Passed
Sample ID RBZ-26DHBA 001 RBZ-26DHBA 002 RBZ-26DHBA 004 RBZ-26DHBA 005 RBZ-26DHBA	Compound 26DHBA_306	Retention Time Area Parameter Retention Time 2.473 2.473 2.473 2.473 2.473 2.473 Area 186814982	Average 2.473 190228107	Low 2.473 186814982	2 2 <u>High</u> 2.473 193443372	%RSD 0.000 1.312	Status Passed Passed Passed Passed Passed
Sample ID RBZ-26DHBA 001 RBZ-26DHBA 002 RBZ-26DHBA 004 RBZ-26DHBA 005 RBZ-26DHBA 001 RBZ-26DHBA	Compound 26DHBA_306	Retention Time Area Parameter Retention Time 2.473 2.473 2.473 2.473 2.473 2.473 2.473 2.473 2.473 2.473 2.473 2.473 2.473 2.473 2.473 186814982 189328119	Average 2.473 190228107	Low 2.473 186814982	2 2 <u>High</u> 2.473 193443372	%RSD 0.000	Status Passed Passed Passed Passed Passed Passed
Sample ID RBZ-26DHBA 001 RBZ-26DHBA 002 RBZ-26DHBA 004 RBZ-26DHBA 001 RBZ-26DHBA 001 RBZ-26DHBA 002 RBZ-26DHBA 002	Compound 26DHBA_306	Retention Time Area Parameter Retention Time 2.473 2.473 2.473 2.473 2.473 2.473 2.473 186814982 189328119 189902045	Average 2.473 190228107	Low 2.473 186814982	2 2 <u>High</u> 2.473 193443372	%RSD 0.000	Status Passed Passed Passed Passed Passed Passed Passed
Sample ID RBZ-26DHBA 001 RBZ-26DHBA 002 RBZ-26DHBA 004 RBZ-26DHBA 005 RBZ-26DHBA 001 RBZ-26DHBA 002 RBZ-26DHBA 002 RBZ-26DHBA 003 RBZ-26DHBA 003	Compound 26DHBA_306	Retention Time Area Parameter Retention Time 2.473 2.473 2.473 2.473 2.473 2.473 186814982 189328119 189902045 193443372	Average 2.473 190228107	Low 2.473 186814982	2 2 <u>High</u> 2.473 193443372	%RSD 0.000	Status Passed Passed Passed Passed Passed Passed Passed

Determinación de la constante eutéctica y ventaja de solubilidad

Anexo 8. Después de determinar la constante eutéctica se determinó el pH de las muestras de RBZ-25DHBA y RBZ-26DHBA después de 24 horas en HCI pH 1.2 y buffer de fosfatos pH 6.8

RBZ.25DHBA

1.2

RBZ-26DHBA

1.2

6.8

Disolución de polvos de RBZ-25DHBA en medio de fosfatos pH 6.8 en ausencia y presencia de METHOCEL[™] A15 predisuelto 0.5% p/v

Disolución de polvos de RBZ-25DHBA en medio de fosfatos pH 6.8 en ausencia y presencia de METHOCEL[™] A15 predisuelto 0.5% p/v

Anexo 10. Cinética de disolución de polvos de RBZ-26DHBA para la cuantificación de ácido 2,6 dihidroxibenzoico

Disolución de polvos de RBZ en medio de fosfatos pH 6.8 en presencia y ausencia de METHOCEL[™]A15 0.5% p/v predisuelto

Anexo 11. Difractogramas de los residuos de la disolución de polvos: residuos de a) RBZ a diferentes tiempos de muestreo; b) 1 min, c) 5 min, d) 10 min, e) 30 min, f) 60 min y g) 90 min.

Anexo 12. Difractogramas de los residuos de la disolución de polvos: residuos de a) RBZ- METHOCEL[™] A15 a diferentes tiempos de muestreo; b) 1 min, c) 5 min, d) 10 min, e) 30 min, f) 60 min y g) 90 min.

Disolución de polvos de la fase sólida RBZ-25DHBA en medio de fosfatos pH 6.8 en presencia y ausencia de METHOCEL[™]A15 0.5% p/v predisuelto

Anexo 13. Difractogramas de los residuos de la disolución de polvos: residuos de a) RBZ, b) 25DHBA, c) RBZ-25DHBA a diferentes tiempos de muestreo; d) 1 min, e) 2 min, f) 4 min, g) 5 min, h) 10 min, i) 30 min, j) 60 min y k)90 min

Anexo 14. Espectros de IR de los residuos de la disolución de polvos a) RBZ, b)
25DHBA, c) RBZ-25DHBA/METHOCEL[™] A15 a diferentes tiempos de muestreo;
d) 1 min, e) 5 min, f) 10 min, g) 30 min, h) 60 min

Disolución de polvos de la fase sólida RBZ-26DHBA en medio de fosfatos pH 6.8 en presencia y ausencia de METHOCEL[™]A15 0.5% p/v predisuelto

Anexo 15. Difractogramas de los residuos de la disolución de polvos: residuos de a) RBZ, b) 26DHBA, c) RBZ-26DHBA a diferentes tiempos de muestreo; d) 1 min, e) 2 min, f) 4 min, g) 10 min, h) 28 min, i) 60 min y j) 90 min.

Anexo 16. Difractogramas de los residuos de la disolución de polvos: residuos de a) RBZ, b) 26DHBA, c) RBZ-26DHBA/METHOCELTM A15 a diferentes tiempos de muestreo; d) 1 min, e) 2 min, f) 3 min, g) 4 min, h) 5 min, i) 6 min y j) 10 min.

Anexo 17. Análisis estadístico de los perfiles de disolución de polvos bajo condiciones no-*sink* de RBZ, fase sólida RBZ-25DHBA y RBZ-26DHBA en PBS pH 6.8 sin y con METHOCEL[™] A15 0.5% p/v, usando como variable dependiente el área bajo la curva (ABC).

Datos del ABC de los perfiles de disolución de cada fase sólida

Fases sólidas/medio de disolución	RBZ	RBZ-25DHBA	RBZ-26DHBA
PBS pH 6.8	10.79178	95.78999	62.87616
	10.89651	97.2896	49.37668
	10.69154	86.08425	69.09197
METHOCEL [™] A15 0.5	16.5706	207.29024	92.13699
% p/v	19.88136	178.65334	92.6598
	22.03279	146.8959	76.89261

Análisis de Varianza para ABC (mg/mL*min) - Suma de Cuadrados Tipo III

Fuente	Suma de Cuadrados	GI	Cuadrado Medio	Razón-F	Valor-P
EFECTOS PRINCIPALES					
A:Fase sólida	43344.6	2	21672.3	114.16	0.0000
B:Medio de disolución	7205.01	1	7205.01	37.95	0.0000
INTERACCIONES					
AB	4709.67	2	2354.83	12.40	0.0012
RESIDUOS	2278.14	12	189.845		
TOTAL (CORREGIDO)	57537.4	17			

Todas las razones-F se basan en el cuadrado medio del error residual

Pruebas de Múltiple Rangos para ABC (mg/mL*min) por Fase sólida

Método: 95.0 porcentaje Tukey HSD

Fase sólida	Casos	Media LS	Sigma LS	Grupos Homogéneos
RBZ	6	15.1441	5.62502	Х
RBZ-26DHBA	6	73.839	5.62502	Х
RBZ-25DHBA	6	135.334	5.62502	Х

Contraste	Sig.	Diferencia	+/- Límites
RBZ - RBZ-25DHBA	*	-120.19	21.2811
RBZ - RBZ-26DHBA	*	-58.6949	21.2811
RBZ-25DHBA - RBZ-26DHBA	*	61.4949	21.2811

* indica una diferencia significativa.
Medias y 95.0% de Tukey HSD

Pruebas de Múltiple Rangos para ABC (mg/mL*min) por medio de disolución

Método: 95.0 porcentaje Tukey HSD							
Medio de disolución	Casos	Media LS	Sigma LS	Grupos Homogéneos			
PBS pH 6.8	9	54.7654	4.59281	X			
METHOCEL [™] A15 0.5% p/v	9	94.7793	4.59281	Х			

Contraste	Sig.	Diferencia	+/- Límites
METHOCEL [™] A15 0.5% p/v - PBS pH 6.8	*	40.0139	14.1519

* indica una diferencia significativa.

Medias y 95.0% de Tukey HSD