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Abstract: It is well understood that nonlinear optical (NLO) phenomena are deeply related to the
material’s symmetry. Mathematically, the material symmetry can be described in terms of the nonzero
parameters in the nonlinear susceptibility tensors. Generally, more complex structures involve more
nonzero parameters in the tensor. The number of parameters increases rapidly if higher NLO orders
are considered, complicating the physical analysis. Conventionally, these parameters are obtained via
abstract symmetry analysis, e.g., group theory (GT). This work presents a novel theoretical analysis
to approach the nonlinear tensor using the simplified bond hyperpolarizability model (SBHM) and
compare it with GT. Our analysis is based on a light–matter interaction classical phenomenological
physical framework. Rather than just looking at the symmetry of the crystal, the model applies
physical considerations requiring fewer independent parameters in the tensor than GT. Such a
simplification significantly improves the determination of the surface–bulk SHG contribution factors,
which cannot be extracted from the experiment alone. We also show for the case of perovskite that
the SHG contribution can be addressed solely from their surface dipoles with only one independent
component in the tensor. Therefore, this work may open the path for a similar analysis in other
complicated semiconductor surfaces and structures in the future, with potential applications to
nanoscale surface characterization and real-time surface deposition monitoring.

Keywords: nonlinear tensor; bond model; group theory; second-harmonic generation

1. Introduction

After the discovery of second-harmonic generation (SHG) by Franken et al. [1],
progress in the field of nonlinear optics (NLO) increased at a rapid pace with valuable
applications ranging from thin-film material characterization, nanoscale optical sensing,
nanoscale engineering, and various other fields. The nonlinear effects originate from the
material response to the incoming field. This response is proportional to the electrical
field and its higher powers. In the case of SHG, a single incoming wavelength involving
two-photon absorption results in a nonlinear response that produces light with a frequency
twice the incoming light frequency. Therefore, the amplitude of the SHG frequency gen-
erated by a sample is proportional to the square of the incoming field. It soon became
apparent from the early theoretical works by Armstrong [2] and Bloembergen [3] that the
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analysis of the higher-order susceptibility tensorial components is essential to understand
the nature of SHG generation in inversion-symmetric material.

It is now well understood that centrosymmetric structures such as silicon (Si) materials
possess the vital property of bulk inversion symmetry, where parity symmetry forbids
the nonlinear dipole contribution inside the bulk [3,4]. However, the contribution from
SHG at the surface can exist due to symmetry breaking [5,6]. This discovery, together
with the fact that NLO enables probing surfaces in situ and nondestructively, makes it a
powerful tool to study semiconductor surfaces in detail and at the nanoscale. One of the
major theoretical challenges in understanding SHG from semiconductor surfaces by optical
probes, e.g., by SHG rotational anisotropy (RA), lies in separating the various nonlinear
contributions that may arise. For the case of noncentrosymmetric semiconductor material,
the SHG bulk dipolar contribution usually dominates due to the sheer amount of bulk layers
inside the material. However, when the semiconductor possesses inversion symmetry,
the sources become more complex and detailed knowledge of the material symmetry is
required. Because physics takes place in real time and space as well as at the nanoscale (e.g.,
atomic level), a description of the phenomena using quantum mechanics seems natural
and more fundamental, but requires a substantial amount of complex computations and
lacks a pictorial insight [7]. Therefore, phenomenological models are sometimes combined
with quantum mechanical calculations. Examples include the work of Mendoza and
Mochán [8], and later Arzata and Mendoza [9], which exhibit interacting dipole bond
model to investigate SHG from surface local-field effects. Other modeling efforts involving
SHG from centrosymmetric material are mainly phenomenological, applying Green’s
function formalism developed by Sipe et al. [10–12].

The challenge, however, was the number of independent parameters required to
model SHG in inversion-symmetric structure that was still complicated, even if the SH
signal was only generated from the surface/interface. This resulted in the difficulty to
interpret experimental data in a simple way. This issue was resolved by the development of
the simplified bond hyperpolarizability model (SBHM) proposed in 2002 by Dave Aspnes
through a breakthrough paper [13], where direct products of bond vectors replace the
tensorial formalism.

In this work, we show how the SBHM can produce a significant improvement over
previous models using tensorial analysis. First, the SBHM approaches the nonlinear tensor
components from a classical physical model rather than an abstract group theoretical
calculation, which often hides the physics, thus providing a better understanding of the
nonlinear phenomena at the atomic scale. Second, the SBHM relates some previously
assumed to be independent tensor components obtained by GT because of the different
approaches in obtaining them (through bond vector products), thus substantially reducing
the number of independent parameters. For example, a remarkable achievement of the
SBHM was to reproduce rotational anisotropy second-harmonic generation (RASHG)
intensity experimental data from [14] with a high precision by only three normalized
complex hyperpolarizabilities and two relative phases. The result was a reduction from
the previous 14 normalized tensor coefficients in [10]. Third, because of this simplification,
previous RASHG experiments can be better understood. Furthermore, the SBHM might
resolve several important issues regarding the long-standing problem of determining the
actual contribution of surface and bulk effects, which was previously difficult due to a
large amount of fitting parameters [10] even in highly symmetric semiconductors such
as Si and gallium arsenide (GaAs). The SBHM is thus opening the way for better surface
characterization and real-time surface deposition monitoring at the nanoscale. Another
attractive future potential application of this work is to study tensorial phase control of
nonlinear metasurfaces, which enables SHG analysis at the subwavelength level with
potential application in ultrathin, free-space photonic devices for nonlinear imaging [15,16].

To better appreciate the novelty of the third point, we mention the work given by
Peng et al. [17], who applied four steps of the Ewald–Oseen dipole model to SHG. His
work shows additional SH contributions in the form of spatial dispersion and magnetic
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terms. Applying the SBHM, we showed very recently that spatial dispersion contribution
in Si(111), due to the incoming electric field decay, also contributes to the RASHG intensity
data in nonvicinal Si(111) surfaces [18]. This effect can be described using a third rank
tensor by redefining spatial dispersion from an earlier work by Peng et al. [17], which
described spatial dispersion in the form of a fourth rank tensor. It is well known that the
nonlinear polarization of the SH field depends on the material symmetry, which is described
either by a third- or fourth-order nonlinear susceptibility tensor. It is interesting to study
how this tensor is obtained from the SBHM and compared with the conventional group
theoretical approach. Therefore, in this work, we access this tensor from both viewpoints
and compare them later on. More specifically, we show that the SHG Si(111) surface part
obtained from the SBHM only consists of two independent fitting parameters rather than
the four independent parameters if GT is applied. Thus, the SBHM better estimates the
surface to bulk SHG contribution.

However, despite the various advantages of this model previously mentioned, we
also have to point out several shortcomings: (1) the SBHM is a phenomenological model
that requires experimental fitting to obtain the nonlinear hyperpolarizability. Ab initio
models using quantum mechanics should be applied to solve this issue but lie beyond the
scope of this work. (2) This work only assumes oscillation parallel to the bond and neglects
perpendicular oscillation. The latter might be significant for third-harmonic generation
studies, but the exclusion of such an assumption for SHG still shows excellent agreement
with experiments. (3) For complex semiconductors such as perovskite, the determination
of the bond vector can be challenging, and calculations can be consuming. However, we
show that many bond vectors cancel out when symmetry is considered, and simplified
bond vectors can be applied instead.

An experimental comparison with the SBHM that included quadrupolar contribution
from the Si bulk was performed using arbitrary input polarization to reproduce RASHG
intensity in nonvicinal Si surfaces [19]. It was later shown that these effects were related to
the first-order derivatives of the microscopic response function [20]. The contribution of
spatial dispersion to SHG due to the incoming field was also incorporated very recently [18].
Investigation using this model to study the effect of H2 exposure on the RASHG spectra
for Si surfaces was also performed using the SBHM with success [21]. An SBHM study
on the SH spectra from zincblende sample was also performed where the dominant SH
contribution was indeed coming from bulk dipole radiation [22].

For the sake of clarity, we proceed with explaining the basics of the SBHM, followed by
a description of group theory. Afterwards, we explain the main results of this work, namely,
comparing the third rank tensor using both approaches for the case of a Si(111) and Si(001)
surface and showing how this method can also be applied to more complex structures,
e.g., perovskite. We then explain how this result can be applied to determine the different
surface and bulk contributions in Si and show how it can increase our understanding
regarding the polar–nonpolar nature of perovskite. Finally, a brief conclusion is given at
the end.

2. Simplified Bond Hyperpolarizability Model

The simplified bond hyperpolarizability model (SBHM) is a classical phenomeno-
logical theory, whose history can be traced back to Clausius–Mossotti polarizable point
models. This equation relates the atomic-scale polarizability α and the volume density
n of a collection of points, which in SBHM are renamed as bonds, to the macroscopic
complex dielectric function [7]. In the SBHM, the dielectric response function is derived
from the Newtonian equation of motion of a charge qj. The charges oscillate harmonically
and anharmonically parallel to the covalent atomic bonds. The oscillation is driven by
the local incoming electric field as illustrated in Figure 1. For the illustration, we chose
a Si(001) surface, meaning that the Si surface of the film is a (001) Miller plane through
the Si lattice (e.g., in the cubic lattice system, the direction (hkl) defines a vector direction
normal to the surface of a particular plane or facet). For simplicity, let us consider a 1D
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Lorentzian equation of motion for the case of second-harmonic (SH) and third-harmonic
(TH) generation [23]:

m
d2x
dt2 = qjEloc(ω) · b̂je−iωt − κ1(x− x0)− κ2(x− x0)

2 − κ3(x− x0)
3 − γ

dx
dt

(1)

here x is the charge position in the local coordinate system along the b̂j direction, x0 is
the charge equilibrium position, Eloc(ω) is the local field experienced by the charge at
the position of the atom, which is related to the macroscopic field through Eloc(ω) =
ε(ω)+2

3 E(ω). In Equation (1), κ1, κ2, and κ3 are, respectively, the harmonic, first anharmonic,
and second anharmonic spring constant. These constants will give rise to the harmonic,
SH, and TH radiation. A frictional coefficient γ is introduced in the equation to account for
the dissipation. Here the direction of the j-th bond is defined by the unit vector b̂j.

Figure 1. Pictorial view of SBHM in Si(001). The charges are assumed to oscillate along the covalent
bonds, whose directions are given by the bond vectors and driven by the incoming field.

Before we proceed with finding the solution for xi, it is necessary to discuss the spe-
cific assumptions in this model. Equation (1) readily shows that each charge oscillates
harmonically and parallel to the atomic bonds. The incoming electric field drives these
oscillations. Thus, only the charges within the optical penetration depth radiate dipolar and
quadrupolar electromagnetic waves. The total amount of dipole and quadrupole far-field
radiation is thus given by the summation of all electromagnetic radiation directions [24]
that are produced by oscillating charges along each of the bonds. Here, the induced dipole
oscillates under the action of an applied electric field and appropriate restoring and dissipa-
tion forces. The number of nearest neighbors determines the number of bonds. Therefore,
they depend on the symmetry of the crystal. The nonlinear part of the motion is represented
in terms of complex hyperpolarizabilities obtained by solving Equation (1). According to
classical physics, an accelerated charge radiates electromagnetic waves. The total far field
is calculated by summation of all the fields radiated by each dipole/quadrupole. Therefore,
the model extends the Ewald–Oseen theorem to nonlinear optics. Figure 2 depicts the
coordinate system used in the model.

It should be mentioned that the superpositions of all atomic dipoles driven by the
external field are coherently driven dipoles, which means that the fundamental and the
second/third harmonic outputs radiate in phase. The coherence is a consequence of the
difference between the distance between dipoles, which is in the order of the atomic
bond distance (1 nm), and the dimension of the incoming wavelength (100 nm). Hence,
Huygens’ principle implies that the coherent dipole field superposition gives a constructive
interference only if the outgoing angle (θo) is equal to the incoming angle (θi) as depicted in
Figure 2. In transmission, a coherent superposition occurs, but this time θω

i 6= θ2ω
i , since

the constructive angle is given by Snell’s law.
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Figure 2. Coordinate system of the incoming and outgoing light k vector. The orientation of the p-
and s-polarized fields is depicted with regard to the applied coordinate system.

We will now derive a solution from Equation (1) with the assumption that x can be
written as an expansion:

x = x0 + ∆x1e−iωt + ∆x2e−i2ωt + ∆x3e−i3ωt + . . . (2)

Inserting Equation (2) in Equation (1) the linear p1j, quadratic p2j, and cubic p3j dipole
polarization of the j-th charge are given by

p1j = qj∆x1b̂j =
q2

j Eloc(ω) · b̂j

κ1 −mω2 − iγω
b̂j = α1jb̂j(b̂j · Eloc(ω)) (3)

p2j = qj∆x2b̂j =
q2

j κ2∆x2
1

κ1 − 4mω2 − 2iγω
b̂j = α2jb̂j(b̂j · Eloc(ω))2 (4)

p3j = qj∆x3b̂j =
q2

j κ3∆x2
2

κ1 − 9mω2 − 3iγω
b̂j = α3jb̂j(b̂j · Eloc(ω))3 (5)

here α1j , α2j, and α3j are, respectively, the atomic-scale (microscopic) linear polarizability,
first-order, and second-order nonlinear hyperpolarizability of the j-th bond. The hyperpo-
larizability parameters are usually obtained from experimental fitting. Therefore, the model
is usually called phenomenological, while future improvements to incorporate ab initio
quantum mechanical calculations [8] for the derivation of hyperpolarizability parameters
may improve the model accuracy. The incoming s- and p-polarized field are expressed in
terms of Es = Esŷ and Ep = Ep(−x̂ cos θ + ẑ sin θ).

The total polarization can be readily obtained by summing over all the bonds in the
conventional cell, where N is the atomic units of dipoles per unit volume (V)

P =
N
V ∑

j
pj =

N
V ∑

j
(α1jb̂j ⊗ b̂j) · Eloc(ω)

+
N
V ∑

j
(α2jb̂j ⊗ b̂j ⊗ b̂j) · ·(Eloc(ω)⊗ Eloc(ω))

+
N
V ∑

j
(α3jb̂j ⊗ b̂j ⊗ b̂j ⊗ b̂j) · · · (Eloc(ω)⊗ Eloc(ω)⊗ Eloc(ω))

(6)

The relation of the atomic-scale hyperpolarizabilities in Equation (6) with the macro-
scopic nonlinear susceptibility is straightforward

P =←→χ (1) · E(ω) +←→χ (2) · ·E(ω)⊗ E(ω) +←→χ (3) · · · E(ω)⊗ E(ω)⊗ E(ω) (7)
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where←→χ (1),←→χ (2),←→χ (3) are, respectively, the first, second, and third-order susceptibility
tensors of the system.

In RASHG experiments, the sample is often rotated along the z-axis to produce a polar
nonlinear intensity plot. In our calculation, the azimuthal angle φ is measured from the
x-axis and attached to each bond direction by applying the rotation matrix Rz(φ):

Rz(φ) =

 cos φ − sin φ 0
sin φ cos φ 0

0 0 1

 (8)

This readily gives us the formula for the nonlinear SH in terms of the atomic-scale
nonlinear hyperpolarizability:

←→χ (2) =
N
V ∑

j
α2j(Rz(φ) · b̂j)⊗ (Rz(φ) · b̂j)⊗ (Rz(φ) · b̂j) (9)

as well as the expression for the TH atomic-scale nonlinear susceptibility:

←→χ (3) =
N
V ∑

j
α3j(Rz(φ) · b̂j)⊗ (Rz(φ) · b̂j)⊗ (Rz(φ) · b̂j)⊗ (Rz(φ) · b̂j) (10)

Equations (3)–(5) can be applied to obtain an expression of the far field:

E f f = k2 eikr

r

(
∑

j
pj − k̂

[
k̂ ·∑

j
pj

])
= k2 eikr

r

(←→
I − k̂k̂

)
·∑

j
pj (11)

Here
←→
I is the unit tensor and k = kk̂ is the outgoing wave vector pointing in

the direction of the observer/detector. The derivation of Equation (11) from classical
electrodynamics by applying the vector potential A(r,t) which satisfies the Lorentz gauge
can be found in [22]. A possible phase difference can exist between the radiated fields
of different bonds. However, it can be neglected because the light wavelength λ is large
compared to the distance between the atomic nucleus and the bond. This work considers
the case where the RASHG experiments have been performed at a single wavelength. The
sample is being rotated along the z-axis. The obtained nonlinear intensity can readily
be obtained by multiplying Equation (11) with its complex conjugate. The considered
intensity are obtained for s- and p-polarizations of the incoming fundamental and outgoing
nonlinear field resulting in four combinations labeled p(−in)-p(−out), ps, sp, and ss.

We focus here on the nonlinear susceptibility of the SH and in some cases TH given in
Equations (9)–(10), respectively. The nonlinear susceptibility in the SBHM is obtained via
bond vector summation rather than the standard group theoretical approach by assessing
the crystal symmetry with regard to reflection and rotation. We describe in the following
section the methods to obtain the nonlinear tensor via group theory.

3. Group Theory

Although the derivation of the higher-order tensor from the SBHM in Equations (9)–(10)
is straightforward and clear, it is unfortunate that the SBHM is not widely used in the analysis
of recent nonlinear optical studies. Earlier phenomenological models such as [10–12] apply
group-theoretical analysis to derive the higher-order tensor, which as we will see, may result
in unnecessary fitting parameters due to a large number of independent components in
the tensor. Before we describe how the SBHM can simplify the number of independent
components, it is best to briefly recall how the higher-order tensors are usually obtained
using group theory (GT).

In this context, group theory (GT) can be understood as a mathematical structure that
can be applied to the symmetry operations that are allowed in a crystal. The symmetry
operations consist of rotations and reflections and can be represented mathematically by a
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matrix. Certain crystals have structural properties that may be unchanged upon specific
angles of rotation and some specific existing mirror planes. An ensemble of matrices that
represents all the rotations and mirror planes that keep the above-mentioned properties
unchanged for a particular crystal is called a symmetry group, or more precisely called
a point group [25]. Furthermore, these specific symmetry operations must preserve the
crystal physical properties. This is in agreement with Neumann’s principle, or the principle
of symmetry: “if a crystal is invariant with respect to certain symmetry operations, any of
its physical properties must also be invariant with respect to the same symmetry operations
or otherwise stated, the symmetry operations of any physical property of a crystal must
include the symmetry operations of the point group of the crystal”.

To understand the matter more clearly let us recall the general macroscopic relation
between the nonlinear polarization and the incoming driving field in terms of component
form, which is

Pi =χ
(1)
ij Ej + χ

(2)
ijk EjEk + χ

(3)
ijklEjEkEl (12)

The first term includes the linear susceptibility denoted by subscript i and j. This is a
3 × 3 matrix containing nine elements. In contrast, the second is a third rank susceptibility
denoted by subscripts i, j, and k containing 9× 3 = 27 elements. The third term is the fourth
rank susceptibility tensor with subscripts i, j, k and l therefore consisting of 9 × 9 = 81
components. The label i, j, k, and l refer to the three Cartesian coordinates x, y, and z. For
clarity, an explicit representation of a general third rank tensor χ

(2)
ijk is given below:

χ
(2)
ijk =



χxxx χxyx χxzx
χxxy χxyy χxzy
χxxz χxyz χxzz


χyxx χyyx χyzx

χyxy χyyy χyzy
χyxz χyyz χyzz


χzxx χzyx χzzx

χzxy χzyy χzzy
χzxz χzyz χzzz




(13)

As can be seen in Equation (13) the first index “i” in the tensor χ
(2)
ijk is related to the

rows in the main matrix. Therefore, all the elements in the first row of the inner 3 × 3 matrix
have χ

(2)
xjk indices and for the second and third row it will be χ

(2)
yjk and χ

(2)
zjk , respectively.

Analogously, the indices that follow after “i”, which are “j” and “k”, refer to the usual way of
labeling a 3 × 3 matrix, namely the rows and columns in the inner 3 × 3 matrix, respectively.

At first, analyzing nonlinear effects involving a third rank (or worse fourth rank)
tensor looks pretty complicated due to the many elements involved. Fortunately, the
symmetry of the crystal can reduce the amount of independent tensorial elements. The
simplest form of the tensor that still fully represents the crystal symmetry group can be
called the irreducible form of the tensor. In GT, an irreducible tensor can be obtained by
performing all the symmetry operation that belongs to a certain crystal group on the most
general tensor, such as in Equation (13). Therefore, in GT, rather than assessing the nonzero
components using bond vectors as in Equations (9)–(10), the latter uses the conventional
symmetry analysis of the crystal structure.

Now, if a symmetry operation is applied to the crystal, the third rank tensor can be
described mathematically as a linear transform through the relation

χ′ijk = RimRjnRkoχmno (14)
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or for the case of a fourth rank tensor

χ′ijkl = RimRjnRkoRlpχmnop (15)

where Rab is a matrix defining a symmetry operation, e.g., it can be in the form of a
mirror/inversion operation or general rotation of an arbitrary angle. Neuman’s principle
then says that if symmetry operations belonging to the point group of the crystal are
performed, then the initial and final tensor of Equations (14)–(15) must be equal, e.g.,
χ′ijk = χmno.

For simplicity, let us calculate the resulting third rank susceptibility tensor for a
crystal with a symmetry point group C2v. Certain semiconductor surfaces can possess such
symmetry. We apply Equation (14) to calculate the susceptibility third rank tensor for a
crystal with C2 symmetry (inversion symmetric under 180◦ rotation). Equation (9) can be
readily applied where Rab is now the rotational matrix given in Equation (8) and applied
to the most general form of a third rank tensor in Equation (13). Contracting the matrices
with the tensor to the right side of Equation (14) results in:

χ
(2)
ijk =



χxxx χxyx χxzx
χxxy χxyy χxzy
χxxz χxyz χxzz


χyxx χyyx χyzx

χyxy χyyy χyzy
χyxz χyyz χyzz


χzxx χzyx χzzx

χzxy χzyy χzzy
χzxz χzyz χzzz




=



−χxxx −χxyx χxzx
−χxxy −χxyy χxzy
χxxz χxyz −χxzz


−χyxx −χyyx χyzx
−χyxy −χyyy χyzy
χyxz χyyz −χyzz


 χzxx χzyx −χzzx

χzxy χzyy −χzzy
−χzxz −χzyz χzzz




(16)

Now, for an element to be the same as its negative, the values must be zero. The final
tensor thus takes the form:

χ
(2)
ijk =



 0 0 χxzx
0 0 χxzy

χxxz χxyz 0


 0 0 χyzx

0 0 χyzy
χyxz χyyz 0


χzxx χzyx 0

χzxy χzyy 0
0 0 χzzz




(17)

It can be seen that there are 13 nonzero components in the tensor in Equation (17).
Although the form of the tensor is not similar to that in the standard GT literature [26,27],
this discrepancy simply stems from the arbitrary choice of the initial coordinate system,
where the latter uses the y-coordinate rotation

Ry(φ) =

 −1 0 0
0 1 0
0 0 −1

 (18)

rather than Ry(φ) in Equation (8). Repeating the step for a rotation in the y-coordinate,
this value produces results similar to [26] and its step-by-step derivation can be seen
in [28]. In the following section, we focus our analysis on the higher-order susceptibility
tensor diamond-like structures such as Si, and show that the SBHM and GT are in perfect
agreement. Afterwards, we discuss different semiconductors’ crystal symmetry such as
zincblende and wurtzite.
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4. Third Rank Tensors of Diamond Semiconductor Structures

This section discusses the susceptibility tensor related to SHG from diamond semicon-
ductor structures such as Si. It is well known that diamond semiconductors are inversion
symmetric inside the bulk. Thus, the main contribution should come from surfaces dipoles
where the symmetry is broken and from bulk quadrupoles that are always present within
the bulk. In addition, very recently, it was discovered that spatial dispersion in the form of
incoming field decay also contributes to the SHG signal [18].

4.1. Si(111) Surface

The first step is to determine the number of bonds representing a repetitive structure
on the Si(111) surface. As can be seen in Figure 3, the atomic bond structure can be seen in
terms of bonds whose arrow represents the direction of the anharmonic electron oscillation.
Due to the surface symmetry, only four bonds are required to model the SHG radiation.
The bond vector direction follows the coordinate system depicted in the middle of Figure 3
and is given as follows

b̂1 =

 1
0
0

 b̂2 =

 sin β
0

cos β

 b̂3 =

 − 1
2 sin β√
3

2 sin β
cos β

 b̂4 =

 − 1
2 sin β

−
√

3
2 sin β
cos β

 (19)

Here, β is, as mentioned previously, the bond angle between the Si bonds, which is
109.47◦. Two different hyperpolarizabilities are required, namely the up bonds pointing
normal to the surface αu or along the z axis and the down bonds pointing downwards αl .

Figure 3. (Left) Two-layer atomic orientation of a Si(111) surface, (middle) bond vector definition
referring to the coordinate system and (right) bond representation of the structure.

Applying the SBHM calculation in Equation (9), we obtain the susceptibility third rank
tensor for the Si(111) surface:

χ
(2)
ijk =



c1 c2 c3
c2 −c2 0
c3 0 0


 c2 −c1 0
−c1 −c2 c3

0 c3 0


c3 0 0

0 c3 0
0 0 c4




(20)
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where

c1 =
3αl
4

sin3 β cos 3φ (21)

c2 =
3αl
4

sin3 β sin 3φ (22)

c3 =
3αl
2

sin2 β cos β (23)

c4 = αu + 3αl cos3 β (24)

From Equations (21)–(24), one can see that there are only two fitting parameters namely
αu occurring in Equation (24) and αl occurring in Equations (21)–(24). In other words, if
the SHG source is only attributed to the Si(111) dipoles at the surface, we only require two
independent fitting parameters to be adjusted when modeling the experimental data.

We now compare the results with the conventional method of obtaining the tensor via
the Si(111) structural symmetry as depicted in Figure 3 using group theory (GT). According
to GT, the symmetry point group for a Si(111) surface is C3v. When analyzing surfaces,
the symmetry operations do not involve the vertical z-axis. Thus, the mirror planes in
the z direction or rotations that transform in some way the z-coordinate are not allowed.
However, if the azimuth angle φ is fixed to some arbitrary value, the resulting susceptibility
tensors in Equation (20) is generally different than those in the standard literature, e.g., [13].
The latter are calculated using mirror planes containing two Cartesian axes where the
rotation axis could be arbitrarily chosen, resulting in the final tensor with different element
symmetry distribution. In contrast, the SBHM reference system is usually chosen so that the
unit vectors describing the bonds have minimum components to simplify the calculation.

In this work, the Si(111) surface tensor elements are fixed to φ = π/2. Thus, the C3v
symmetry tensor as reported in [13] is:

χ
(2)
ijk =



 0 −2χyyy χxzx
−2χyyy 0 0

χxzx 0 0


−2χyyy 0 0

0 χyyy χxzx
0 χxzx 0


χzxx 0 0

0 χzxx 0
0 0 χzzz




(25)

with a small difference in the constant 2 in some of the tensor elements for the C3v symmetry.
Here, the coefficient χxxy satisfies χxxy = χxyx = −χyyy.

To compare the tensors with the SBHM, they have to be rotated by φ using the
following relation:

χijk = Ril(φ)Rjm(φ)Rkn(φ)χlmn (26)

In the case of a C3v symmetry, the tensor is rotated in such a way that the system of
reference has a mirror plane perpendicular to the y-axis. To compare with the literature, the
rotation angle should be evaluated at φ = π/2 with χxxx

χ−→yyy. Afterwards, the general
C3v tensor from GT is readily obtained:
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χ
(2)
ijk =



χxxx cos 3φ χxxx sin 3φ χxzx
χxxx sin 3φ −χxxx cos 3φ 0

χxzx 0 0


 χxxx sin 3φ −χxxx cos 3φ 0
−χxxx cos 3φ −χxxx sin 3φ χxzx

0 χxxx sin 3φ 0


χzxx 0 0

0 χzxx 0
0 0 χzzz




(27)

Comparing Equation (27) with Equation (20), we can solve a system of equations for
the unknown tensorial coefficients χijk in terms of the physical constants from the SBHM
as can be found in [25].

It can be seen that the tensor obtained from GT in Equation (27) is similar to the one
obtained by the SBHM in Equation (20), but with an important distinction. The number
of independent fitting parameters in the GT tensor is four (χxxx, χxzx, χzxx, χzzz) compared
to only two when using the SBHM. Moreover, if we include Kleinman symmetry, the
susceptibility remains unchanged when the frequencies of the two input signals and the
resulting beam are permuted. Therefore the indices in the susceptibility tensor are invariant
under all possible permutations. In this case, the original four independent parameters in
the GT tensor are now reduced to only three. However, even with Kleinman symmetry
considered, the final tensor is still more complex than in the SBHM, which requires only
two. The physical interpretation of why SBHM simplifies the tensor is that it only considers
bond vectors rather than the general symmetry form of the structure. Another feature is
the occurrence of a threefold rotation symmetry 3φ, meaning that the generated SHG polar
plot intensity should produce a three or sixfold-like pattern when analyzed using RASHG.
This feature is indeed observed, as can be seen in [18].

4.2. Si(001) Surface

This procedure can be repeated to study other Si surface orientations. Let us consider
the Si(001) surface as in Figure 4.

Figure 4. (Left) Three-layer atomic orientation of a Si(001) surface depiction and (middle) the bond
vector definition referring to the coordinate system. (Right) Aligned bond vector representation of
the structure.

The bond vector orientation for this surface is

b̂1 =

 −
√

2 sin (β/2)
−
√

2 sin (β/2)
− cos (β/2)

 b̂2 =

 −
√

2 sin (β/2)
−
√

2 sin (β/2)
− cos (β/2)

 (28)

b̂3 =


√

2 sin (β/2)
−
√

2 sin (β/2)
cos (β/2)

 b̂4 =

 − 1
2 sin β

−
√

3
2 sin β
cos β

 (29)
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Performing the same procedure as before the SBHM third rank susceptibility tensor
takes the form

χ
(2)
ijk =



 0 0 c5
0 0 c6
c5 c6 0


 0 0 c6

0 0 c7
c6 c7 0


c5 c6 0

c6 c7 0
0 0 c8




(30)

where

c5 = (αu cos2 φ + αl sin2 φ) (31)

c6 =
1
2
(αu − αl)c sin 2φ (32)

c7 = (αu sin2 φ + αl cos2 φ) (33)

c8 = 2(αu + αl)cos2(β/2) (34)

As seen in Equations (31)–(34), the SBHM Si(001) surface third rank tensor consist of
only two independent tensor elements namely αl and αu. In the same fashion, the analysis
using GT shows that such a structure has a C2v symmetry. For a rotating angle of φ = 0
we have:

χ
(2)
ijk =



 0 0 χxzx
0 0 0

χxzx 0 0


0 0 0

0 0 χyzy
0 χyzy 0


χzxx 0 0

0 χzyy 0
0 0 χzzz




(35)

If the tensor is rotated as before for an arbitrary rotation angle with regard to the z-axis,
then the tensor takes the form:

χ
(2)
ijk =



 0 0 c9
0 0 c10
c9 c10 0


 0 0 c10

0 0 c9
c10 c9 0


 c9 c10 0

c10 c9 0
0 0 c11




(36)

where

c9 = χxzx cos2 φ + χyzy sin2 φ (37)

c10 =
1
2
(χxzx − χyzy) sin2φ (38)

c11 = χzzz (39)
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It can be seen that the tensor associated to this point group has five independent
elements (χxxz = χxzx, χyyz = χyzy, χzxx, χzyy, and χzzz) according to [13]. If we now fix
the angle φ = 0 we readily obtain the tensor elements in [13]. When we apply Kleinman
symmetry, these five independent parameters are directly reduced to three.

It has to be stated here that there are SHG sources other than the surface ones respon-
sible for the total SHG intensity in Si. These sources include bulk quadrupole contribution
and spatial dispersion, which are not covered in this work but are briefly mentioned here.
It is well known that Si is centrosymmetric inside the bulk. Therefore, it cannot produce
dipolar SHG due to parity symmetry. However, quadrupole contribution, which is weaker
than dipole contribution, can still exist inside the Si bulk and compete with surface dipole
due to the sheer amount of bulk layers. Recently, a SBHM model has been developed to
account for the bulk quadrupole contribution whose nonlinear tensors also contain fewer
independent parameters than GT. These quadrupolar contributions can be differentiated
from the surface dipole contributions by applying an arbitrary input polarization in the
RASHG experiment. For a more detailed discussion, the interested reader should con-
sult [19]. Another contribution that has recently been discovered is the possibility that
an incoming field decays and produces asymmetric driven oscillations within the vertical
layers inside the optical penetration depth. This effect produces a unique bulk dipolar con-
tribution called spatial dispersion, and a more elaborate discussion of how to separate this
effect with surface dipoles and bulk quadrupole can be found in [18]. The main point here
is that the simplification of nonlinear tensors enables a more straightforward estimation of
the various SHG contributions within the bulk and surface than if GT is applied to find the
nonlinear tensor.

5. Third Rank Tensors of Perovskite Semiconductor Structures

We now proceed with a more complex structure, namely perovskite, which is a
semiconductor with ABO3 symmetry. To the best of our knowledge this is the first time
that the SBHM is applied to the perovskite structure. In this work, we focus on the room
temperature methyl ammonium lead iodide (MAPbI3) tetragonal structure. As before, we
apply the SBHM to investigate the third rank tensor associated with SHG. The perovskite
3D structure under analysis is given by Figure 5.

As can be seen in Figure 5, the perovskite MAPbI3 surface and bulk can be described
using a different symmetry. The surface structure possesses a C2v point group symmetry
which is noncentrosymmetric whereas the bulk structure is centrosymmetric and is de-
scribed by the D4h. However, the centrosymmetry of the bulk structure is still under debate
as whether such bulk structure is polar or nonpolar [29]. If the MA ions can be neglected as
an SHG source as claimed by [30], then it can be assumed that the bulk structure made of
Pb and I covalent bonds are centrosymmetric.

We now show using the tensor formalism of the SBHM that the neglect of MA ions
indeed results in a fully zero third rank susceptibility tensor. The main challenge in
obtaining the third rank tensor expression using the SBHM is determining how many bond
vectors are required and how they are arranged. Afterwards, one can create an effective
or reduced structure based on translational analysis of the bond vector. The MAPbI3 bulk
structure and its bond vector creation is given in Figure 6. As can be seen, we apply four
Pb atoms surrounded by I atoms forming a tetragonal structure. The total involved bond
vectors, in this case, is 36. Inserting all the bond vectors, one readily obtains a zero third
rank tensor, confirming the centrosymmetry of the MAPbI3 bulk structure. However, such
a cumbersome calculation can be avoided if we look at the reduced form of the bond vector.
Using translation to merge the vectors into a centralized point vector structure, one can
see, as depicted in Figure 7 that the 26 bond vectors will exactly cancel each other out, thus
producing a zero net vector. The complete expression of the perovskite bulk and surface
bond vectors is avaiable as Supplementary Materials.
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Figure 5. (a) MAPbI3 surface structure with C2v symmetry and (b) bulk structure with centrosym-
metric properties D4h.

Figure 6. (a) Side view of MAPBI3 tetragonal bulk structure with D4h symmetry; (b) top view, (c) side
view of the SBHM bond vectors, and (d) top view of the SBHM bond vectors.
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Figure 7. (a) Side view of MAPBI3 reduced bulk bond vectors and (b) top view of the reduced bulk
bond vectors.

We now apply the same procedure to investigate the MAPbI3 surface symmetry. The
difference between the surface and bulk lies in the absence of the four up bond vector. This
breaks the centrosymmetry into a C2v structure, as can be seen in Figure 8. As before, we
apply four Pb atomic centers for the SBHM model. From the reduced form of the bond
vectors, it can be seen that the twofold rotational symmetry is readily obtained due to the
four downward bond vectors. The number of bond vectors that are now involved consists
of 40 bonds. Each of the bonds represents, as before, the covalent bond between the Pb and
I atoms, neglecting the MA ions. Note that the number of bond vectors required is 40 or 4
more bonds than the previous 36 used to model the perovskite bulk structure.

Figure 8. (a) Side view of MAPbI3 surface bond vectors; (b) top view of the surface bond vectors,
(c) side view of the reduced surface bond vectors, and (d) top view of reduced surface bond vectors.

The third rank susceptibility tensor from the SBHM can now be obtained. Using the
same procedure by inserting all 40 bond vectors, the tensor takes the following form:
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χ
(2)
ijk =



 0 0 c12
0 0 0

c12 0 0


0 0 0

0 0 c13
0 c13 0


c12 0 0

0 c13 0
0 0 c14




(40)

where

c12 = αPbIsur f

(
2 sin

17β

18
sin

17β

9
+ 2 sin

19β

18
sin

19β

9
+

3
2

sin
35β

18
sin

35β

9

)
(41)

c13 =
1
2

αPbIsur f

(
4 sin

17β

18
sin

17β

9
+ 4 sin

19β

18
sin

19β

9
+ sin

35β

18
sin

35β

9

)
(42)

c14 = 4αPbIsur f

(
2 cos

(
17β

18

)2
+ cos

(
19β

18

)2
)
+ cos

(
35β

18

)2
(43)

Based on Equations (41)–(43) , we can conclude that the SBHM gives seven nonzero
elements with only one fitting parameter, namely the effective Pb-I nonlinear hyperpolariz-
ability (αPbIsur f ).

The C2v third rank tensor from GT can be obtained by performing the point group
rotation and mirror symmetry operation as given in the previous example of finding the
C2v tensor, but now adding to the mirror symmetry operation. If this is performed, one
readily obtains:

χ
(2)
ijk =



 0 0 χxzx
0 0 0

χxxz 0 0


0 0 0

0 0 χyzy
0 χyyz 0


χzxx 0 0

0 χzyy 0
0 0 χzzz




(44)

Therefore, GT requires seven nonzero elements and as in the Si(001) case requires five
independent elements (χxxz = χxzx, χyyz = χyzy, χzxx, χzyy, and χzzz) but with Kleinman
symmetry, this is readily reduced to three elements. Still, the SBHM is far more simple
by requiring just one fitting parameter. State-of-the-art RASHG experimental results by
Frohna et al. [30] show that there is no SHG contribution from within the bulk of inorganic
halide tetragonal perovskite such as MAPbI3. One of the implications is that the dynamic
and large static Rashba effects, which come from within the bulk, cannot be attributed to the
SHG source. Thus, the SHG must come from the C2v surface. Using the SBHM, we confirm
their results. In addition, we found that the three independent fitting parameters in the
GT SHG surface tensor of perovskite can be reduced to only one fitting parameter, namely
the nonlinear effective perovskite hyperpolarizability (αPbIsur f ). This result is important
because it allows the future analysis of more complex perovskite surfaces.

Before we conclude, we would like to briefly discuss the accuracy of the proposed
model with experimental results, particularly current results from the SHG intensity in
various RASHG experiments. As mentioned earlier, the SBHM is a phenomenological
model because the complex nonlinear hyperpolarizabilities must be obtained by experi-
mental fitting. More precisely, after the nonlinear SHG tensor form is obtained using bond
vector direct products in Equation (9), the far field can be obtained through Equation (11)
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and, when multiplied with its complex conjugate, it readily gives the SHG intensity that
can be fitted with the experiment to obtain the hyperpolarizability parameter. Because of
the complexity of the various SHG sources in nonvicinal Si, an estimate of the residual
fitting in vicinal Si(111) where the surface effects dominate has been offered instead by
Powel et al. [13]. Applying the SBHM, they found using two independent complex param-
eters (the SHG up and down hyperpolarizabilities) a perfect fit with the experiment with a
residual statistical error of only 0.0039 (e.g., see Figure 2 in the reference). A similar analysis
of SBHM on GaAs [22] where the RASHG intensity experimental data are assumed to stem
only from within the bulk also has been analyzed using the SBHM with a fitting statistical
error of only 0.017, which is a good validation of the model.

6. Conclusions

We have shown that SBHM can simplify the nonlinear tensor compared to group
theory. For the case of both Si(111) and Si(001) surfaces, SBHM requires only two fitting
parameters namely αu and αl whereas GT with no Kleinman symmetry shows that four
(χxxx, χxzx, χzxx, χzzz) and five (χxxz = χxzx, χyyz = χyzy, χzxx, χzyy, and χzzz) independent
parameters are required for the Si(111) and Si(001) surfaces, respectively. For the case of
perovskite, the SBHM surprisingly requires only one independent fitting parameter. This
parameter is the effective perovskite hyperpolarizability (αPbIsur f ). Meanwhile, GT requires
five (χxxz = χxzx, χyyz = χyzy, χzxx, χzyy, and χzzz) independent elements when modeling
the tetragonal perovskite surfaces. Therefore, the SBHM provides a major simplification
even if Kleinman symmetry is invoked.

Our results open the possibilities for future research directions. First, with the nonlin-
ear tensor containing fewer independent parameters, one can start to estimate better the
various bulk and surface nonlinear contributions in other semiconductors, paving the way
for a better understanding of nonlinear processing at the nanoscale. Second, the SBHM
calculation of perovskite can be developed further to produce the SHG intensity that can be
compared with existing experiments, e.g., Frohna et al. [30]. For the case of perovskite, this
approach seems to agree with their result that the SHG comes from the perovskite surface
and that the large static and dynamic Rashba effect is not responsible for the SHG intensity.
Third, real-time atomic/molecular deposition can be monitored and modeled more easily
with the SBHM because we can attribute various features of the SHG intensity to single
atomic bonds, including the bonds connected to the deposited atoms/molecules.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/sym14010127/s1, The Supplementary Information containing the complete perovskite bulk
and surface bond vector used in the SBHM simulation is available for free at.
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